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Abstract

In this chapter, a steady laminar axisymmetrical flow in a straight
constricted pipe is considered (then the same 2D problem between two
parallel plates is considered). The RNS/Prandtl equations are pre-
sented as an asymptotic limit of the Navier-Stokes equations. This
set of equations is shown to include at first order several asymptotic
descriptions of the full Navier-Stokes equations: the Blasius régime,
Interacting Boundary Layer theory, Triple Deck theory, the Poiseuille
régime and Double Deck theory. These theories are all characterised
by a constant pressure in each cross section. Thus, these equations
are able to describe the transitions between flow regions that corre-
spond to different classical asymptotic descriptions or regimes that are
usually done with the full Navier-Stokes Equations. Some prediction
on the magnitude of the wall shear stress and on the pressure drop
will be compared with Navier-Stokes computations for cases of severe
constrictions.

This text is in fact very similar to the three papers ”The RNS/Prandtl
equations and their link with other asymptotic descriptions: application to
the wall shear stress scaling in a constricted pipe” by P.-Y. Lagrée & Sylvie
Lorthois in International Journal of Engineering Sciences (2005), [22], and
to ”Characterization of the pressure drop in a 2D symmetrical pipe: some
asymptotical, numerical and experimental comparisons” by P.-Y. Lagre, E.
Berger, M. Deverge, C. Vilain & A. Hirschberg (2005): Z. Angew. Math.
Mech. [18], and to ”Asymmetrical effects in a 2D stenosis” by P.-Y. Lagre,
A. Van Hirtum & X. Pelorson (2007): European Journal of Mechanics -
B/Fluids, [19].
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1 Introduction

Estimating the flow quantities like the magnitude of the wall shear stress
(WSS) or the pressure drop in a locally constricted pipe is important in
numerous applications. For example, elevated wall shear stresses encoun-
tered in stenoses, i.e. local constrictions of blood vessels, play a significant
role in thrombo-embolism and atherosclerotic plaques ruptures (Berger and
Jou [1], Stroud et al. [47]). Of course, computing the flow in such a pipe
can be achieved with great accuracy through Navier-Stokes solvers (Bud-
wig et al. [2], Bluestein et al. [3] de Bruin et al. [8], Siegel et al. [40]).
However, asymptotic equations provides a better understanding of the flow
structure and relevant scalings, and reduces computational time. Therefore,
parameters may be changed easily and their influence can be thoroughly
investigated. Hence, the aim of this work is to find the appropriate scaling
for the wall shear stress in a constricted pipe as a function of pertinent non-
dimensional parameters using an asymptotic approach.
For that purpose, a set of equations that is sometimes referred to as Reduced
Navier-Stokes (RNS) equations will be our starting point. These equations,
including a transverse pressure gradient, can be found either in three or two
dimensions, plane or axisymmetrical, in Fletcher [10] and Tannehil et al.
[49]. However, in our analysis, these equations will be used with a constant
transverse pressure, i.e. the pressure is a function of x alone : ∂rp = 0 or
p(x). In this case, the RNS equations formally correspond to the Prandtl
equations, but with different boundary conditions. Therefore, they may be
called RNS/Prandtl, or RNSP(x).
Following Smith [41] and other authors (e. g. Saintlos & Mauss [37], Sychev
et al. [48]) analyses, we will show that the RNS/Prandtl equations includes
many classical asymptotic descriptions for internal flows, i.e. the Interactive
Boundary Layer (IBL), the Double Deck and the Triple Deck theories, as
well as Blasius and Poiseuille regimes. Thus, the RNS/Prandtl equations
are able to describe the transitions between flow regions that correspond to
different classical asymptotic descriptions or regimes that are usually done
with the full Navier-Stokes Equations.
In order to demonstrate the “universality” of the RNSP(x) equations, we will
use either the least possible degeneracy principle (Van Dyke [50]), which re-
quires the inertia-pressure-viscous force balance, or directly the results from
the literature, that are classical but till have been disjoined.
The limitation of this description will also be presented. In particular, the
RNSP(x) equations are not valid when ∂rp is not zero, which induces ellip-
ticity and prevents the flow from being solved with a streamwise marching
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procedure. Nevertheless, this is not a very strong condition in internal flows,
and will be demonstrated using the Double Deck and Triple Deck theories.
In particular, calculation of separated flows is possible (Smith [41], Sychev
et all. [48], Lagrée et al. [21]). Hence, the RNSP(x) equations may be
applied in the case of a dilated pipe or aneurysm (Lagrée [16], Budwig et al.
[2] and Bluestein et al. [3]). In addition, the RNSP(x) formulation can be
applied to supersonic external flows (see Davis et al. [7]) except when there
is an upstream influence from the flow downstream, which occurs in some
Triple Deck problems (Stewartson [45]). A case of a hypersonic external flow
has also been studied by Maslov et al. [26] by a RNS computation without
obtaining branching solutions from upstream influence.
In the following, the variables with stars denote dimensional variables.

RNSP

r

R = 1 − αR = 1 x

f

u(x = 0, r)

xl

Figure 1: Geometrical parameters of the constricted pipe. Note that
the transverse scale is non-dimensionalised by the unperturbed pipe radius
R∗

0. Values of xl and α are linked via the asymptotic scales.
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Figure 1: Geometrical parameters of the constricted pipe. Note that
the transverse scale is non-dimensionalised by the unperturbed pipe radius
R∗0. Values of xl and α are linked via the asymptotic scales.
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Part I

Axi case

2 RNS/Prandtl equations (RNSP(x))

2.1 The RNSP(x) hypothesis

We consider a steady laminar incompressible axisymmetrical flow of a New-
tonian fluid in a locally constricted axisymmetric pipe (see Fig. 1 for nota-
tions used). The radial position of the pipe is given by : R∗ = R∗0(1−f(x∗)),
where R∗0 is the unconstricted radius and f is the given radius perturbation.
In addition, we denote by U∗

0 the longitudinal velocity scale of the flow and
assume that the typical length scale for transverse variations of the lon-
gitudinal velocity is R∗0. From the Navier-Stokes equations, we obtain a
longitudinal scale (L∗RNS >> R∗0) from a balance between the convective
term and the largest diffusive term. In other words, (u∗ ∂u∗

∂x∗ ) must be of the
same order as ν ∂

r∗∂r∗ (r∗ ∂
∂r∗u∗), which leads to:

U∗2
0

L∗RNS

u
∂u

∂x
' ν

U∗
0

R∗20

∂

r∂r
(r

∂

∂r
u), (1)

where ν is the kinematic viscosity. Thus the longitudinal scale L∗RNS equals
R∗0Re, where Re is the Reynolds number Re = U∗

0 R∗0/ν. Finally, the pressure
and transverse velocity scales are determined from a balance among the
viscous term, convective term, and pressure gradient that drives the flow
(Van Dyke [50]). Of course, this is similar to the classical way to obtain
the Prandtl equations although in the Prandtl case the transversal scale is
deduced from an initially chosen longitudinal scale.
A similar approach will be carried out in the following sections with various
transverse scales corresponding to the tickness of additional layers near the
wall, and with various scales for the longitudinal velocity in these new layers.
A longitudinal length scale will still be determined in order to obtain a
balance among inertia, pressure, viscous forces.

2.2 The RNSP(x) Formulation

As deduced from the previous section, the non-dimensional variables are
given by :
x∗ = xR∗0Re, r∗ = rR∗0, u∗ = U∗

0 u, v∗ = U∗
0

Rev, p∗ = p∗0 + ρ0U
∗2
0 p,
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p∗0 denoting the entry pressure, and, consequently :

τ∗ = µ
∂u∗

∂r∗
=

ρU∗2
0

Re
τ, (2)

where τ is the WSS, µ is the dynamic viscosity and ρ the density.
With these new variables, the following partial differential system is obtained
from the Navier-Stokes equations as Re →∞:

∂

∂x
u +

∂rv

r∂r
= 0, u

∂u

∂x
+ v

∂u

∂r
= −∂p

∂x
+

∂

r∂r
(r

∂u

∂r
), 0 = −∂p

∂r
. (3)

The associated boundary conditions are:

• the condition of axial symmetry : ∂ru = 0 and v = 0 at r = 0,

• no-slip condition at the wall : u = v = 0 at r = 1−f(x). Of course, in
order to apply the RNSP(x) set, f is of order one, but smaller than one,
and the longitudinal scale has to be compatible, i.e. of scale L∗RNS .
In the next section, the implications of a change in the constriction
height and the length will be discussed,

• the entry velocity profiles (u(0, r) and v(0, r)) are given : flat profile
or Poiseuille flow, but other profile is also possible,

• there is no outflow boundary condition because the system is parabolic
as will be demonstrated in the linearised asymptotic descriptions. The
equations are solved by marching in the streamwise direction, even if
there is flow separation.

The most important result of the computation is the non-dimensionalised
WSS: τ = ∂u

∂r (x, 0).

2.3 Comments

This set of equations has been already used for studying entry effects by
Cebeci & Cousteix [4] and in Schlichting [38]. However, Rubin & Himansu
[36] and Tannehil et al. [10] kept a transversal pressure variation linked with
the transverse velocity as follows:

Re−2(u
∂

∂x
v + v

∂

∂r
v) = −∂p

∂r
+ Re−2(

∂

r∂r
(r

∂

∂r
v)− v2

r
). (4)

They call the system (3.1 , 3.2, 4) “Reduced NS“, but as noted by Fletcher
[10], this system contains a mix of orders of magnitude, and is not coherent
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RNSP

ε

ε2

R = 1

Figure 2: Unconstricted situation : entry problem. Starting from
a flat velocity profile, a Poiseuille profile is obtained at the exit, i.e. at a
distance O(1) in the R0Re scale. Near the entrance, i.e. at a distance O(ε2),
the IBL formulation is valid : the boundary layer thickness is of order O(ε)
in the R0 scale.
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Figure 2: Unconstricted situation : entry problem. Starting from
a flat velocity profile, a Poiseuille profile is obtained at the exit, i.e. at a
distance O(1) in the R0Re scale. Near the entrance, i.e. at a distance O(ε2),
the IBL formulation is valid : the boundary layer thickness is of order O(ε)
in the R0 scale.

from an asymptotical point of view. Indeed, as Re tends toward infinity, Eq.
4 degenerates to Eq. 3.3, and the system (3.1, 3.2, 4) reduces to the RNSP(x)
set. Subsequently, this system is used to obtain most of the degeneracy of
the full NS equations in an axisymmetrical pipe :

• In §3.1, a unconstricted case will be discussed (entry problem, see Fig.
2),

• In §3.2.1 and §3.3, a case of a constriction situated near the pipe entry,
where the velocity profile is flat in the core flow, will be considered
(see Fig. 3, left). In this case, the Interacting Boundary Layer and
the Triple Deck theories are valid since the core flow is inviscid and
there is a thin boundary layer near the wall,

• In §3.4, a case of a constriction situated far from the pipe entry, where
the flow is fully developed, will be considered (see Fig. 3, right). In
this region, the Double Deck theory, also known as Smith’s theory of
viscous perturbation on a Poiseuille flow in a pipe, is valid,

• Finally, in §3.6.1, we will show that if the constriction is short com-
pared to R∗0Re, the velocity profile at the entry is not important. In
that case, the Interacting Boundary Layer theory proves to be valid
again: acceleration is so high that the profile flattens, recreating an
inviscid core and a thin boundary layer near the wall.
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RNSP

R = 1

x1 x2

x

Figure 3: Flow configurations : A constriction may be located at station
x1 where an inviscid fluid core still exists, see §3.2.1: IBL or §3.3: Triple
Deck (Fig. 8), or at station x2 where the Poiseuille profile has developed, see
§3.4: Double Deck (Fig. 11). If the constriction is short but severe enough,
the exact entrance velocity profile has no importance, see §3.6.1: IBL.
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Figure 3: Flow configurations : A constriction may be located at station
x1 where an inviscid fluid core still exists, see §3.2.1: IBL or §3.3: Triple
Deck (Fig. 8), or at station x2 where the Poiseuille profile has developed, see
§3.4: Double Deck (Fig. 11). If the constriction is short but severe enough,
the exact entrance velocity profile has no importance, see §3.6.1: IBL.

In particular, the scale of the non-dimensional WSS will be determined by
the location and size of the constriction. This scale will not always be of
order one in the RNSP scales.
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3 Link of RNSP(x) with other Asymptotic de-
scriptions.

3.1 RNSP(x): from Blasius to Poiseuille

First, starting from a flat profile at the entrance (u(0, r) = 1 and v(0, r) = 0),
the flow consist of two concentric layers (see Fig. 2) :

• A first layer of length ε2 << 1 and of transversal length 1 (except near
the wall) where the velocity is uniform (u = 1, v = 0): the inviscid
core,

• A second thin layer of the same longitudinal length ε2 << 1, but of
thickness ε << 1. In this layer, introducing x = ε2x̄, r = 1 − εȳ,
u = ū, −v = ε−1v̄ and p = p̄, the RNSP(x) set leads to the classical
Boundary Layer equations:

∂ū

∂x̄
+

∂v̄

∂ȳ
= 0, (ū

∂ū

∂x̄
+ v̄

∂ū

∂ȳ
) = −∂p̄

∂x̄
+

∂2ū

∂ȳ2
, 0 = −∂p̄

∂ȳ
, (5)

with the following boundary conditions : ū(x̄, 0) = 0, v̄(x̄, 0) = 0,
ū(x̄,∞) = 1, p̄(x̄,∞) = 0, corresponding to the Blasius flow regime.

Thus, if L∗ denotes the current dimensional length in this second layer,
i.e. L∗ = ε2L∗RNS , the corresponding thickness is given by εR∗0, or :√

L∗

L∗RNS

R∗0 =
L∗√
U∗

0 L∗

ν

, (6)

the classical boundary layer thickness. Similarly, the non-dimensional
WSS is the Blasius value τ̄ = 0.33x̄−1/2 (Schlichting [38]). Conse-
quently, τ = ε−10.33(ε−2x)−1/2, or, in dimensional form :

τ∗ = [
ρU∗2

0

Re
](0.33(

x∗

R∗0
)−1/2). (7)

Second, the Poiseuille solution is obviously a solution for the set (3) associ-
ated with the no-slip condition at the wall , with its WSS:

u = UPois(r) = 2(1− r2), v = 0, τ∗ = (4)[
ρU∗2

0

Re
]. (8)
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Third, the system (3) allows the computation of the entry flow from Bla-
sius to Poiseuille (see Schlichting [38], Cebeci & Cousteix [4] and next sub-
section).
Finally, at the entrance of the pipe, there is a small region of the same rela-
tive thickness and length ε = Re−1 where a full Navier-Stokes problem must
be solved. This degeneracy is not included in the RNSP(x). From Navier-
Stokes equations, with: x∗ = εR∗0x̂, r∗ = R∗0(1 − εŷ), u∗ = U∗

0 û, v∗ = U∗
0 v̂

we obtain:
∂û

∂x̂
+

∂v̂

∂ŷ
= 0 (9)

û
∂û

∂x̂
+ v̂

∂û

∂ŷ
= −∂p̂

∂x̂
+

∂2û

∂x̂2
+

∂2û

∂ŷ2
, û

∂v̂

∂x̂
+ v̂

∂v̂

∂ŷ
= −∂p̂

∂ŷ
+

∂2v̂

∂x̂2
+

∂2v̂

∂ŷ2
(10)

This short scale problem is the first limitation of the RNSP(x) set because
∂p̂/∂ŷ is not zero, resulting an elliptic system. In this region, in the RNSP
scales, the transversal length is of order Re−1 and the longitudinal velocity
is of order 1. The non-dimensional WSS thus scales as Re. Finally, from
Eq. 2, the physical scale of the WSS (τ∗) is given by

τ∗ = O(ρU∗2
0 ). (11)

Note that the matching between this NS short scale region and the RNS/Prandtl
areas is a very difficult task. However, there is an analogy between this is-
sue and the thermal boundary layer in a Poiseuille flow (described in Pedley
[30]). First, at the entrance of the pipe, the full heat equation holds, corre-
sponding to our full NS problem. Then, the Lévêque problem corresponds
to our inviscid core/Blasius layer flow region. Finally, the Graetz problem
corresponds to the Blasius/Poiseuille transition. In this problem, solutions
of the full heat equations may be matched with the solution of the Lévêque
problem.

3.1.1 Numerical results

The numerical solutions of the RNSP system (3.1, 3.2, 3.3) and other asymp-
totic descriptions in the following sections are achieved using a simple finite
difference scheme in ”mapped variables” (Lagrée [17]). The derivatives are
implicit, centered in the transverse direction and marching in the stream-
wise direction. The core of the solution is the second order derivative with
a two point boundary condition for u in Eq. 3.2. It is solved by the Thomas
algorithm (Peyret & Taylor [32]). The transverse velocity is then computed
by integration of Eq. 3. The idea is to guess by a Newton iteration scheme
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the value of the pressure at the current step so that the boundary condi-
tion for the transverse velocity is fulfilled. An alternative way to solve for
the pressure gradient can be found in Feltcher [10]. This code enables the
computation of the boundary layer separation (reverse flow) in mild constric-
tions, but, if the constriction is severe, the FLARE approximation (Reyhner
& Flügge Lotz [33]) must be used .
Fig. 4 displays the longitudinal evolution of the velocity at the centre of the
pipe, starting from the entrance (u(x = 0, r = 0) = 1) and to the Poiseuille
value (u(x = ∞, r = 0) = 2)). The length of the entrance region is given by
xe ' 0.214 where u(xe, r = 0)/u(x = ∞, r = 0) equals 0.99. The asymptote
obtained for small x = 0 values will be examined in the next section. Fig. 5
displays the longitudinal evolution of the pressure. For large x, the pressure
asymptote is linear and of slope −8 as expected from Eqs. 5 and 8. The in-
tercept of this asymptote corresponds to the singular pressure drop ∆pentry

for an entry flow, i.e. : ∆pentry = −0.63.
RNSP

1

1.2

1.4

1.6

1.8

2

0 0.05 0.1 0.15 0.2 0.25

RNSP
integral IBL
Blasius cor.

Poiseuille

x

u
(x

,r
=

0)

Figure 4: Unconstricted situation : longitudinal evolution of the
velocity at the centre of the pipe. RNSP : numerical solution of the
RNSP equations ; integral IBL : solution obtained with the integral IBL
approach, rescaled in the x variable ; ”Blasius cor.” : first order correction
(u = 1 + 3.4x1/2) to the Blasius solution (which is u = 1), as obtained in
§3.2.5. Note that the Poiseuille value is independent of x and equals 2.

interacting, so that the radius seen by the inviscid core is no longer R∗

0 but
R∗

0(1 − εδ̄1). The inviscid solution for a channel with a slow radius change

is then obtained by a simple mass balance: u∗ = U∗

0

[

R∗

0

R∗

0
(1−εδ̄1)

]2
, where δ̄1

is the boundary layer displacement thickness.
In establishing the velocity displacement relation (Eq. 13), the key lies
in the examination of the integral of the velocity over the channel cross-
section. This integral is decomposed using a small parameter δρ such as :
1 >> δρ >> ε.

∫ 1

0
(ru)dr =

∫ 1−δρ

0
(ru)dr+

∫ 1

1−δρ

(ru)dr+(

∫ 1

1−δρ

(rue(x̄))dr−
∫ 1

1−δρ

(rue(x̄))dr).
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Figure 4: Unconstricted situation : longitudinal evolution of the
velocity at the centre of the pipe. RNSP : numerical solution of the
RNSP equations ; integral IBL : solution obtained with the integral IBL
approach, rescaled in the x variable ; ”Blasius cor.” : first order correction
(u = 1 + 3.4x1/2) to the Blasius solution (which is u = 1), as obtained in
§3.2.5. Note that the Poiseuille value is independent of x and equals 2.
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RNSP
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-2.5

-2

-1.5

-1

-0.5

0

0 0.05 0.1 0.15 0.2 0.25

RNSP
integral IBL
Blasius cor.

Poiseuille
hyperbolic fit

x

p(
x
)

Figure 5: Unconstricted situation : longitudinal evolution of the
pressure : RNSP : numerical solution of the RNSP equations ; integral
IBL : solution obtained with the integral IBL approach, rescaled in the x
variable ; Poiseuille : p = −0.63 − 8x, see §3.1 ; Blasius cor. : first order
correction (−2εδ̄1Blasius) to the Blasius solution (which is p = 0), as obtained
in §3.2.5 ; hyperbolic fit : ad hoc fitting relation (Eq. 20).
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Figure 5: Unconstricted situation : longitudinal evolution of the
pressure : RNSP : numerical solution of the RNSP equations ; integral
IBL : solution obtained with the integral IBL approach, rescaled in the x
variable ; Poiseuille : p = −0.63 − 8x, see §3.1 ; Blasius cor. : first order
correction (−2εδ̄1Blasius) to the Blasius solution (which is p = 0), as obtained
in §3.2.5 ; hyperbolic fit : ad hoc fitting relation (Eq. 20).

3.2 RNSP(x): the link with IBL (Interacting Boundary Layer)

3.2.1 The IBL Formulation

After rescaling: r = 1 − εȳ, u = ū, v = −ε−1v̄, x = ε2x̄ and p = p̄ and
assuming a flat entry velocity profile, the RNSP(x) leads to the final IBL
formulation as follows:

∂ū

∂x̄
+

∂v̄

∂ȳ
= 0, (ū

∂ū

∂x̄
+ v̄

∂ū

∂ȳ
) = ūe

dūe

dx̄
+

∂2ū

∂ȳ2
, (12)

ūe =
1

(1− 2εδ̄1)
(13)

where δ̄1 =
∫∞
0 (1− ū

ūe
)dȳ and with the following boundary conditions :

ū(x̄, 0) = 0, v̄(x̄, 0) = 0 and ū(x̄,∞) = ūe

3.2.2 Comments

The idea of the IBL (Cebeci & Cousteix [4], Sychev et all. [48] and Le
Balleur [25]) is to divide the flow into two regions : a boundary layer and an
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0
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0.3

0 0.05 0.1 0.15 0.2 0.25

RNSP
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Blasius
Poiseuille

δ 1

x

Figure 6: Unconstricted situation : longitudinal evolution of the
displacement thickness. RNSP : numerical solution of the RNSP equa-
tions ; integral IBL : solution obtained with the integral IBL approach,
rescaled in the x variable ; Poiseuille : δ1 = 1/4; Blasius : δ1 = 1.7x̄1/2.

3.2 RNSP(x): the link with IBL (Interacting Boundary Layer)

3.2.1 The IBL Formulation

After rescaling: r = 1 − εȳ, u = ū, v = −ε−1v̄, x = ε2x̄ and p = p̄ and
assuming a flat entry velocity profile, the RNSP(x) leads to the final IBL
formulation as follows:

∂ū

∂x̄
+

∂v̄

∂ȳ
= 0, (ū

∂ū

∂x̄
+ v̄

∂ū

∂ȳ
) = ūe

dūe

dx̄
+

∂2ū

∂ȳ2
, (12)

ūe =
1

(1 − 2εδ̄1)
(13)

where δ̄1 =
∫

∞

0 (1 − ū
ūe

)dȳ and with the following boundary conditions :
ū(x̄, 0) = 0, v̄(x̄, 0) = 0 and ū(x̄,∞) = ūe

3.2.2 Comments

The idea of the IBL (Cebeci & Cousteix [4], Sychev et all. [37] and Le
Balleur [20]) is to divide the flow into two regions : a boundary layer and an
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Figure 6: Unconstricted situation : longitudinal evolution of the
displacement thickness. RNSP : numerical solution of the RNSP equa-
tions ; integral IBL : solution obtained with the integral IBL approach,
rescaled in the x variable ; Poiseuille : δ1 = 1/4; Blasius : δ1 = 1.7x̄1/2.

inviscid core. The Boundary Layer equations are obtained in the same way
as in the preceding paragraph which led to the Blasius solution. However,
in the IBL case, an outer edge velocity ūe = ū(x̄,∞), corresponding to the
velocity of the inviscid core, is introduced. The outer edge velocity is not
necessarily equal to 1, as in the Blasius case. These two regions are strongly
interacting, so that the radius seen by the inviscid core is no longer R∗0 but
R∗0(1 − εδ̄1). The inviscid solution for a channel with a slow radius change

is then obtained by a simple mass balance: u∗ = U∗
0

[
R∗

0

R∗
0(1−εδ̄1)

]2
, where δ̄1

is the boundary layer displacement thickness.
In establishing the velocity displacement relation (Eq. 13), the key lies
in the examination of the integral of the velocity over the channel cross-
section. This integral is decomposed using a small parameter δρ such as :
1 >> δρ >> ε.∫ 1

0
(ru)dr =

∫ 1−δρ

0
(ru)dr+

∫ 1

1−δρ

(ru)dr+(
∫ 1

1−δρ

(rue(x̄))dr−
∫ 1

1−δρ

(rue(x̄))dr).

When δρ tends to 0, the combination of the first and third terms equals
ūe/2, as δρ is located in the inviscid core where u = ūe. The second and
fourth terms may be recombined using the ȳ boundary layer variable. As ε
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tends to 0 faster than δρ, i.e. δρ/ε →∞, their sum is :

−ε

∫ 0

δρ/ε
((1− εȳ)ū)dȳ + ε(

∫ 0

δρ/ε
((1− εȳ)ūe(x̄))dȳ) → −εūeδ̄1,

where δ̄1 is the well known boundary-layer displacement thickness δ̄1 =∫∞
0 (1− ū

ūe(x̄))dȳ. Finally, at order O(ε2):
∫ 1
0 (ru)dr = ūe

2 − εūeδ̄1, or :

ūe(x̄)(1− 2εδ̄1) = 1, (14)

which may be rewritten as ūe(x̄)(1− εδ̄1)2 + O(ε2) = 1 to be interpreted as
mass conservation.
Note that the IBL description has terms of different order of magnitude
because Eq. 14 degenerates into ūe(x) = 1. The interaction between the
boundary layer and the inviscid core disappears and the Blasius regime is
recovered. This inconsistency does not appear in the pure Triple Deck de-
scription.
If a constriction of height ε and of length ε2 (i.e. f(x) = εf̄(x̄)) is in-
troduced, the new boundary condition at ȳ = 0 is : ū(x̄, f̄(x̄)) = 0 and
v̄(x̄, f̄(x̄)) = 0. Using the Prandtl transform : x̄ → x̄, ȳ → ȳ − f̄(x̄) and
δ̄1 =

∫∞
0 (1− ū

ūe
)dȳ, the problem reads again as (12), with a modified velocity

displacement relation and an O(ε2) error :

ūe(x̄)(1− 2ε(δ̄1 − f̄)) = 1, (15)

with the former boundary condition at ȳ = 0 (i.e. ū(x̄, 0) = 0 and v̄(x̄, 0) =
0).
As a conclusion, the IBL set of equations is encompassed by the RNSP(x)
set at first order.

3.2.3 WSS

In dimensional form, the WSS is of order O(ρU∗2
0

Re
∂u
∂r ), which leads to :

τ∗ = O(ε−1 ρU∗2
0

Re
). (16)

3.2.4 The integral IBL solution

The IBL system (12, 13) may be simplified by integrating Eq. 12.2 over
the transverse variable ȳ. The following integral system is obtained (see
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Schlichting [38], Gersten & Hervig [12]) for the displacement thickness and
the velocity for the inviscid core :

d

dx̄
(
δ̄1

H
) = δ̄1(1 +

2
H

)
dūe

dx̄
+

f2H

δ̄1ūe
, ūe(x̄)(1− 2εδ̄1) = 1, (17)

where H is the shape factor and f2 is the friction coefficient.
To solve this system, a closure relationship linking H and f2 to δ1 and ūe

is needed. By defining Λ1 = δ̄2
1

dūe
dx̄ , this closure relationship is obtained by

locally approximating the velocity profile near the wall by a velocity profile
of the Falkner Skan family (see Lorthois & Lagrée [23]) :

H =
{

H = 2.59e−0.37Λ1 if Λ1 < 0.6
H = 2.07 if Λ1 ≥ 0.6

, and f2 = 0.94(− 1
H

+
4

H2
). (18)
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Figure 7: Unconstricted situation : longitudinal evolution of the
WSS. RNSP : numerical solution of the RNSP equations ; integral IBL :
solution obtained with the integral IBL approach, rescaled in the x variable
; Poiseuille : τ = 4; Blasius : τ = 0.33x−1/2.

is then p̄ ∼ 3.4x1/2. These two asymptotes are respectively plotted on Figs.
4 and 5 and labelled as ”Blasius cor”. Note that the appearance of the

√
x

perturbation has been mentioned by Schlichting [30].
As displayed in Fig. 5, the longitudinal evolution of RNSP pressure behaves
as the square root for small x and linearly for large x, suggesting a hyperbolic
relationship. By least square regression :

phyp = −
40

53

√

(
53x

5
+ 1)2 − 1. (20)

The maximal relative error for 0 < x < .2 between Eq. 20, as plotted in Fig.
5, and the RNSP solution is 1.2%. Note that an additional error between
the RNSP and NS solutions comes from the near entry effect and may be
estimated from (ρ0U2

0 )Re−1/2.
Finally, Fig. 7 displays the computed evolution of the WSS that starts from
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WSS. RNSP : numerical solution of the RNSP equations ; integral IBL :
solution obtained with the integral IBL approach, rescaled in the x variable
; Poiseuille : τ = 4; Blasius : τ = 0.33x−1/2.

3.2.5 Numerical results for a straight pipe

Figs. 4 to 7 display the numerical solutions for the RNSP and IBL equations
solved using an integral approach. For comparison, the IBL equations were
solved at the RNSP scales. At these scales (x = ε2x̄ and δ1 = εδ̄1), the
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integral system (17), becomes :

d

dx
(
δ1

H
) = δ1(1 +

2
H

)
dūe

dx
+

f2H

δ1ūe
, ūe(x)(1− 2δ1) = 1. (19)

Fig. 6 displays the evolution of the displacement thickness δ1 obtained
by the IBL integral method and its RNSP value deduced from the mass
conservation relation (Eq. 14) e.g.: δ1 = 1/2 −

∫ 1
0 ru/u(x, 0)dr, which is

1/4 for the Poiseuille regime. Both solutions are superimposed for small
x values (x < 0.02). For larger x, a discrepancy appears because the IBL
description does not account for the opposite wall of the pipe. Therefore, the
displacement thickness monotonically increases instead of reaching a finite
asymptote of value 1/4.
In addition, with the IBL approach, a first order correction to the Blasius
regime near the entry in Blasius scales may be obtained. At first order in
ε, the Blasius solution leads to δ̄1 ∼ 1.7x̄1/2 ([38]). Thus, from Eq. 13,
ūe ∼ 1+2ε1.7x̄1/2, which may be rewritten in x = ε2x̄ scales as: δ1 = εδ̄1 ∼
1.7x1/2 and ūe ∼ 1+3.4x1/2, valid for very small x. The associated pressure
is then p̄ ∼ 3.4x1/2. These two asymptotes are respectively plotted on Figs.
4 and 5 and labelled as ”Blasius cor”. Note that the appearance of the

√
x

perturbation has been mentioned by Schlichting [38].
As displayed in Fig. 5, the longitudinal evolution of RNSP pressure behaves
as the square root for small x and linearly for large x, suggesting a hyperbolic
relationship. By least square regression :

phyp = −40
53

√
(
53x

5
+ 1)2 − 1. (20)

The maximal relative error for 0 < x < .2 between Eq. 20, as plotted in Fig.
5, and the RNSP solution is 1.2%. Note that an additional error between
the RNSP and NS solutions comes from the near entry effect and may be
estimated from (ρ0U

2
0 )Re−1/2.

Finally, Fig. 7 displays the computed evolution of the WSS that starts from
the Blasius asymptote .33x−1/2 and goes to the constant Poiseuille value for
large x as predicted by the theory.
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3.3 RNSP(x): the link with Triple Deck and IBL

3.3.1 The Triple Deck Formulation

• LOWER DECK :
After rescaling: r = 1 − ε2ỹ, x = ε2 + ε5x̃, u = εũ, v = −ε−2ṽ and
p = ε2p̃ and assuming that 1 >> ε5 >> Re−1 and a flat entry velocity
profile, the RNSP(x) set leads to the final Triple Deck formulation as
follows:

∂ũ

∂x̃
+

∂ṽ

∂ỹ
= 0, (ũ

∂ũ

∂x̃
+ ṽ

∂ũ

∂ỹ
) = −dp̃

dx̃
+

∂2ũ

∂ỹ2
(21)

with the following boundary conditions: ũ(x̃, f̃(x̃)) = 0, ṽ(x̃, f̃(x̃)) =
0, ũ(x̃, ỹ →∞) → (dUBlas(0)

dȳ )(ỹ + Ã(x̃)) and the pressure displacement
relation

p̃(x̃) = 2Ã(x̃) (22)

.

• MAIN DECK :
The main deck scales are: x = ε2+ε5x̃, identical to the lower deck lon-
gitudinal scale and r = 1−εȳ, corresponding to the Blasius transversal
scale. The velocity and pressure expand as:

u = UBlas + εuMD + ... v = −ε−3vMD + ..., p = ε2pMD, (23)

So that: ∂uMD
∂x̃ + ∂vMD

∂ȳ = 0, UBlas
∂uMD

∂x̃ + vMD(dUBlas(ȳ)
dȳ ) = 0 and

∂pMD
∂ȳ = 0, whose solution is: uMD = Ã(x̃)(dUBlas(ȳ)

dȳ ) and vMD =

−dÃ
dx̃ UBlas.

• UPPER DECK :
The upper deck scales are: r = r, x = ε2 + ε5x̃ and velocity and
pressure expand as :

u = 1 + ε2uUD + ..., v = ε−3vUD + ..., p = ε2pUD + .... (24)

So that: ∂uUD
∂x̃ + ∂rvUD

r∂r = 0, ∂uUD
∂x̃ = −∂pUD

∂x̃ and ∂pUD
∂r = 0.

The boundary conditions for these two latter layers are obtained using
asymptotic matching. They are presented in the following paragraphs.
Note that to be compatible with the Triple Deck scales, the constriction is
redefined as f = ε2f̃(x̃).
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Figure 8: Flow configuration in the Triple Deck case : A mild constric-
tion, of length ε5 and height ε2, is located at station ε2, lying in the lower
deck (LD). This thin layer is included in the boundary layer of thickness ε,
or main deck (MD). The upper deck (UD) is the inviscid core.
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Figure 8: Flow configuration in the Triple Deck case : A mild constric-
tion, of length ε5 and height ε2, is located at station ε2, lying in the lower
deck (LD). This thin layer is included in the boundary layer of thickness ε,
or main deck (MD). The upper deck (UD) is the inviscid core.

3.3.2 Comments

The Triple Deck theory introduces a small perturbation to the Blasius
regime, for which the thickness of the developed boundary layer is of or-
der ε. The longitudinal scale of the location of the bump has thus to be of
order ε2, as deduced from the IBL formulation.
The upper deck, the main deck and the lower deck respectively correspond-
ing to the inviscid core, the boundary layer of transverse scale ε and a small
perturbed fraction of the boundary layer close to the wall (see Fig. 8).
Briefly, the approach of Ruban & Timoshin [34] is transposed to the axisym-
metrical case. A constriction of small width x3, such as x = ε2 +x3x̃, and of
small height ε3ε, such as r = 1− ε3εỹ, is considered. It will be subsequently
shown that ε3 = ε and that x3 = ε5. In the boundary layer (main deck), the
longitudinal velocity is of order 1. Thus, the velocity slope ∂u/∂r is of order
ε−1. The velocity perturbation induced by a constriction of height ε3ε is
then of order ((ε3ε)ε−1) = ε3. In the fraction ε3ε of the boundary layer, i.e.
the lower deck, the balance of convection (u∂u/∂x) - diffusion (∂2u/∂y2)
leads to x3 = ε3

3ε
2. In the same way, the convection (u∂u/∂x) - pressure

(∂p/∂x) balance shows that the pressure in the lower deck is of order ε2
3.

As the lower deck equations give a velocity perturbation of order ε3, the
boundary layer velocity (main deck) must also be perturbed by an amount
(ε3), i.e. u = UBlas + ε3uMD. The perturbation of the Blasius regime is
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simply solved from the RNSP equations in the main deck scales, showing
that this perturbation is inviscid, and that u = UBlas + ε3Ã(dUBlas(ȳ)

dȳ ) and
v = −(ε−1ε−2

3 )(dÃ/x̃)UBlas. The function −Ã represents the displacement
of the stream lines in the boundary layer. For small ȳ, the longitudinal
velocity may be expanded as : (dUBlas(0)

dȳ )ȳ + ε3Ã(dUBlas(0)
dȳ ), or, in the lower

deck variable (ȳ = ε3ỹ), as ε3
dUBlas(0)

dȳ (ỹ + Ã). Hence, matching the velocity
in the lower deck (i.e. ε3ũ) for large ỹ with the velocity in the main deck
for small ȳ leads to :

ũ → (
dUBlas(0)

dȳ
)(ỹ + Ã). (25)

At the top of the main deck, where UBlas = 1, the transverse velocity is
−(ε−1ε−2

3 )dÃ/dx̃. This velocity is transmitted to the bottom of the upper
deck and, by incompressibility, the longitudinal velocity perturbation uUD is
of order ε3ε. The convection - pressure balance then shows that the pressure
perturbation pUD is also of order ε3ε.
Finally, as the transverse pressure gradient is nul across the three layers, ε3ε
is equal to the order of magnitude of the pressure in the lower deck, which
is ε2

3 (see above). Hence : ε3 = ε and x3 = ε5. In addition, the matching be-
tween the transverse velocity in the main deck for large ȳ and the transverse
velocity in the upper deck for r close to 1 leads to vUD(r→1) = −(dÃ/dx̃).
Since the upper deck is irrotational, which means that uUD is independent
on r, the transverse velocity is vUD = −(dÃ/dx̃)r/2. Thus, by incompress-
ibility, ∂uUD/∂x̃ = −2dÃ/dx̃. Finally, pUD = p̃ = 2Ã.
As a conclusion, the Triple Deck theory is included in the RNSP(x) set.
Another interpretation of −Ã is that the flux relation (Eq. 13) is equivalent
to the Triple Deck pressure deviation relation p̃ = 2Ã. As done for obtaining
Eq. 14, the displacement thickness is decomposed using a small parameter
Y1 such as 1 >> Y1 >> ε :

δ̄1 =
∫ Y1

0
(1− ū

ūe
)dȳ+

∫ ∞

Y1

(1− ū

ūe
)dȳ−

∫ Y1

0
(1−UBlas

ūe
)dȳ+

∫ Y1

0
(1−UBlas

ūe
)dȳ.

(26)
In this case, ūe = UBlas(∞) = 1. The combination of the first and third
terms is evaluated in the lower deck where ū = εũ and ȳ = εỹ as :∫ Y1/ε

0
(1− εũ)εdỹ +

∫ Y1/ε

0
(1− εỹ(

dUBlas(0)
dȳ

))εdỹ, (27)

which is of order ε2. The combination of the second and fourth terms is
calculated when Y1 approaches 0, i.e. in the main deck where u = Ublas +
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εA(dUBlas(ȳ)
dȳ ), so that the Blasius displacement thickness is reobtained plus

a small term −ε
∫∞
0 A(dUBlas(ȳ)

dȳ )dȳ which equals −εA. Therefore we obtain
from Eq. 26:

δ̄1 =
∫ ∞

0
(1− UBlas)dȳ − εA + O(ε2) = δ̄1,Blas − εA + O(ε2). (28)

Linearization of Eq. 13 with this value of δ̄1 gives a velocity perturbation of
−2Ã, opposite to the pressure perturbation. Thus, the pressure deviation
relation is p̃ = 2Ã.
Note that the linearised solution of (21) may be obtained (see Gajjar &
Smith [11]) and that, as no eigen function is found, the problem is parabolic.
However, if ε is decreased to Re−1/5, x3 = Re−1 and the constriction width
equals the pipe diameter. Thus the RNSP(x) equations no longer hold
because the upper deck fills up the entire pipe cross section and there is a
transverse pressure gradient (see Smith [43]).
If the constriction is short, the influence of the opposite wall disappears.
The Triple Deck with the pressure deviation law (Stewartson [45]):

p =
1
π

∫ ∞

−∞

A′

x− ξ
dξ,

is valid. This problem is not included in the RNSP(x) equations because
the transverse pressure gradient has not been taken into account.
In conclusion, the Triple Deck equations are equivalent to the RNSP(x)
equations (at first order) for all the relative scales:

Re−1/5 << ε << 1

3.3.3 WSS

The WSS τ∗ is O([ε−1 ρU2
0

Re ]), the same as the IBL scale.

3.3.4 Incipient separation : comparison with IBL.

The IBL equations (12, and 15), and the Triple Deck equations (21 and 22)
were solved with the ”semi inverse” method (Le Balleur [25]). This is an
iterative process, iteration is done on δ1 or Ã: the ”Prandtl” part ((12.1-
12.2) or (21)) is solved for the pressure with a finite difference scheme with
δ1 or Ã imposed, then pressure displacement is solved for the pressure (15 or
22), the new value of δ1 or Ã is updated from the difference of pressures until
convergence. The constriction shape is f̄ = αexp(−(2(K(x̄− 1)/x̄l))2, with
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K =
√

ln(2) for the IBL and the integral IBL problems. The constriction
f̃ is proportional to exp(−(2(K(x̃ − 2)))2, with K =

√
ln(2) for the Triple

Deck problem. Fig. 9 displays the WSS at incipient separation, i.e. flow
configuration where the WSS equals zero only at one point (the shear stresses
are rescaled by the flat case). All the methods (RNSP, IBL, integral IBL
and Triple Deck) show a good agreement, even if the slope discontinuity
on the integral IBL curve, corresponding to the value Λ1 = 0.6 where the
derivative of H is discontinuous (Eq. 18) is visible. For a given boundary
layer thickness ε2, the value of α that promotes the incipient separation
at different constriction widths x̄l was numerically sought using the IBL
equations. From the Triple Deck theory, α/ε is the relative perturbation in
the lower deck, and it behaves like x̄

1/5
l . As shown on Fig. 10 for ε2 = 10−3,

this prediction is valid up to x̄l = 0.3.
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Figure 9: Longitudinal evolution of the WSS near the incipient sep-
aration case RNSP, integral IBL, full IBL resolution (in RNSP variables,
the bump is located in x = 0.02, and its width is 0.00125), and Triple Deck
resolution. All the curves are rescaled in Triple Deck scales.

3.4 RNSP(x): the link with Double Deck Equations

3.4.1 The Double Deck Formulation

• LOWER DECK :
After rescaling: r = 1 − ε4−1/3y̌, x = 1 + ε3x̌, u = 42/3εǔ, v =
−41/3ε−1v̌ and p = 48/3ε2p̌ and assuming a Poiseuille entry velocity
profile, the RNSP(x) set leads to the final Double Deck formulation as
follows:

∂ǔ

∂x̌
+

∂v̌

∂y̌
= 0, (ǔ

∂ǔ

∂x̌
+ v̌

∂ǔ

∂y̌
) = −

dp̌

dx̌
+

∂2ǔ

∂y̌2
(29)

with the following boundary conditions : ǔ(x̌, f̌(x̌)) = 0, v̌(x̌, f̌(x̌)) =
0 and ǔ(x̌, y̌ → ∞) → y̌. Note that the Prandtl transform leads to
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the bump is located in x = 0.02, and its width is 0.00125), and Triple Deck
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3.4 RNSP(x): the link with Double Deck Equations

3.4.1 The Double Deck Formulation

• LOWER DECK :
After rescaling: r = 1 − ε4−1/3y̌, x = 1 + ε3x̌, u = 42/3εǔ, v =
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Figure 10: Incipient separation : comparison between Triple Deck
and IBL : value of α that promotes the incipient separation versus the
longitudinal width of the constriction x̄l computed by the full IBL equations.

The line of slope 1/5 (i.e. α ! x̄1/5
l ) is the Triple Deck prediction.

ǔ(x̌, 0) = 0, ǔ(x̌, y̌ → ∞) → y̌ − f̌(x̌).

• MAIN DECK :
The main deck scales are x = 1+ε3x̌, identical to the lower deck longi-
tudinal scale, and r = 1−y, corresponding to the Poiseuille transverse
scale. Velocity and pressure expand as :

u = UPois + ..., v = 0 + ... p = 0 + ...

To be compatible with the Double Deck scales, the constriction is defined
by f = 4−1/3εf̌(x̌).
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−41/3ε−1v̌ and p = 48/3ε2p̌ and assuming a Poiseuille entry velocity
profile, the RNSP(x) set leads to the final Double Deck formulation as
follows:

∂ǔ

∂x̌
+

∂v̌

∂y̌
= 0, (ǔ

∂ǔ

∂x̌
+ v̌

∂ǔ

∂y̌
) = −dp̌

dx̌
+

∂2ǔ

∂y̌2
(29)

with the following boundary conditions : ǔ(x̌, f̌(x̌)) = 0, v̌(x̌, f̌(x̌)) =
0 and ǔ(x̌, y̌ → ∞) → y̌. Note that the Prandtl transform leads to
ǔ(x̌, 0) = 0, ǔ(x̌, y̌ →∞) → y̌ − f̌(x̌).

• MAIN DECK :
The main deck scales are x = 1+ε3x̌, identical to the lower deck longi-
tudinal scale, and r = 1−y, corresponding to the Poiseuille transverse
scale. Velocity and pressure expand as :

u = UPois + ..., v = 0 + ... p = 0 + ...

To be compatible with the Double Deck scales, the constriction is defined
by f = 4−1/3εf̌(x̌).
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Figure 11: Flow configuration in the Double Deck case : A mild
constriction is located at a station where a Poiseuille flow has developed.
Its length is ε3 and its height is ε, such as it lies in the lower deck (LD). The
core flow is the main deck (MD).

3.4.2 Comments

The Double Deck theory introduces a small perturbation to the Poiseuille
regime. In this theory, the flow is divided into two regions (see Fig. 11) :
the fully viscous region (main deck) and a boundary layer of transverse scale
ε4−1/3. The equations are directly obtained from Smith [32] or transposed
from Saintlos & Mauss [29] to the axisymmetrical case. The matching con-
dition ǔ(x̌, y̌ → ∞) → y̌ comes from the fact that the Poiseuille velocity in
the core flow (main deck) is of value UPois = 2(1 − r2) but is 42/3εy̌ near
the wall as ε tends to 0. This velocity must match the velocity at the outer
edge of the lower deck (i.e. 42/3εǔ(x̌,∞)). Note that the full Double Deck
theory is directly derived from the NS description. In this description, the
perturbations in the main deck have to be sought as :

u = 2(1 − r2) + εuMD + ...; v = ε−2vMD + ...; p = ε2pMD (30)
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Figure 11: Flow configuration in the Double Deck case : A mild
constriction is located at a station where a Poiseuille flow has developed.
Its length is ε3 and its height is ε, such as it lies in the lower deck (LD). The
core flow is the main deck (MD).

3.4.2 Comments

The Double Deck theory introduces a small perturbation to the Poiseuille
regime. In this theory, the flow is divided into two regions (see Fig. 11) :
the fully viscous region (main deck) and a boundary layer of transverse scale
ε4−1/3. The equations are directly obtained from Smith [41] or transposed
from Saintlos & Mauss [37] to the axisymmetrical case. The matching con-
dition ǔ(x̌, y̌ → ∞) → y̌ comes from the fact that the Poiseuille velocity in
the core flow (main deck) is of value UPois = 2(1 − r2) but is 42/3εy̌ near
the wall as ε tends to 0. This velocity must match the velocity at the outer
edge of the lower deck (i.e. 42/3εǔ(x̌,∞)). Note that the full Double Deck
theory is directly derived from the NS description. In this description, the
perturbations in the main deck have to be sought as :

u = 2(1− r2) + εuMD + ...; v = ε−2vMD + ...; p = ε2pMD (30)

Solving these perturbations either from the full NS or from the RNSP(x)
equations leads to :

∂uMD

∂x̌
+

∂vMD

∂y
= 0; (UPois

∂uMD

∂x̌
+ vMD

dUPois

dy
) = 0 (31)

However the development obtained for pMD from the full NS description is
:

UPois
∂vMD

∂x̌
= −(ε7)Re2 ∂pMD

∂y
. (32)
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Figure 12: Longitudinal evolution of the WSS near the incipient
separation case for xl = 0.0125. D.D. : Double Deck resolution ; RNSP :
RNSP resolution rescaled in Double Deck scales.

Solving these perturbations either from the full NS or from the RNSP(x)
equations leads to :

∂uMD

∂x̌
+

∂vMD

∂y
= 0; (UPois

∂uMD

∂x̌
+ vMD

dUPois

dy
) = 0 (31)

However the development obtained for pMD from the full NS description is
:

UPois
∂vMD

∂x̌
= −(ε7)Re2 ∂pMD

∂y
. (32)

• First, the Double Deck theory requieres that ε is smaller than one. If
ε >> Re−2/7, Eq. 32 leads to ∂pMD

∂y = 0, which is consistent with the

RNSP equations. In other words, if ε >> Re−2/7 (or Reε3 >> Re1/7),
the RNSP(x) equations are equivalent to the Double Deck equations
and the transverse pressure gradient is not relevant.
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Figure 12: Longitudinal evolution of the WSS near the incipient
separation case for xl = 0.0125. D.D. : Double Deck resolution ; RNSP :
RNSP resolution rescaled in Double Deck scales.

• First, the Double Deck theory requieres that ε is smaller than one. If
ε >> Re−2/7, Eq. 32 leads to ∂pMD

∂y = 0, which is consistent with the
RNSP equations. In other words, if ε >> Re−2/7 (or Reε3 >> Re1/7),
the RNSP(x) equations are equivalent to the Double Deck equations
and the transverse pressure gradient is not relevant.

• Second, when ε = Re−2/7, corresponding to real constriction length
R∗0Re1/7 and height R∗0Re−2/7, the RNSP(x) is no longer valid. How-
ever, it may be shown that the pressure drop is linked to the second
derivative of the displacement function Ǎ. In particular, in the sym-
metrical case, it may be shown (Smith [41]) that vMD = 0 (so Ǎ = 0)
. This is why the RNSP(x) set remains valid for symmetric case even
if ε = Re−2/7.

• Third, if ε << Re−2/7, from Eq. 32, the equation at first order of ε
is ∂vMD

∂x̌ = 0 and its solution vMD = 0. Thus, perturbations appear
at higher orders. Consequently, ∂pMD

∂y = 0. The value ε = Re−1/3, at
which the physical longitudinal scale is R∗0, is included in this scenario.

• Finally at short scale when the variations of x∗ and y∗ are of same
order, a full NS problem is encountered. This corresponds to ε3ReR∗0 =
εR∗0. Thus, for the Double Deck equations to hold, ε must be greater
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than Re−1/2.

In conclusion, the Double Deck equations are equivalent to the RNSP(x)
equations (at first order) for all the relative scales:

Re−1/2 << ε << 1

3.4.3 WSS

The skin friction τ∗ is O(4(ρU∗2
0 /Re)) for a constriction of physical length

R∗0 < ε3ReR∗0 << R∗0Re1/7 and of height εR∗0.

3.4.4 Incipient separation : comparison with RNSP

Starting from a Poiseuille flow, a constriction R(x) = 1 − αexp(−(2K(x −
xc)/xl)2), with exp(−K2) = 0.5, was introduced, which corresponds to
f̌(x̌) = αD.D.exp(−(2Kx̌)2) in the Double Deck description. The equa-
tion is the same as in the Triple Deck case, but the scales are different.
Fig. 12 displays the WSS near incipient separation, showing a good agree-
ment between the RNSP and the Double Deck solutions in the case of a
small constriction.
Then, the value of α that promotes incipient separation for incrasing con-
striction widths xl was numerically sought using the RNSP equations. Fig.
13 displays the value of α, denoted αIS , as a function of xl. As expected
from the Double Deck theory, which implies that :

αIS = αD.D.,IS(4−1/3)(xl)1/3, (33)

where αD.D.,IS is the unique Double Deck incipient separation angle, αIS

behaves as x
1/3
l . Numerical resolution of the Double Deck equations led to

αD.D.,IS ' 2.0. The curve 2.(4−1/3)(xl)1/3 is referred as ”D.D.” on Fig. 13.

3.4.5 Maximum value of WSS for a given constriction

Finally, increasing the constriction angle in the Double Deck scales, with
6 > αD.D. > 0, the maximum value of the WSS is fitted as :

1.11 + 0.984αD.D. + 0.28α2
D.D.. (34)

Expressing αD.D. as a function of xl and α in Eq. 34 and multiplying by
4(ρU2

0 /Re), the asymptotic maximum WSS obtained in the case of a small
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where αD.D.,IS is the unique Double Deck incipient separation angle, αIS

behaves as x1/3
l . Numerical resolution of the Double Deck equations led to

αD.D.,IS ! 2.0. The curve 2.(4−1/3)(xl)1/3 is referred as ”D.D.” on Fig. 13.
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Figure 13: Incipient separation : comparison between Double Deck
and RNSP : value of α which promotes the incipient separation versus the
longitudinal width of the constriction xl computed by the RNSP approach.

The line of slope 1/3 (i.e. α ! x1/3
l ) is the Double Deck prediction.

3.4.5 Maximum value of WSS for a given constriction

Finally, increasing the constriction angle in the Double Deck scales, with
6 > αD.D. > 0, the maximum value of the WSS is fitted as :

1.11 + 0.984αD.D. + 0.28α2
D.D.. (34)

Expressing αD.D. as a function of xl and α in Eq. 34 and multiplying by
4(ρU2

0 /Re), the asymptotic maximum WSS obtained in the case of a small

- V . 26-

Figure 13: Incipient separation : comparison between Double Deck
and RNSP : value of α which promotes the incipient separation versus the
longitudinal width of the constriction xl computed by the RNSP approach.
The line of slope 1/3 (i.e. α ' x

1/3
l ) is the Double Deck prediction.

constriction is thus given by :

4(ρU2
0 /Re)(1.11 + 0.984

41/3α

x
1/3
l

+ 0.28
41/3α

x
1/3
l

2

) (35)

3.5 RNSP(x): the link with quasi Poiseuille flow

After rescaling x = Xx′, with X >> 1, r = r′, v = X−1v′ and p = Xp′,
the RNSP(x) set leads at first order in X−1 to the classical quasi Poiseuille
flow: each velocity profile is a Poiseuille one. The well known relation for
the WSS is obtained (for extremely large constrictions i.e. larger than R∗0Re
in physical scales):

τ∗ = 4(ρU∗2
0 Re−1)(

R∗0
R∗(x)

)3 (36)
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3.6 RNSP(x): the link with another IBL case

3.6.1 Final Formulation

After rescaling r = R(
=
x)− (λ/Re)−1/2

=
y, u =

=
u, v = −(λ/Re)1/2 =

v, x−xb =
(λ/Re)

=
x and p =

=
p, where xb is the position of the constriction throat

and λR∗0 the width of the throat, the RNSP(x) set leads to the final IBL
(Interacting Boundary Layer) formulation as follows:

∂
=
u

∂
=
x

+
∂

=
v

∂
=
y

= 0, (
=
u

∂
=
u

∂
=
x

+
=
v

∂
=
u

∂
=
y

) =
=
ue

d
=
ue

d
=
x

+
∂2 =

u

∂
=
y

2 , (37)

=
ue=

1

(R2 − 2(λ/Re)−1/2
=
δ1)

, (38)

where
=
δ1=

∫∞
0 (1−

=
u
=
ue

)d
=
y, and with the following boundary conditions :

=
u (

=
x, 0) = 0,

=
v (

=
x, 0) = 0 and

=
u (

=
x,∞) =

=
ue.

3.6.2 Comments

The constriction throat is located at station xb, and is of relative length in
RNSP (λ/Re). The equations are almost identical to equations (12, 13) in
the IBL section (§3.2.1) except the flux conservation relation (Eq. 38). In
the previous IBL section, the transition from a flat profile to a Poiseuille
profile has been discussed. In a severe constriction the opposite occurs :
the Poiseuille profile becomes a flat profile associated with an inviscid core.
The IBL formulation again applies, but new scales have to be introduced
(see Lorthois & Lagrée [23], Lorthois et al. [24]). This will be numerically
verified in the following section where the RNSP(x) solution shows a flat
profile at the throat for any given entry profile.

3.6.3 WSS

Using this IBL point of view, an heuristical evaluation of the WSS may
be found. If the relative aperture of the constriction 1 − α is small, i.e.
(1− α) << 1, the order of magnitude of the velocity obtained by flux con-
servation increases from 1 at the pipe inlet to 1/(1−α)2 at the constriction
throat. If λR∗0 represents the constriction length, R∗0 the common scale in
x and y and Re the Reynolds number , the transverse velocity scale in the
boundary layer is then (1− α)λ1/2Re−1/2.
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The displacement thickness is then

δ1 = d1(1− α)λ1/2Re−1/2, (39)

where d1 is an O(1) numerical value. The first correction to the velocity
is from the displacement thickness δ1, whose effect is to increase the con-
striction felt by the inviscid core. The velocity is thus sligthly greater than
(1 − α)−2 and may be evaluated by (1 − α − δ1)−2. As λ1/2Re−1/2 << 1,
Eq. 13 leads to the following approximation for the velocity :

u = (1 + 2d1((Re/λ)−1/2))(1− α)−2. (40)

The displacement thickness corrected by this extra acceleration is :

δ1 = d1(1− α− d1(1− α)λ1/2Re−1/2)λ1/2Re−1/2. (41)

Finally, the WSS at the constriction throat may be approximated as the
ratio of Eq. 40 and Eq. 41 divided by 4, which is the Poiseuille WSS :

WSS = (µ
∂u∗

∂y∗
)/((µ

4U∗
0

R∗
)) ∼ .22

((Re/λ)1/2 + 3)
(1− α)3

(42)

The numerical coefficient .22 is based on the assumption that flow accel-
eration at the constriction throat corresponds to the value of a convergent
channel (see Gersten & Hervig [12] or Schlichting [38] and §3.2.4 for the
definition of H and f2), for which Hf2/4 ∼ .22. In addition, it is assumed
that d1 ∼ 1. Note that details on the integral method and closure relation-
ships may be found in Lorthois & Lagrée [23]. The constriction recreates an
interacting boundary layer flow. Therefore, the relevant Reynolds number is
no longer Re but Reλ and (Re/λ)1/2 is the inverse of the relative boundary
layer thickness.

3.6.4 Comparison with NS and RNSP(x)

• Comparison with NS :
Siegel et al. [40] have numerically solved the NS equations in a con-
stricted pipe. Based on their results, they postulated an ad hoc de-
pendence for the maximal WSS as:

WSSmax,Sieg = aRe1/2 + b (43)

where coefficients a and b were dependent on the constriction geo-
metrical parameters α and λ. On the contrary, the IBL approach led
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Figure 14: Coefficient a and b for the maximum WSS (see Eq. 43).
! : coefficient a derived from Siegel for λ = 3 ; × : coefficient a derived
from Siegel for λ = 6 ; © : coefficient b derived from Siegel for λ = 3 ; +
: coefficient b derived from Siegel for λ = 6. Coefficients a ($) and b (!)
obtained using the IBL integral method ; solid lines : Coefficients a and b
from Eq. 44.
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Figure 14: Coefficient a and b for the maximum WSS (see Eq. 43).
� : coefficient a derived from Siegel for λ = 3 ; × : coefficient a derived
from Siegel for λ = 6 ; © : coefficient b derived from Siegel for λ = 3 ; +
: coefficient b derived from Siegel for λ = 6. Coefficients a (4) and b (�)
obtained using the IBL integral method ; solid lines : Coefficients a and b
from Eq. 44.

to the universal scaling law Eq. 42. This heuristical scaling law has
first been numerically tested by solving the IBL system using an inte-
gral formulation. The regression analysis of the numerical results for
various shapes led to :

WSSmax = (µ
∂u∗

∂y∗
)/((µ

4U0

R
)) ∼ .231(

(Re/λ)1/2

(1− α)3.311
+

3.11
(1− α)2.982

)

(44)
Note that the coefficients are very close to the theoretical ones (see Eq.
42), and they show very good agreement with the numerical values
derived from Siegel et al. (1994) (see Fig. 14).

• Comparison with RNSP(x):
The set of RNSP(x) equations has been solved by the marching finite-
differences scheme. Fig. 15 displays the evolution of the velocity
profile along the convergent part of a 70% constriction, for two differ-
ent imposed entry profiles: a flat profile (fully potential entry) and a
Poiseuille profile (fully viscous entry). As expected, when the entry
flow is fully viscous, strong flow acceleration causes the velocity profile
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Figure 15: Evolution of the velocity profile along the convergent
part of a 70% stenosis computed using the RNSP approach, with Re =
500 ; solid line: Poiseuille entry profile; broken line: flat entry profile.
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Figure 15: Evolution of the velocity profile along the convergent
part of a 70% stenosis computed using the RNSP approach, with Re =
500 ; solid line: Poiseuille entry profile; broken line: flat entry profile.

to flatten. At the constriction throat, the flow is thus independent of
the entry velocity profile. In particular, the maximal WSS is in good
agreement (3% discrepancy) with the maximal WSS obtained by the
IBL scaling law (Eq. 44) (see Fig. 16). In conclusion, the described
set of RNS equations is “fully interactive” without any matching step
and well suited for studying flow fields in constrictions.

Siegel et al. [40] and Huang et al. [14] have numerically solved Navier-
Stokes equations for 100 < Re < 1000. The results obtained are consistent
with our method. Furthermore, the bidimensional counterpart of this RNSP
and IBL theories has been settled in Lagrée et al. [21]. Some comparisons
have been done with a NS solver focusing on the pressure p(x) and on the
reverse flow. It has been observed that for Re from 100 to 1000, IBL, RNSP,
and NS give very similar results.
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Figure 16: Longitudinal evolution of the WSS along the convergent
part of a 70% stenosis computed using the RNSP approach with Re = 500
; solid line: Poiseuille entry profile ; broken line: flat entry profile.
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Figure 16: Longitudinal evolution of the WSS along the convergent
part of a 70% stenosis computed using the RNSP approach with Re = 500
; solid line: Poiseuille entry profile ; broken line: flat entry profile.
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Figure 17: The different models: RNSP is obtained from Navier Stokes
(NS). Triple Deck, Double Deck and IBL are obtained from NS, they may
be obtained from RNSP in the pipe flow considered .

4 Conclusion

model RNSP IBL IBL Triple Deck Double Deck
section §2.2 §3.2.1 §3.6.1 §3.3 §3.4

Initial prof. any Blasius any Blasius Poiseuille
bump pos. x = O(1) x = O(ε2) any x = O(ε2) x > 1

bump width any ε2 O(1/Re) ε5 ε3

bump height any ε O(1) ε2 ε

validity Re >> 1 Re−1/2 � ε � 1 Re >> 1 Re−1/5 � ε � 1 Re−1/2 � ε � 1
Table 1: The scales may be tabulated in the following table (longitudinal
length are scaled with R∗0Re, transverse are scaled by R∗0.

Having in mind applications in biomechanics, where the elevated wall
shear stresses encountered in arterial stenoses are likely to play a role in
the mechanisms of thrombo-embolism and atherosclerotic plaques ruptures,
the purpose of this study is to evaluate the scale of the wall shear stress
τ∗ in a constricted pipe. Of course, the computation of such flows is now
accurately achieved through Navier-Stokes solvers in a reasonable range of
Reynolds numbers. On the other hand, simplified 1D theories and correla-
tions from experimental data are available. Our work fills the gap between
them. We claim that the asymptotic equations provide a better understand-
ing of flow structure and of the relevant scalings as well. As computational
time is reduced, parameters may be easily changed and their influence can
be analysed. Thus, in this paper, we have presented a system that we call
RNSP, referring to the Reduced Navier-Stokes equations, which are in fact
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Figure 18: Flow configurations : A constriction may be located at x1 =
O(ε2) where an inviscid fluid core still exists; if the width is ε2 IBL applies
(§3.2.1). If the width is ε2 the Triple Deck applies (§3.3). A constriction
may be located at x2 > 1 where the Poiseuille profile has developed, but the
width has to be ε3 for Double Deck (§3.4). If the constriction is short, but
severe enough, IBL applies (§3.6.1).
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Figure 18: Flow configurations : A constriction may be located at x1 =
O(ε2) where an inviscid fluid core still exists; if the width is ε2 IBL applies
(§3.2.1). If the width is ε2 the Triple Deck applies (§3.3). A constriction
may be located at x2 > 1 where the Poiseuille profile has developed, but the
width has to be ε3 for Double Deck (§3.4). If the constriction is short, but
severe enough, IBL applies (§3.6.1).

the Prandtl equations with different boundary conditions. We have shown
how to obtain the RNSP system from the NS system. Then, we have estab-
lished the connection between the RNSP system and many other asymptotic
descriptions of the Navier-Stokes equations, as summarised on Fig. 17, 18,
and Table 1:

• First, the IBL equations deduced from the RNSP have been discussed.
The entry effect has been computed using both the RNSP equations
and a simple integral IBL description. They show a good agreement.

• We compared a full IBL resolution to a Triple Deck solution in the case
of a very small constriction, located in the vicinity of a fully potential
entry. The constriction height that promotes incipient separation was
calculated using both Triple Deck theory and the IBL description.

• Then, the RNSP equations was compared with the Double Deck equa-
tions in the case of a small reduction of the pipe radius, assuming a
fully viscous entry. The constriction height that promotes incipient
separation was calculated using both the Double Deck theory and the
RNSP description.

• A case of extremely long bumps leading to a Poiseuille flow was pre-
sented.
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• Finally, a case where the initial potential flow is destroyed, leading to
an IBL flow, has been studied. Maximum skin friction was calculated
using simple IBL arguments. This permitted us to obtain an universal
scaling law for the WSS.

A selected number of examples have been presented. Note that the gain
in computational time is significant when compared with a full NS solu-
tion. Dimensional scaling allows a better understanding of various physi-
cal phenomena. In each section, the limits of the asymptotic descriptions
was presented. The most interesting conclusion is that the transverse pres-
sure gradient is irrelevant in a large number of cases. Thus, the flow in a
constricted pipe is mainly ”parabolic”: the disturbances propagate down-
stream and weakly upstream which allows marching computation (see [21]
for a comparison between RNSP/ IBL and full NSin case of reverse flow in a
bidimensional configuration). In addition, the independence of the flow on
the entry velocity profile has great implications because the in vivo entry
profile is unknown and not parabolic as assumed in most studies.
In conclusion, it has been verified asymptotically and numerically that, in
the pipe case, the RNSP(x) system agrees with most of the Double/ Triple
Deck sets of equations and the IBL as well. Thus, the RNSP system may
be used in cases of stenotic pipes. The bidimensional extension is straight-
forward. Extension to unsteady and non-axisymetrical flows is currently in
progress.
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Fig. 1 The obstacles are two half-circles of width wd = 2Rg and of height Rg = αh0 (the channel half height is h0). The flow is induced

by the pressure drop Pt from a pressure reservoir (at the left). The out flow creates a jet in an room at pressure patm. Pressure is measured

at the throat patm + Pg , that is this pressure that we want to predict.
Figure 19: The obstacles are two half-circles of width wd = 2Rg and of
height Rg = αh0 (the channel half height is h0). The flow is induced by
the pressure drop Pt from a pressure reservoir (at the left). The out flow
creates a jet in an room at pressure patm. Pressure is measured at the throat
patm + Pg, that is this pressure that we want to predict.

Part II

2D Case

We use again our strong approximations: the flow is supposed to be 2D,
laminar, and steady. In this framework we will cross compare numerical
resolution of the Navier Stokes equations (NS) and resolution of two asymp-
totic models (Sychev et al. [48]). Those two models are first, the Interacting
Boundary Layer theory (IBL) which is the boundary layer theory with a
strong coupling with the ideal fluid and second, a simplified ”reduced” set
of Navier Stokes equations (RNSP). We will see that these three approaches
give nearly the same results, comparisons with experiments will show the
limits of the hypotheses as the flow becomes turbulent in the jet region.

5 Equations

5.1 Navier Stokes

In order to non-dimensionalize the Newtonian steady laminar incompressible
bidimensional Navier Stokes equations (NS), we use U0 the entry velocity
for the velocities, h0 for the lengths, ρU2

0 for variations of pressures. The
Reynolds number is Re = U0h0/ν. As boundary conditions, we impose
a flat entry velocity profile of value (ū(0, ȳ), v̄(0, ȳ)) = (1, 0) (a Poiseuille
one with maximal value 3

2 gives the same results) and zero velocity on the
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wall (the bump is centered in x̄g). We impose symmetry condition on the
axis ȳ = 0: ∂ū(x̄, 0)/∂ȳ = 0 and v̄(x̄, 0) = 0. A zero constant pressure is
imposed at exit p̄(x̄out, ȳ) = 0, this latter condition corresponding to a simple
implementation of an open boundary condition (Gresho [13]). The system
is solved with the numerical finite element code Castem 2000 [29] on a mesh
of quadrangles (80 x 16 vertices). The computed value of the pressure at
the entrance (p̄(x̄int, ȳ)) allows then to evaluate the total pressure drop.

5.2 Reduced Navier Stokes/ Prandtl Equations

The results have been compared to a first kind of simplification obtained
from Navier Stokes equations by supposing that the transverse scale is the
width of the channel h0 itself and that this scale is smaller than the longi-
tudinal one. Supposing that the Reynolds number is large, we neglect some
viscous effects and consider only longitudinal variations of pressure. We do
it in a boundary layer theory spirit (Gersten [12]), we recover Prandtl equa-
tions but with different boundary conditions. The main differences are first,
that the transverse variable is bounded, which is not the case in boundary
layer theory where we have to match ”at infinity” with the ideal fluid and
second, that the pressure is not given by the ideal fluid but is a result of the
computation. So, because these equations may as well be seen as a reduced
system obtained from Navier Stokes equations, we call this system RNSP
(Reduced Navier Stokes/ Prandtl).

To settle the equations, u is scaled by U0, v by U0/Re, x by h0Re, y by
h0, and p by ρU2

0 , with Reynolds number Re = U0h0/ν, which is assumed
large. The flow is supposed quasistatic: the Strouhal number is low and the
spatial acceleration is large. We obtain:

∂

∂x̃
ũ +

∂

∂ỹ
ṽ = 0, ũ

∂

∂x̃
ũ + ṽ

∂

∂ỹ
ũ = − ∂

∂x̃
p̃ +

∂2

∂ỹ2
ũ, 0 = − ∂

∂ỹ
p̃. (45)

The boundary conditions are: no slip ũ(x̃, ỹ = h̃(x̃)) = 0, ṽ(x̃, ỹ = h̃(x̃)) = 0
at the upper wall defined by h̃(x̃) (whose dimension is h0) and symmetry
(∂ỹũ(x̃, ỹ = 0) = 0, ṽ(x̃, ỹ = 0) = 0). At the entrance, the pressure is zero
and the first velocity profile is given, for example a flat profile ũ = 1, ṽ = 0.
As long ũ > 0, the system is marching in x̃ (or parabolic), there is no outflow
condition. The system is solved with finite differences (2500 * 1000 points)
and at each station x̃ one has to find by a Newton iteration the value of
the pressure p̃(x̃) for the fitting of the boundary condition for ṽ. The total
pressure drop is a result of the computation.
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5.3 Integral IBL

The Integral Interacting Boundary Layer equations (IBL) may be deduced
from Navier Stokes equations (or from those RNSP equations) supposing
that the Reynolds number is large and that viscous effects are restricted to
a thin layer near the wall. We simplify further the Prandtl boundary layer
equations by using the integral von Kármán equation (Schlichting [38]), and
with the same previous scales, this gives the following coupled system (46).
This interacting system may be understood as follows.

First, the ideal fluid promotes the variations of the boundary layer and
more precisely the variations of the boundary layer displacement thickness
δ̃1.

Second, in growing, the displacement thickness δ̃1 retroacts on the ideal
fluid through the flux conservation.
The two equations are strongly coupled and are solved with the Le Balleur
[25] ”semi-inverse” method.

d

dx̃
(
δ̃1

H
) +

δ̃1

ũe
(1 +

2
H

)
dũe

dx̃
=

f2H

δ̃1ũe

, ũe(x̃) =
1

h̃(x̃)− δ̃1(x̃)
. (46)

Initial condition are for example δ̃1(0) = 0 and ũe(0) = 1. To solve this
system, a closure relationship linking the shape function H and friction
function f2 to the velocity and the displacement thickness is needed. Defin-
ing Λ1 = δ̃2

1
dũe
dx̃ , the system is closed from the resolution of the Falkner-Skan

system as follows:,

H =
{

2.5905e−0.37098Λ1 , if Λ1 < 0.6
2.074, if Λ1 > 0.6

}
, f2 = 1.05(−H−1 + 4H−2).

This closure allows flow separation for decelerated flows. Those simplifi-
cations are in the spirit of Lorthois et al. [24], but here 2D. Kalse et al.
[15] used recently nearly the same modelisation. As a result, the pressure is
computed by Bernoulli law from the computed velocity ũe(x̃).

We compare then the NS results with the RNSP and IBL results. Exam-
ples are represented on Figures 20 and 21 where we used Rg as longitudinal
scale to plot the curves; numerically in (50) and (46), the radius is of length
Rg/(h0Re). Of course, this length is finite and small in the computations
which are done for a finite value of the Reynolds number.
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6 Numerical results: relative pressure drops

Some computations have been done on various geometries: on circles, on
ellipses, on exponential walls, or on arcs of sine. It has been observed that
the IBL, RNSP, and NS results were the same (in the range 0 < α < 0.8,
100 < Re < 1000). For larger values of α, the boundary layer thickness at
the throat is very thin, as is seen below Eq. 47. So, NS needs a careful mesh
refinement near the wall that we did not attempt to do, because we preferred
to focus on the simplified problems. For those values of α close to 1, IBL
and RNSP nevertheless give the same results. As the acceleration is large
in the stenosis, the solution does not depend on the initial velocity profile
(nor on the value of δ̃1(0)). Iso pressures computed by Navier Stokes are
”sufficiently” close to perpendiculars to the axis to justify RNSP description.
We observed that the pressure distribution at the wall has nearly always the
same shape, seen on Figure 20, on a moderate case of degree of stenosis of
α = 0.75 and Re = 500. This pressure curve has a well known shape: a
pressure drop at the throat and recompression with a plateau due to the jet.
As expected, we obtain the order of magnitude of the size of the recirculation
after the cylinders: h0Re. Figure 20 is a comparison between the pressures
computed by IBL, RNSP, and NS; the larger arrow represents the maximal
pressure drop P̃m, the second arrow (in size) represents the pressure drop
between output and input (P̃t > 0), and the smaller arrow represents the
pressure drop between the throat (where P̃g < 0) and the output.

We observed that cutting the computation domain in the downstream
jet (i.e. where flow separation occurs) is not a problem for Castem (in the
range used, 0 < α < 0.8, 100 < Re < 1000); so downstream seems to have
a negligible influence on upstream. For the RNSP system, the resolution
is done in marching in x, and so, the flow at station x ignores downstream
conditions. RNSP equations present nevertheless a difficulty in the sepa-
rated flow region: there is an intrinsinc numerical instability due to the
negative velocity which causes trouble if the separation bulb is too large, as
is the case here. Consequently, we use the so-called FLARE approximation
which consists in removing the u∂u/∂x term when u is negative, prevent-
ing any downstream information and allowing separation to be computed.
We observed that if the discretization step is too small, numerical problems
reappear. Nevertheless, as all the curves are nearly the same, the FLARE
approximation is here validated by the full Navier Stokes computation and
by the IBL computation where Falkner-Skan profiles were computed without
approximation.

This very weak influence of downstream on upstream may be understood
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8 LAGRÉE, BERGER, DEVERGE, VILAIN, and HIRSCHBERG: Pressure drop in pipe
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Fig. 2 A comparison between computed non-dimensional pressure for the three models (NS, IBL and RNSP, in this last case the wall has

been smoothed in x = ±1 to avoid an infinite slope, this was not the case for NS and IBL), here α = 0.75, Re = 500. The upper half
geometry is plotted as well (the smoothed one is not plotted). It is observed that the ratio: pressure at the glottis divided by maximum

pressure drop is nearly constant (Ke = P̃t/P̃m ! 0.82). Likewise, the ratio: pressure at the output divided by the pressure drop betwen the
output and the glottis is nearly constant (Kt = P̃t/(P̃t − P̃g) ! 0.86).

Figure 20: A comparison between computed non-dimensional pressure for
the three models (NS, IBL and RNSP, in this last case the wall has been
smoothed in x = ±1 to avoid an infinite slope, this was not the case for NS
and IBL), here α = 0.75, Re = 500. The upper half geometry is plotted
as well (the smoothed one is not plotted). It is observed that the ratio:
pressure at the glottis divided by maximum pressure drop is nearly constant
(Ke = P̃t/P̃m ' 0.82). Likewise, the ratio: pressure at the output divided
by the pressure drop betwen the output and the glottis is nearly constant
(Kt = P̃t/(P̃t − P̃g) ' 0.86).

because, as already mentioned, the equations (50) are parabolic in x (if
u > 0). The IBL equations (46) may be solved with a streamwise marching
as well (this result is not obvious and depends of the kind of interaction
between the boundary layer and the perfect fluid, Le Balleur [25]; ultimate
justifications are linked with the Triple Deck theory). IBL equations allow
to compute flow separation.

Even with those approximations, NS, RNSP, and IBL give very similar
results. Computational time is of course far shorter for the RNSP and IBL
than for NS.
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10 LAGRÉE, BERGER, DEVERGE, VILAIN, and HIRSCHBERG: Pressure drop in pipe
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Fig. 4 A comparison between computed skin friction divided by (0.47 ∗ 2.07)(1 − α)−1/δ̃1c # (1 − α)−2Re1/2 for the three models

(NS, IBL and RNSP, in this last case the wall has been smoothed in (x − xg)/Rg = ±1 to avoid an infinite slope, this was not the case for
NS and IBL), here α = 0.75, Re = 500. The upper half geometry is plotted as well (the smoothed one is not plotted). The position of the
point of separation (where τ̃ = 0) is nearly the same in the three models.Figure 21: A comparison between computed skin friction divided by (0.47 ∗

2.07)(1 − α)−1/δ̃1c ' (1 − α)−2Re1/2 for the three models (NS, IBL and
RNSP, in this last case the wall has been smoothed in (x− xg)/Rg = ±1 to
avoid an infinite slope, this was not the case for NS and IBL), here α = 0.75,
Re = 500. The upper half geometry is plotted as well (the smoothed one is
not plotted). The position of the point of separation (where τ̃ = 0) is nearly
the same in the three models.
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Fig. 3 A very crude estimation: we replace the 2D obstacle by a triangle (!), if this obstacle is a circle the width is wd = 2R0, the height is

αh0, the channel half height is h0 = R0/α. This is now the flow in a converging channel of total angle 2β, the fictitious sink is at position
O, the distance (OM) from the curent point to the sink allows a simple estimation of the displacement thickness.

Figure 22: A very crude estimation: we replace the 2D obstacle by a triangle
(!), if this obstacle is a circle the width is wd = 2R0, the height is αh0, the
channel half height is h0 = R0/α. This is now the flow in a converging
channel of total angle 2β, the fictitious sink is at position O, the distance
(OM) from the curent point to the sink allows a simple estimation of the
displacement thickness.

- V . 39-



RNSP 2D symmetrical

7 Numerical results: estimating the boundary layer
thickness at the throat δ̃1c

The estimation of the boundary layer thickness is the key for evaluation
of velocities and pressures. It is based on the fact that the stenosis is a
kind of convergent channel (of half angle β with a sink at the apex). It
is a classical result that there exists a selfsimilar solution (Schlichting [38]
(1987)) whose boundary layer thickness divided by the distance to the sink is
0.779β1/2Re1/2 (where Re is constructed with the half flux). Approximating
the obstacle of total width wd and of height αh0 to a triangle, the throat
is at distance (OG) = (1− α)h0

√
1 + ( wd

2αh0
)2 from the apex, the half angle

is β = tan−1(2αh0/wd). In the case of a circle (wd = 2R0, h0 = R0/α) this
distance (OG) is (1−α)

√
2h0 and the angle is β = π/4, so that, in h0 scale:

δ̃1c = 0.779(π/2)1/2(1− α)Re−1/2. (47)

We tested this order of magnitude (with RNSP and IBL) to be exact for
a triangular glottis and to be correct for other geometries. This estimate
is in fact more precise for α > 0.8 than the one proposed by Lorthois et
al. [?] in an axi-symmetrical pipe. This allows us to deduce a simplified
formula for the dimentionalized pressure drop at the glottis. Knowing U0,
h0, α, and Re = h0U0/ν, the velocity is derived from flux conservation, and
is corrected by the displacement thickness; Bernoulli law is written between
the entrance and the throat, and the approximate pressure drop follows:

Pt − Pg ' −
ρU2

0

2
(

1
(1− α− δ̃1c)2

− 1). (48)

Furthermore we find that the ratio representing the viscous losses is nearly
constant: Pt/(Pt − Pg) ' Kt = 0.86.

This estimation of the boundary layer thickness is then used to approxi-
mate the non dimensional skin friction near the throat where H = 2.07 and
the velocity is about (1− α)−1:

τ̃ ' Hf2(1− α)−1

δ̃1c

' (1− α)−2Re1/2. (49)

The skin friction is plotted on Figure 21, where it has been rescaled by (49).
We see that this estimate may be improved but gives the good order of
magnitude as the skin friction is very large. The position of the point of
separation is nearly the same for the three codes.
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8 Conclusion

Knowing the flux, and supposing laminar steady flow, an evaluation of
boundary layer thickness issued from boundary layer theory was obtained.
This evaluation leads to an estimation of the skin friction and of the pres-
sure drop at the throat. Those estimates fit well the Interacting Boundary
Layer, Reduced Navier Stokes, and Navier Stokes codes. The complete
Navier Stokes resolution has the following drawbacks; first, it is far slower
than the RNSP resolution, which is slower than the IBL resolution. Second,
the boundary layer is so thin (as predicted by formula (47)) that one has to
be very careful with the mesh in the throat. This analysis shows how usefull
asymptotic theory is to analyze and understand the flow.
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Part III

RNSP 2D non symmetrical

9 Introduction

Computing the flow in locally constricted pipe is important in numerous
applications in biomechanics. Of course this can be achieved with accuracy
through Navier-Stokes solvers. For example, in local constrictions of blood
vessels (Berger and Jou [1], Siegel et al. [40]), in veins (collapsible tubes
Luo & Pedley [30]) in aneurysms (or dilated tube, Budwig et al. [2]), or in
the upper airway (Shome et al. [39]). Here we will focus on steady laminar
flows at high Reynolds number that can be considered as bidimensional, but
not symmetrical. A typical example is on figure 23. In fact we will study a
model example. Our aim is to present the simplest model for steady laminar
pipe flow at large Reynolds number and to observe the effect of asymmetry.

We will compare some NS (Navier Stokes) solutions to solutions of
asymptotic equations because we think that they provide a better under-
standing of the flow structure and relevant scalings. Using asymptotic equa-
tions, computational time is drastically reduced. Therefore, parameters may
be changed easily and their influence can be thoroughly investigated.

Most of such simplified previous studies considered symmetrical flows
(Pelorson et al. [31], Lorthois et al. [24], Lagrée et al. [18], Lagrée et
al. [?], de Bruin et al. [8] and Kalse et al. [15]). In [21] and [15] it was
observed that integral Interacting Boundary Layer and NS give very similar
results. Predictive simplified formula for values of the skin friction and for
the pressure drop based on the boundary layer were presented in [24] and
[18]. In [?], the links between the ”Triple Deck” theory and Interactive
Boundary Layers in internal flows is presented. Furthermore [15] proposed
part of the equations for a non symmetrical channel but did not solved them.
Hence, we present an asymptotic derivation of the effect of non symmetry in
the framework of the Interactive Boundary Layer theory (IBL). This theory
is presented in Cebeci & Cousteix [4] or Sychev et al. [48], as not complete
in the asymptotical framework. But, they point out that numerous results
of calculations for different flows showed good agreement with experimental
data in the description of flow separation in aerodynamics. In Veldman
[51] the IBL and its links with the ”Triple Deck” theory in open flows is
explained. Some industrial examples comparing IBL and experiments are
presented too.

Mainly, the descriptions of IBL use the length of the bump as fundamen-
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tal scale (say L). The Reynolds number is then constructed with this length
(RL = U0L/ν, here we are in a 2D channel, h0 is the distance between
the two plates, and U0h0 is the flux). The boundary layer is then scaled
by LR

−1/2
L , the displacement thickness is about 1.7LR

−1/2
L . This length L

must be smaller that the length of entry (say Le) which is such that the two
boundary layers merge between the plates: LeR

−1/2
Le

= h0. This length is
Le = h0(U0h0/ν). The idea of the IBL theory is to couple the ideal fluid
flowing in the core to variations of the displacement thickness of the bound-
ary layer. For example, before the constriction, where the walls are flats, it
means that the ideal fluid in the pipe experiments no more the section h0

but a smaller section reduced by twice 1.7LR
−1/2
L . So the flow is acceler-

ated. In ”classical boundary layer theory” it is impossible: the Reynolds is
infinite (R−1/2

L = 0). The entry length is reject at infinity. This boundary
layer effect is an order two effect (Van Dyke [50]), the velocity remains U0.
But in ”IBL theory” this is possible. It means that R

−1/2
L is small but not so

much. Hence, effect of second order and first order are mixed: the boundary
layer retroacts on the ideal fluid. This was the paradox of IBL.

But, recently, Dechaume et al. [9] (and Cousteix and Mauss [5] and [6])
established on rational basis the IBL equations. They break the paradox.
They use a ”modified Van-Dyke” principle and ”successive complementary
expansion method”. The existence of a small parameter in the equation is
then no more a problem. The link with ”Triple Deck” theory is done as well.
They show that with this technique the IBL equations are fully justified.

Here, as we are in pipe, we prefer to use h0 to construct the Reynolds
(Re = U0h0/ν) and to scale the boundary layer. So to have a small boundary
layer as just mentioned, we have to be near the entrance of the pipe at a
distance smaller than Le = h0(U0h0/ν) (so that we are before the merging of
the boundary layers). Compared to the previous approach where we gave L,
it is just a change of scale of the boundary layer equations. This length must
be larger than the distance between the plates in order to do the expansion
in the ideal fluid. But we will observe that the system is very robust and may
be used even if the width of the bump is h0. One reason of this robustness
is that the flow is accelerated, so that the boundary layer is thinner. The
other one belongs to magic of asymptotic expansion which give often good
results even if the small parameter is not so small (Van Dyke [50]).

First we present the problem and the basic scales for the NS problem.
Then we introduce a simplified set of equations: Reduced Navier Stokes.
The integral IBL system is introduced thereafter. A comparison between
the three models shows that the integral IBL catches most of flow features
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(with a very short computational time, about 500 times less).

y∗

fb(x)h0

x∗

u∗(x∗ = 0, r∗)

h0

αh0

Figure 1: A zoom of the channel with its stenose. The constriction is a
smoothed ellipsis (the lower wall is fb, the upper is here flat, fh = 0). The
transverse scale is adimensionalised by the unperturbed channel width h0.
Here, the entry profile is a Poiseuille profile (u = UPois = y(1 − y) and
v = 0), but any other is possible. The NS computational domain is larger
to avoid entrance and output effects, iso pressure (gray scale) and the mesh
(white grid) are plotted.

13

Figure 23: A zoom of the channel with its stenose. The constriction is a
smoothed ellipsis (the lower wall is fb, the upper is here flat, fh = 0). The
transverse scale is adimensionalised by the unperturbed channel width h0.
Here, the entry profile is a Poiseuille profile (u = UPois = y(1 − y) and
v = 0), but any other is possible. The NS computational domain is larger
to avoid entrance and output effects, iso pressure (gray scale) and the mesh
(white grid) are plotted.

10 Equations

10.1 Navier Stokes

We solve the Newtonian steady laminar incompressible bidimensional Navier
Stokes equations with the numerical code Castem 2000 [29]. The geometry
consists in a straight channel with a bump on one wall (figure 23), we used
the channel height h0 to nondimensionalise the scales of x∗ and y∗. A
Poiseuille velocity (of total flux U0h0 equal to 1 in non dimensional scales)
is imposed at the entrance, a zero stress is imposed at exit. The exit and
the entrance are far enough from the stenosis to avoid their influences. We
present (on fig. 1 to 5) only results for Re = 500 (Re = U0h0/ν). Increasing
the Reynolds increases the number of points and the computational time.
It creates problems at the output where the jet may oscillate. But we do
not focus here on the NS problem.

- V . 44-



RNSP 2D non symmetrical

10.2 Reduced Navier Stokes

We now present two simplifications of the NS equations issued from bound-
ary layer theory (Schlichting [38], Sychev et al. [48], Rubin and Tannehill
[35]). The first simplification consists in neglecting the transverse variation
of pressure. This leads to a system we call RNSP (Reduced Navier Stokes/
Prandtl) because this is a reduced system obtained from Navier Stokes and
because this is in fact the Prandtl partial differential equations (with differ-
ent boundary condition than in the classical boundary layer theory). It has
been shown that this system is a good approximation of NS in symmetrical
stenoses (Lagrée et al. [18]) and that its axisymmetrical version (Lagrée &
Lorthois [22]) includes most of IBL/ Triple Deck/ Double Deck asymptoti-
cal régimes. These equations are obtained from NS by supposing that the
transverse scale is smaller than the longitudinal one and that the Reynolds
number is large. To settle the equations, u∗ is scaled by U0, v∗ by U0/Re,
x∗ by h0Re, y∗ by h0 and p∗ by ρU2

0 . The flow is supposed quasistatic:
Strouhal number is low, in fact the spatial acceleration is large. The system
is:

∂

∂x
u +

∂

∂y
v = 0, u

∂

∂x
u + v

∂

∂y
u = − ∂

∂x
p +

∂2

∂y2
u, 0 = − ∂

∂y
p. (50)

The boundary conditions are no slip u(x, y = fb(x)) = 0, v(x, y = fb(x)) = 0
at the lower wall defined by fb(x) (whose dimension is h0) and at the upper
wall u(x, y = 1−fh(x)) = v(x, y = 1−fh(x)) = 0. At the entrance, pressure
is zero, the first velocity profile is given (for example a flat profile u = 1,
v = 0, or Poiseuille).

We note the invariance by Prandtl transform (yp = y−fb(x)) that allows
to solve the problem from yp = 0 to yp = 1− fh(x)− fb(x).

We note that there are two transverse boundary conditions (u(x, y =
fb(x)) = 0 and u(x, y = 1−fh(x)) but there is no outflow boundary condition
(only u = 1 is given at the entrance). This is because the system is parabolic
in x (u∂xu ' ∂2

yu). The Navier Stokes equations must have an output
condition, which is not the case here.

10.3 IBL

10.3.1 Ideal Fluid

Previous studies used mainly a symmetrical approximation, so that ideal
fluid pressure or ideal fluid velocity was a function of the longitudinal vari-
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able alone. We want to introduce a small effect of transverse variation of
pressure. Then we will couple the ideal fluid with the two boundary layers.

We solve linearized Euler equations in a channel with a slowly varying
indentation with (ξ = εx∗/h0, y = y∗/h0). Thereafter ξ will be identified
with x. In practice, we will discuss the flow with a flat upper wall (yh = 1
or fh = 0), with an indentation at the lower wall (yb = fb). The maximum
value of fb is α the degree of stenosis, the indentation may be severe, it
means that α may be close to 1. Expanding as:

u = U0(ξ) + εu1(ξ, y) + ε2u2(ξ, y) + ..., (51)

v = εv1(ξ, y) + ε3v3(ξ, y) + ..., (52)

p = p0(ξ) + εp1(ξ, y) + ε2p2(ξ, y) + ..., (53)

so that Euler system (we note that the perturbations u1 and p1 are zero) is
at order 0 and 1:

U0
∂U0

∂ξ
= −∂p0

∂ξ
, (54)

and
ε
∂U0

∂ξ
+ ε

∂v1

∂y
= 0. (55)

(The flow was supposed irrotational ∂yU0 −O(ε2) = 0). Writing the no slip
condition on the upper and lower walls (resp. yh and yb):

v1(ξ, yb = fh) = U0
∂fb

∂ξ
, v1(ξ, yh = 1− fh) = −U0

∂fh

∂ξ
,

we integrate twice the continuity equation (55) to obtain the classical ex-
pression of U0 and by the momentum equation (54) we obtain P0:

U0(ξ) =
1

1− fb(ξ)− fh(ξ)
, P0(x) =

1
2
− 1

2

( 1
1− fb(ξ)− fh(ξ)

)2
. (56)

The expression for transverse velocity follows:

v1(ξ, y) = U0
∂fb

∂ξ
+

y − fb

1− fh − fb
(−U0

∂fb

∂ξ
− U0

∂fh

∂ξ
) (57)

The next order is:
ε2U0

∂v1

∂ξ
= −ε2 ∂p2

∂y
, (58)

ε3 ∂U0u2

∂ξ
= −ε3 ∂p2

∂ξ
, (59)
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ε3 ∂u2

∂ξ
+ ε3 ∂v3

∂y
= 0. (60)

From the integration by y of the incompressibility at order 0 and 2, we
obtain that ∂ξ(

∫ yh

yb
(U0 + ε2u2)dy) = 0, once developed using (57) and from

Euler equation (59) we then obtain
∫ yh

yb
p2dy = 0. After some algebra, from

(58) and (57), we find the pressure value at order 2 on the lower wall:

p2(ξ, fb) =
−4 f ′b(ξ)

2 − 2 f ′b(ξ) f ′h(ξ) + 2 f ′h(ξ)2

6 (−1 + fb(ξ) + fh(ξ))
+

+
(−1 + fb(ξ) + fh(ξ)) (2 f ′′b (ξ)− f ′′h (ξ))

6 (−1 + fb(ξ) + fh(ξ))
, (61)

and the pressure value at order 2 at the upper wall:

p2(ξ, 1− fh) =
−

(
−2 f ′b(ξ)

2 + 2 f ′b(ξ) f ′h(ξ) + 4 f ′h(ξ)2
)

6 (−1 + fb(ξ) + fh(ξ))
+

+
(−1 + fb(ξ) + fh(ξ)) (f ′′b (ξ)− 2 f ′′h (ξ))

6 (−1 + fb(ξ) + fh(ξ))
. (62)

We define the total transverse pressure drop as ε2(p2(ξ, yh)−p2(ξ, yb)), which
is a bit more simple:

ε2(p2(ξ, yh)− p2(ξ, yb)) = ε2
( (f ′h(ξ)2 − f ′b(ξ)

2)
1− fb(ξ)− fh(ξ)

+
(f ′′h (ξ)− f ′′b (ξ))

2

)
. (63)

Of course, a symmetrical channel (fb = fh) gives ∆P0 = 0, in practice we
will use fh = 0. We note that Kalse et al. [15] derived with more severe
approximations this same pressure drop (but not (61) nor (62)). Here the
result comes only from the hypothesis.
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Figure 2: A larger zoom of the channel (here a RNSP computation at Re =
500) with the stenose and the upper flat wall. The two upper and lower
boundary layers and the ideal fluid appear from the computation. The
interaction between the ideal fluid and the boundary layers is the core of
the Interactive Boundary Layer theory.

14

Figure 24: A larger zoom of the channel (here a RNSP computation at
Re = 500) with the stenose and the upper flat wall. The two upper and
lower boundary layers and the ideal fluid appear from the computation. The
interaction between the ideal fluid and the boundary layers is the core of
the Interactive Boundary Layer theory.
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10.3.2 Boundary layer

Up to now in this section, we supposed that the fluid was ideal. Here we
introduce the Boundary Layer equations which may be deduced from Navier
Stokes supposing that the Reynolds number is large and that viscous effects
are restricted to two thin layers near the walls (see figure 24). We simplify
much more the boundary layer in using the integral Kármán equation ([38],
[12]). We define δb

1 and δh
1 the displacement thicknesses at the lower and the

upper walls. The choice of the scalling comes here from the RNSP case, x
is scaled by h0Re and δb,h

1 by h0, in fact the boundary layer will be small
at those scales (see Lagrée & Lorthois [22]). This slow variation in x allows
to identify Re−1 and ε. So, this gives the following system where the ideal
fluid (computed in the preceding section) promotes the boundary layer. We
have two boundary layers, one at the top:

d

dx
(
δh
1

H
) +

δh
1

uh
e

(1 +
2
H

)
duh

e

dx
=

f2H

δh
1uh

e

, δh
1 = F (uh

e ), (64)

and another at the bottom:

d

dx
(
δb
1

H
) +

δb
1

ub
e

(1 +
2
H

)
dub

e

dx
=

f2H

δb
1u

b
e

, δb
1 = F (ub

e). (65)

Initial condition is for example δh,b
1 (0) = 0 and uh,b

e (0) = 1. In the classi-
cal approach, δ1 is obtained through the knowledge of ue, which we write
formaly δb,h

1 = F (ub,h
e ). To solve these boundary layer equations, a closure

relationship linking H and f2 to the velocity and the displacement thickness
is needed. This is of course a strong hypothesis. Defining Λ1 = δ2

1
due
dx , (of

course it is δb
1, u

b
e or δh

1 , uh
e ) the system is closed from the resolution of the

Falkner Skan system as follows:

H =
{

2.5905e−0.37098Λ1 if Λ1 < 0.6
2.074 if Λ1 > 0.6

}
, f2 = 1.05(−H−1 + 4H−2).

It means that we suppose that each profile remains a Falkner Skan one in
the boundary layer.

This closure allows flow separation for decelerated flows, we will see in
the next section that one has to solve these equations (64 and 65) in an
”inverse way” (ub,h

e = F−1(δb,h
1 )) to compute flow separation.

Those simplifications are in the spirit of Lorthois et al. [?], but here in
2D. Recently, Kalse et al. [15] used nearly the same modelisation.
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10.3.3 Integral IBL

The Integral Boundary Layer equations (IBL) suppose that the wall is no
more at the bottom yb = fb and at the channel height yh = 1− fh but it is
changed by the amount of the displacement boundary layer thickness δh

1 at
the upper wall and δb

1 at the lower wall. That is why we scaled δb,h
1 by h0

and why we identified ε to be Re−1 and x = ξ.
This gives a coupled system where the ideal fluid promotes the boundary

layer: (64) and (65) that, in growing, retroacts (with the help of the concept
of displacement thickness) on the ideal fluid through the flux conservation.
The mean velocity (56) is no more (1 − fb(x) − fh(x))−1 but is now (1 −
(fb(x) + δb

1(x))− (fh(x) + δh
1 (x)))−1. The ideal fluid relation is now:

P0(x) =
1
2
− 1

2

( 1
1− (fb(x) + δb

1(x))− (fh(x) + δh
1 (x))

)2
. (66)

Using IBL idea (where first and second order are mixed), we say that the
pressure are in fact pb = P0(x) + ε2pb(x, yb = 1 − (fb + δb

1)) and ph =
P0(x)+ε2ph(x, yh = fh+δh

1 ). The pressure at the bottom (pb(x, yb = fb+δb
1))

is (61) with fb changed by fb+δb
1; the same for ph(x, yh = 1−(fh+δh

1 )) which
is (62) with fh changed by fh +δh

1 . As the expressions for pb(x, yb = fh +δh
1 )

and ph(x, yh = fh + δh
1 ) are a bit complicated, we just write their difference

ph − pb = ∆P0:

∆P0 = ε2
(((f ′h + δ′h1 )2 − (f ′b + δ′b1 )2)

1− (fb + δb
1)− (fh + δh

1 )
+

(
f ′′h + δ′′h1 − f ′′b − δ′′b1

)
2

)
. (67)

Note that we recover a result that looks like Smith [42] (or Sobey [46])
result in pipe flow, the transversal perturbation of pressure in a perturbed
Poiseuille flow is ph− pb = A′′/30 where −A is a displacement of the stream
lines as δb

1 − δh
1 is. Of course the two configurations are very different.

We note that this coupling relation produces upstream influence, it means
that before the bump, the flow ”knows” that it is comming. This creates
solutions in ekx with k > 0, we see it on the numerical solutions.

10.3.4 Numerical resolution of the Integral IBL

We solve the interactive system by a semi inverse method (Le Balleur [25]).
This means that the boundary layer is solved in an inverse way (the displace-
ment thickness is imposed and the velocity is a result of the computation).
This inverse way allows to compute flow separation (the direct way would
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lead to a singularity at separation). The ideal fluid is computed in ”di-
rect way” from the geometry changed by the amount of the boundary layer
displacement thickness.

At iteration n, we have a set of two displacement boundary layer thick-
ness (δb

1)
n and (δh

1 )n. They give, by solving in an inverse way (64) and
(65), two associated boundary layer velocities: (uh

e )n = F−1((δh
1 )n) and

(ub
e)

n = F−1((δb
1)

n).
The two corresponding pressures in the boundary layers (ph

e )n and (pb
e)

n

are computed from these velocities, i.e. Bernoulli:

(p(b,h)
e )n =

1
2
(1− ((u(b,h)

e )n)2). (68)

From the expressions of ph(x, yh = fb + δb
1)) and pb(x, yb = fb + δb

1)) (defined
before equation 67), the ideal fluid pressures are computed. A new boundary
condition associated to the second derivative must be used. At the output
∂ph

∂x = 0 and ∂pb

∂x = 0 are imposed.
The semi inverse relaxation is done as follows (figure 25):

(δh
1 )n+1 = (δh

1 )n + λ((ph)n − (ph
e )n) (69)

(δb
1)

n+1 = (δb
1)

n + λ((pb)n − (pb
e)

n). (70)

The relaxation parameter λ is chosen by trial and error in order to obtain
convergence. In order to obtain estimate of λ the theory proposed by Le
Balleur [25] is relevant.

11 Some numerical comparisons

We compare then the NS results to the RNSP and IBL results. We suppose
that the upper wall is flat fh = 0, and that the lower wall is a given function
of x∗, for example the following function is close to half a circle:

ζ =
x∗ − x∗c
4αh0/3

, fb(ζ) = 1− ζ2

2
− ζ4

8
− ζ6

16
+

1445ζ8

13122
− 1385ζ10

59049
,

which is nearly
√

1− ζ2 around ζ = 0 up to order ζ8. Notice that on
every figure we used the physical longitudinal scale (h0) to plot the curves;
numerically in (50) and (64, 65), the width of the bump is of order (1/Re)
in our scales.

The first curves show the pressure (Fig. 26) and the skin friction (Fig
27) computed by RNSP and NS. We see that the pressure p(x) from RNSP
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(δh
1 )n+1 = (δh
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e )n)
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1)

n+1 = (δb
1)

n + λ((pb)n − (pb
e)

n)

Figure 3: A chart of the iterative ”semi inverse” interaction: the two bound-
ary layers are solved in an inverse way. The correction of boundary layer
thickness is proportional to the difference of pressure.

15

Figure 25: A chart of the iterative ”semi inverse” interaction: the two bound-
ary layers are solved in an inverse way. The correction of boundary layer
thickness is proportional to the difference of pressure.

is an approximation of the mean NS pressure. The NS pressure displays a
larger drop just after the throat on the curved wall and a smaller pressure
drop on the flat wall. The recompression is over predicted by RNSP. In the
symmetrical cases ([22]) the difference was smaller.

The RNSP skin friction overall distribution looks like the NS one. There
is a kink in the skin friction at the flat wall which does not exist in NS
because of the smoother pressure gradient on the flat wall.

The next curves show the pressure (Fig. 28) and the skin friction (Fig.
29) computed by integral IBL and NS. They show ”upstream influence”,
the upstream part of the flow is influenced by the downstream part. On the
pressure curve, before the throat, the upstream influence of the bump is to
produce an over pressure drop on the curved wall. This upstream influence
comes from the order two derivative in the transverse pressure relation (Eq
67), it has an exponential behavior (ekx with k > 0). This influence is
responsible for the incipient separation before the bump, increasing α leads
to flow separation before the bump. This upstream influence is due to the
curvature of the stream line. It does not exist in the symmetrical case.

The integral IBL skin friction looks like the NS one, but it is overesti-
mated by the IBL (results from integral IBL will never be perfect because
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there is a strong closure hypothesis). The integral IBL well predicts the po-
sition of the point of separation but overpredicts the negative skin friction.
The incipient separation before the bump is well predicted and is related to
the upstream influence.

The displacement functions δb
1 and δh

1 (IBL flat) are plotted on figure
(Fig. 30). A large value of the displacement thickness is associated to a
deceleration of the flow and eventually to boundary layer separation. A thin
value is associated to the large acceleration at the throat. The difference of
pressure ph− pb is plotted too. As this difference of pressure has scale Re−2

the effect of asymmetry becomes smaller with larger Re.
The integral IBL gives good trends in the influence of asymmetry, its

main advantage is that it is a extremely quick method compared to full
Navier Stokes which is time and memory consuming. For example, using
a Linux x86 workstation at 3.0 GHz we may roughly compare the three
methods. Navier Stokes solver CASTEM takes about 15 minutes to compute
the flow (200 times 16 nodes) for a maximal error of 10−5 between two
iterations. RNSP solver takes 2 seconds to compute the flow (on a very fine
mesh 3000 times 1000). Finally, the integral IBL solves a symmetrical case
in less than 0.5 second; it needs 2 more seconds to obtain a maximal error
of 10−5 between two iterations in the non symmetrical case (in about 800
iterations). Those figure are indicative, faster NS solvers may exist, and our
code is not optimised.

Increasing the Reynolds number will disadvantage the Navier Stokes
computation: the IBL remains always precise, but the NS mesh has to be
refined.

12 Conclusion

We have presented here a simplified model issued from asymptotic analysis.
The expressions of the pressure at the upper and lower wall were presented.
The effect of asymmetry is an order two effect. The integral Boundary
Layer equations are solved together with the ideal fluid equations thanks to
Interactive Boundary Layer Theory.

A symmetrical pipe has no upstream influence, it means that changing
the downstream conditions does not change the flow upstream. This is
broken by the asymmetry. Concerning the pressure, the effect of asymmetry
is to increase the pressure drop at the curved bottom wall and to lower the
pressure at the flat upper wall. The smallest pressure is on the curved wall,
the minimum pressure on the bottom wall is more upstream that the pressure
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Figure 4: Comparison of RNSP and NS pressures, RNSP solution is an
approximation of the two NS pressures. The geometry is plotted as well.
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Figure 26: Comparison of RNSP and NS pressures, RNSP solution is an
approximation of the two NS pressures. The geometry is plotted as well.

minimum on the top wall. The two minima are after the throat. A massive
separation appears after the throat on the curved wall, a small separation
appears before the throat on the curved wall, no separation occurs at the
flat wall. The effect of downstream on upstream that is not present in the
RNSP theory is a pure effect of the wall and displacement curvature. This
effect creates an increase of pressure on the lower wall which is responsible
for the upstream flow separation.

Solving the equations of IBL theory is very fast (from factor 2000 in the
symmetrical case to a factor 500 in the non-symmetrical case), so we plan to
use it in biomecanical fluid structure interactions such like the Obstructive
Sleep Apnea syndrome.
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Figure 5: Comparison of RNSP and NS wall shear stress. The flat wall
shear stress is over predicted by RNSP at the maximum, but in the wake
(x∗/h0 > 1) it is better.
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Figure 27: Comparison of RNSP and NS wall shear stress. The flat wall
shear stress is over predicted by RNSP at the maximum, but in the wake
(x∗/h0 > 1) it is better.
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Figure 6: Comparison of integral IBL and NS pressures. The IBL approach
well predicts the over pressure on the flat wall and the positions of the
minima of of the pressures after the throat.
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Figure 28: Comparison of integral IBL and NS pressures. The IBL approach
well predicts the over pressure on the flat wall and the positions of the
minima of of the pressures after the throat.
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Figure 7: Skin friction, comparison of integral IBL and NS. The integral IBL
over predicts the maximum of skin friction but well predicts the position of
the point of separation. The incipient separation before the bump is well
predicted.
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Figure 29: Skin friction, comparison of integral IBL and NS. The integral
IBL over predicts the maximum of skin friction but well predicts the position
of the point of separation. The incipient separation before the bump is well
predicted.
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Figure 8: Left: the displacement functions δb
1 (IBL bump) and δh
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A large value of δ1 is associated to boundary layer separation. A thin value
is associated to the large acceleration at the throat. Right: the difference
of pressure ph

− pb is plotted, the ”final effective” channel is plotted: 1− δh
1

and fb + δb
1; the jet due to separation is visible.
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Figure 30: Left: the displacement functions δb
1 (IBL bump) and δh

1 (IBL
flat). A large value of δ1 is associated to boundary layer separation. A
thin value is associated to the large acceleration at the throat. Right: the
difference of pressure ph−pb is plotted, the ”final effective” channel is plotted:
1− δh

1 and fb + δb
1; the jet due to separation is visible.
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isymétrique: calcul de la contrainte de cisaillement pariétal maximale/
Flow in a axisymmetric convergent: evaluation of maximum wall shear
stress”, C. R. Acad. Sci. Paris, t328, Série II b, p33-40.

[24] Lorthois S., Lagrée P.-Y., Marc-Vergnes J.-P., & Cassot. F. (2000):
”Maximal wall shear stress in arterial stenoses: Application to the in-
ternal carotid arteries”, Journal of Biomechanical Egineering, Volume
122, Issue 6, pp. 661-666.

[25] Le Balleur, J.C. (1978): “Couplage visqueux non-visqueux :
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