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The mechanical behaviour of a supersolid is studied in the framework of a fully explicit model
derived from the Gross-Pitaevskii equation without assuming any defect or vacancy. A set of cou-
pled nonlinear partial differential equations plus boundary conditions is derived. The conditions of
mechanical equilibrium are studied under external constraints such as steady rotation and external
stress. Our model explains the experimentally observed paradoxical behaviour: a nonclassical rota-
tional inertia fraction in the limit of small rotation speed but a solid-like elastic response to small
stress or external force field.

PACS numbers: 67.80.-s

The recent surge of interest in supersolids [1] makes it important to reach a clearer understanding of the mechanical
properties of such materials. In particular, why is a supersolid behaviour observed in a rotating experiment while,
as in ordinary solids, no constant mass flux is driven by a pressure gradient? [1, 2]. In Ref. [3] two of us (YP and
SR) proposed a fully explicit model of a supersolid where many properties can be discussed in detail. We thought
it timely to reconsider this model, in particular with respect to its properties of elasticity coupled to its ability to
maintain some kind of superflow in the absence of defects. Although supersolidity is often related to the presence of
defects, vacancies and so forth, our model introduces an important distinction between ordinary (classical) crystals
and supersolids: in perfect classical crystals there is either an integer number or a simple fraction of atoms per unit
cell. Therefore, the number density and the lattice parameters are not independent. On the contrary, in our model of
a supersolid there is no such relation: the lattice parameters and the average density can be changed independently.
Similar results were already noticed for the crystallization of a quantum liquid [4].

Our model is based on the original Gross-Pitaevksii (G–P) equation [5] with an integral kernel that can be viewed
as a two-body potential in the first Born approximation. This model yields the exact spectrum found long ago by
Bogoliubov [6], namely a dispersion relation between the energy and momentum of the elementary excitations that
depends on the two-body potential. In this framework the roton minimum becomes a precursor of crystallisation. A
similar behavior was predicted in Ref. [4] and Ref. [7], however in [7] the possibility of a linear instability was however
only considered, although the transition is subcritical (first-order) [3, 4]. The crystal phase exhibits a periodic density
modulation together with a superfluid-like behaviour under rotation.

The aim of the present letter is to show that, besides this behaviour, the model system has also solid-like properties,
at least under small stress. Under larger stress, it flows plastically, the plasticity being facilitated by the eventual
presence of defects. We derive the equation of motion for the average density n, the phase Φ and the displacement u
in the solid. A new propagating mode appears in addition to the longitudinal and transverse phonons characteristics
of regular crystals. This mode is partly a modulation of the coherent quantum phase, like the phonons in superfluids
at zero temperature. We discuss at the end the boundary conditions and how to handle steady rotation and pressure-
driven flow in this model.

Our starting point is the G–P equation [5] valid at T = 0 for the complex-valued wavefunction ψ(r, t) for bosonic
particles of mass m:
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where U(r) is a two body potential. For the numerics we choose a potential U(|r|) = U0θ(a− |r|) where θ(x) is the
Heaviside function. The Lagrangian density for the G–P equation (1) reads in polar variables, ψ =
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The ground state is given by the solution of the nonlinear integro-differential equation for ρ taking the phase field
φ uniform in space: φ = −µt/~, µ constant:
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This ground-state solution is periodic in space at large enough densities, in full agreement with our numerical results.
It depends only on the dimensionless parameter Λ = U0

ma2

~2 na
3 only [3], where n = 1

Ω

∫
ρ(r)dr is the average number

density over the total volume Ω. Although in Ref. [3] we discussed the ground state as a modulation close to a uniform
density near the transition, that is for a finite roton gap, we have observed numerically that the crystal ground state
exists over a wider range of densities. In the limit Λ � 1 the lattice tends to an array of sharp density peaks distant
of a, the width of the pulse decreasing as Λ increases.

If ρ0(r|n) is a ground-state solution, then ρ0(r−u|n) is also a ground-state solution with the same µ for a constant
displacement field u. The general perturbations around the ground state allow that Φ, u and n become fields that vary
slowly with space and time. As in Ref. [3], we follow the general method called homogenization [9]. In this method the
long-wave behavior of the various parameters and the short-range periodic dependence upon the lattice parameters
can be treated separately. The Ansatz for density and phase becomes: ρ = ρ0(r−u|n(r, t)) + ρ̃(r−u, n, t) + . . . and
φ = Φ(r, t)+ φ̃(r−u, n, t)+ . . . where Φ, u and n are slowly varying fields and φ̃ and ρ̃ are small and rapidly varying
periodic functions. Introducing this Ansatz into the Lagrangian (2) one gets an effective Lagrangian [10]:
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where Du
Dt = ∂u

∂t + ~
m∇Φ · ∇u, so that this Lagrangian is Galilean invariant. Furthermore, E(n) =

1
2V

∫
V

drρ0(r)
∫
U(r′− r)ρ0(r′)dr′ is an internal energy that comes from an integration over a unit lattice cell (V ) of

the part of the Lagrangian (2) that depends only on n. Similarly, %(n) and λijkl are given by explicit integrals over
the unit cell. For %(n), for instance, we introduce the periodic vector field K(r) that satisfies ∇iρ0 +∇ · (ρ0∇Ki) = 0
which defines the matrix %ij = 1

V

∫
V
ρ0(r) ∇Ki ·∇Kj dr. We restrict ourselves to crystal structures sufficiently sym-

metric to make this matrix diagonal (%ij = %(n)δij). The quantity %(n) is zero if the crystal modulation is absent and
would be very small for a Bose-Einstein condensate with a nonlocal interaction term. The density %(n) → n when all
the mass is strongly localized at the center of the unit cell. This is presumably the situation for almost all materials
in a solid state at low temperature. The large Young’s modulus probably results from the small overlap of the wave
functions from one site to the next, making 4He exceptional in this respect. In other words, when %(n) → n the
supersolid behaves as a ordinary solid. The coefficients λijkl appearing in Eq. (4) define the familiar elastic energy of
a Hookean solid.

Eq. (4) is remarkable because it is fully explicit for a given ground state of the G–P model. We conjecture that,
because (4) satisfies the symmetries imposed by the underlying physics and because it includes a priori all terms
with the right order of magnitude with respect to the derivatives, the general Lagrangian of any supersolid has the
same structure at T = 0. In a recent paper, Son [8] derived a Lagrangian of which Eq. (4) is a sub-class but with
well-defined coefficients such as %(n), E(n) and λijkl depending on the details of the crystal structure.

The dynamical equations are derived by variation of the action
∫
Ld3r dt taken as a functional of n, Φ and u. The

variation with respect to n, u and Φ yields (writing %′(n) = d%/dn, etc.):
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The last equation reduces to the familiar equation of mass conservation for potential flows whenever %(n) = 0, namely
in the absence of modulation of the ground state. Although our equations of motion (5-7) and the one of Andreev–
Lifshitz [11] are almost identical in the zero temperature limit (see Eq. (16) of Ref. [11]), our model has significant
differences with theirs. Our solid cannot be considered as the normal component of a “two-fluids” system because it
is on the same footing (phase-coherent) as the superfluid part at T = 0. Therefore, at small finite temperature, our
model has a normal component that is a fluid of vanishing density at T = 0 in addition to its coherent superfluid and
solid part that should change the superfluid density fraction. Following Landau’s ideas, this normal fluid is a gas of
quasi-particles with a mixed spectrum able to carry momentum while the coherent part (superfluid plus solid) stays
at rest.
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The Euler-Lagrange conditions impose the boundary conditions for the equations of motion:

~
m
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))
êk = nVkêk.

where Vk is a component of the local speed of the solid wall of the container and êk is normal to it. The displacement
field moves with the wall: Du

Dt = V .
Let us consider small perturbations around a non-deformed (u = 0) and steady (∇Φ = 0) state of average density n.

The linearized version of (5-7) shows that the shear waves are decoupled from the compression and phase (Bogoliubov-
like) waves. The dispersion relation for the coupled compression and phase waves leads to a simple algebraic equation.
In the limit %(n) → 0 the crystal structure disappears and the phase mode propagates at the usual speed of sound
found by Bogoliubov, c =

√
E ′′(n)/(mn). In the limit %(n) → n, that is, whenever the supersolid behaves as a

regular solid, the two propagation speeds are v1 =
√
c2K + c2 and v2 =

√
c2Kc

2/(c2K + c2)
√

1− %(n)/n where cK is
the longitudinal elastic wave speed [12], meaning that the phase mode disappears at the supersolid-solid transition.

As suggested by Leggett [13], an Andronikashvili-type of experiment could manifest a nonclassical rotational inertia
(NCRI). Suppose that the wall of the container of volume Ω rotates with uniform angular speed ω. Then for low
angular speed the crystal moves rigidly with the container u̇ = ω × r without any elastic deformation. The densities
n and %(n) being constant in space, Eq. (7) simplifies to

∇2Φ = 0 in Ω with ∇Φ · ê = (m/~)(ω × r) · ê on ∂Ω. (8)

Eq. (8) has a unique solution [14]. The moment of inertia comes directly from the energy per unit volume of the
system: E = Φt

δL
δΦt

+ ut · δL
δut

− L. In the rotating case E = 1
2Issω

2, where Iss is the zz component of the inertia
moment : Iss = m(n − %(n))Ipf + m%(n)Irb where Ipf =

∫
Ω
(∇Φ)2dr, Φ being a solution of Eq. (8) (ω, m and ~

are taken as unity). It depends only on the geometry, as does Irb, corresponding to the rigid-body rotational inertia
Irb =

∫
Ω
(x2 + y2)dr where x and y are orthogonal to the axis of rotation. The relative change of the moment of

inertia when the supersolid phase appears is:

(Iss − Irb)/Irb = −(1− %(n)/n)(1− Ipf/Irb) (9)

where Irb = mnIrb. Because Ipf < Irb, one has (Iss − Irb)/Irb ≤ 0 as expected and observed experimentally [1]. The
NCRI fraction (NCRIF) disappears, as does the phase mode sound speed, when the supersolid becomes an ordinary
solid (%(n) → n).

Within the model presented here it is easy to implement a numerical procedure to demonstrate an NCRI in a 2D
system. We first minimize H − ωLz for different values of the angular frequency ω, where H = ~2

2m

∫
|∇ψ|2dr +

1
2

∫
U(r′−r)|ψ(r, t)|2|ψ(r′, t)|2drdr′ is the energy and Lz = i~

2

∫
(ψ∗r×∇ψ−ψr×∇ψ∗)dr the angular momentum.

The minimization should be carried out with a fixed total mass: N =
∫
|ψ|2dr. Starting with ω = 0 we find the

minimizer and then by increasing ω step by step we follow the evolution of the local minima. We measure a rotational
inertia that varies with both ω and nU0 (see Fig. 1a) so that we can numerically define an NCRIF. Fig. 1b shows
this NCRIF in the limit ω → 0 as a function of the dimensionless compression Λ = U0

ma2

~2 na
3. Both curves are in

qualitative agreement with recent experiments (see Fig. 3D of [1](b) and Fig. 4 of [1](c)).
Finally, we study a gravity-(or pressure-) driven supersolid flow. As earlier suggested by Andreev et al. [15], an

experiment on an obstacle pulled by gravity in solid helium could provide a proof of supersolidity. Various versions
of this experiment failed to show any motion [2], so a natural question arises: How to reconcile the NCRI experiment
of Kim and Chan with the absence of pressure- or gravity-driven flows? Our supersolid model (and it seems also
supersolid helium) reacts in different ways under small external constraints such as stress, bulk force or rotation in
order to satisfy the equation of motion and the boundary conditions. For instance, if gravity (or a pressure gradient)
is added then the pressure E ′(n) balances the external force mgz in Eq. (5) while the elastic behavior of the solid
of Eq. (6) balances the external uniform force per unit volume mng. No ∇Φ nor u̇ terms are needed to satisfy the
mechanical equilibrium. Moreover, a flow is possible only if the stresses are large enough to display a plastic flow as
happens in ordinary solids (this could be different at finite temperature). In [3] we showed that a flow around an
obstacle is possible only if defects are created in the crystal, and in this sense we did observe a plastic flow. However,
in the same model we observe a “superfluid-like” behaviour under rotation without defects in the crystal structure.
In fact, for a small angular rotation the elastic deformations come in at order ω2 while ∇Φ or u̇ are of order ω, and
the equations of motion together with the boundary conditions lead to an NCRIF different from zero.

We have carried out a numerical simulation to test for the possibility of a permanent gravity flow for different values
of the dimensionless gravity G = m2ga3

~2 . Let us consider a U-tube as in Fig.2. The system is prepared for 500 time
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FIG. 1: We implement a relaxation algorithm in Fourier space with 128 × 128 modes to find a local minima in a square cell
of 96 × 96 units for different values of U0n; the potential range is a = 4.3. (a) The NCRIF ≡ 1 − L′

z(ω)/ 〈Irb〉 vs. the local
maximum speed vmax = ωL/

√
2 for nU0 = 0.069, 0.084, 0.099 & 0.114. Here 〈Irb〉 is the converging inertia moment computed

numerically for large nU0 at ω = 0. Note that the jump in NCRIF for nU0 = 0.069 corresponds to the nucleation of a vortex
in the system. b) NCRIF at ω = 0 as a function of nU0. We have verified that (a) and ( b) are almost independant of the box
size.

units in a good-quality (but not perfect) crystalline state. A vertical gravity of magnitude G is switched on and the
system evolves for 500 more time units up to a new equilibrium (see Fig. 2a). The gravity is then tilted (with the
same magnitude) at a given angle. A mass flow is initially observed from one reservoir into the other, but eventually
the vessels reach different level (see Fig. 2b). There is some dependence of the transferred mass on G till G ≈ 0.0005
and the mass transfer becomes indistiguishable from fluctuations for G < 0.00025, indicating the existence of a yield
stress. The flow is allowed by dislocations and grain boundaries and is a precursor of a microscopic plastic flow as
in ordinary solids (e.g. ice), as is probably observed in Ref. [16]. A microscopic yield stress could be defined by the
smallest value of the gravity G such that no dislocations, defects or grain boundaries appear. In the present model
this is G < 10−4.
In conclusion, we have derived a fully explicit model of a supersolid at T = 0 that displays either solid-like behavior or
superflow depending on the external constraints and on the boundary conditions of the reservoir walls. Our numerical
simulations show that, within the same model, a nonclassical rotational inertia is observed as well a regular elastic
response to external stress or forces without any flow of matter. Finally, the authors thank M.-L. Saboungi and D.
Price for critical reading of the manuscript.
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chosen as U0 = 0.01 and a = 8 (physical constants ~ and m are 1), and the initial condition is an uniform solution ψ = 1 plus
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