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Self similar flows
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273. Hypersonic flow past power-law bodies. Shadow- The exponents are %, Y2 (a paraboloid of revolution), 15,
graphs show the bow wave in air at M=8.8 for bodies of and !/jo. Freeman, Cash & Bedder 1964, courtesy of Aero-
revolution whose radius varies as a power of axial distance. dynamics Division, National Physical Laboratory
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ideal fluid

Gajjar and Smith  triple deck

supercritical subcritical




>
5/
"=_
-—
’——'- - ;7
L
#

p=-A Gajjar and Smith




0,

no ideal fluid: Higuera 97

d 02




The hydraulic j. ] ] ]
The hydraulic jump in a viscous laminar flow ¢ hydraulic jump in a viscous laminar fiow
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. . . . . FIGURE 2. Skin friction and liquid depth for several values of S with the boundary conditions
FiGure 1. Definition sketch, scaled velocities according to Watson’s solution, and streamlines of (11). 4,8 =05:b,S=1:¢,85=2:d, S=4:¢,S=7.f. S = 10.

the flow for S=9.




Hot flow on a cold plate
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Equations cannot be solved with
a marching scheme
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Main Deck

u=Up(y) +cA@)Uy(y); v =

L3

0 = 0o(y) +cA(2)0)(y)
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pg(i,y — OO) —pg(f,y — 0) = JA(.T)(@Q(OO) — (90(0)) = —JA(ZE),







—C

Lil

il
g

Triple Deck eigenvalues

exp((—34i'(0))”)).
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equivalence Steinruck

AS = 2U4(0) (— 3A4¢(0))?

A +
et = exp<%<1+u|3 (L/U(0)#)/2) ~ exp(1J]™> A+ (1/Us(0))3/2))




Equations cannot be solved with
a marching scheme

need for an output condition 9 _y
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Equations cannot be solved with
a marching scheme

need for an output condition 9 _y
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Equations cannot be solved with
a marching scheme

need for an output condition
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introducing wall elasticity: p(x,t) = k(R(x.t) — Ry)

+ The boundary conditions: here hyperbolical (R(x;,.t) and R, 1)) given



Integral resolution

- integral system (ID) is included in RNSP

- we compute a more real profile
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Integral resolution
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Integral resolution |D equations
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relation between pressure and Radius p=k(R—Ry)
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Integral resolution |D equations
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gives (J7 as function of J an T as function




Integral resolution |D equations




Integral resolution |D equations




Integral resolution |D equations

need of profile




Integral resolution |D equations

“usual” I D equations are a simplification of RNSP




Choice of the family of simple profiles

In an unsteady flow it is natural to use VWWomersley
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Choice of the family of simple profiles

In an unsteady flow it is natural to use VWWomersley

Womersley profiles are solution of RNSP




Choice of the family of simple profiles

In an unsteady flow it is natural to use VWWomersley
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Choice of the family of simple profiles

In an unsteady flow it is natural to use VWWomersley
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Flow in an elastic artery: integral relations

- new integral equations: adapting Von Karman integral methods

The key is to integrate the equations with respect to the variable = »/R from the
centre of the pipe to the wall (0 < 5 < 1).

- Uy, the velocity along the axis of symmetry,
- ¢ a kind of loss of flux (d;),

- I" a kind of loss of momentum flux (dz):

1 1
Uo(w,t) =u(x,n=0,t), q=R*Us— 2/ undn) & T = R*(UF — 2/ wndn).
0 0



Flow in an elastic artery: integral relations

OR?2 0

o T e (R —q) =0, R=1+eyh.

Integrating RNSP, with the help of the boundary conditions, we obtain the equation for
qla,t):

dg J _d 27 Ju 0%u
- +ea( /T — 'DE‘?J — _2;7? T = ((.-__;.—””n:l - (W”-ﬂ:ﬂ'-

At dx

From the same equation evaluated on the axis of symmetry (in 1 = 0), we obtain an
equation for the velocity along the axis Up(x,1):

oWy Uy
¢ telog =

Boundary conditions (%(x;,,t) and h(x,.:, 1)) given



Closure: Womersley

e the most simple idea is to use the profiles from the analytical linearized solution given
by Womersley (1955) for

__Jo(i%%am)
Jo(i%/ %)

— 1
Jo(i%/2a)

e assume that the velocity distribution in the following has the same dependence on 1.
It means that we suppose that the fundamental mode imposes the radial structure of
the flow.




. - Ju 0 0 op 0 du
R, _— % [~ or i Yox" i T Pox i Vo or
e —— N . K
“““““““ T *Tu ™ por
~ — p=—k(R — Ro)
__ integral

h(x,t=2.5)

-0.2 -

03 | | | | | | | |
. . 0.8 1 1.2 1.4 1.6 1.8 2

Figure 1: The displacement of the wall (h(x,t = 2.5)) as a function of x is plotted here
at time t = 2.5. The dashed line (wom3(x,2.5)) is the Womersley solution (reference),

the solid line (B.L.) is the result of the Boundary Layer code and the dots (intg) are the
results of the integral method (o« = 3, k1 = 1, ko = 0 and g5 = 0.2).






Conclusion

Oy?

Prandtl Equations with various scales and
with various Boundary Conditions

interaction with displacement

in some cases upstream influence







