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We present a statistical equilibrium model of self-organization in a class of focusing, nonintegrable nonlin-
ear Schrdinger(NLS) equations. The theory predicts that the asymptotic-time behavior of the NLS system is
characterized by the formation and persistence of a large-scale coherent solitary wave, which minimizes the
Hamiltonian given the conserved particle numkef-norm square) coupled with small-scale random fluc-
tuations, or radiation. The fluctuations account for the difference between the conserved value of the Hamil-
tonian and the Hamiltonian of the coherent state. The predictions of the statistical theory are tested against the
results of direct numerical simulations of NLS, and excellent qualitative and quantitative agreement is dem-
onstrated. In addition, a careful inspection of the numerical simulations reveals interesting features of the
transitory dynamics leading up to the long-time statistical equilibrium state starting from a given initial
condition. As time increases, the system investigates smaller and smaller scales, and it appears that at a given
intermediate time after the coalescense of the soliton structures has ended, the system is nearly in statistical
equilibrium over the modes that it has investigated up to that time.

PACS numbeps): 05.20-y, 05.45-a, 52.35.Mw

I. INTRODUCTION: NLS AND SOLITON TURBULENCE
H(t/f)=f [V =F(¢|*)]dr. 2
A fascinating feature of many turbulent fluid and plasma

systems is the emergence and persistence of large-scale @fere, the potentialF is defined via the relatiorF(a)

ganized states, or coherent structures, in the midst of small= fgf(y)dy The dynamK:Sl) conserves, in addition to the
scale turbulent fluctuations. A familiar example is the forma-{amijltonian, the particle number

tion of macroscopic quasisteady vortices in a turbulent large-

Reynolds-number two-dimensional fluid1-3]. Such

phenomena also occur for many classical Hamiltonian sys- N((/f):f || ?dr. ()

tems, even though the dynamics of these systems is formally

reversible[4]. In the present work, we shall focus our atten- e shall assume throughout that Eq) is posed in a

tion on another class of nonlinear partial differential equahounded one-dimensional interval with either periodic or ho-

tions whose solutions exhibit the tendency to form persisten,tnogeneous Dirichlet boundary conditions. We restrict our

coherent structures immersed in a sea of microscopic turbugttention to attractive, or focusing, nonlinearitfesatisfying

lent fluctuations. This is the class of nonlin"ear wave systems$(a)=0 andf’(a)>0 for a=0, such that the dynamics de-

described by the well-known nonlinear Sctiger (NLS)  scribed by Eq.(1) is nonintegrable, free of wave collapse,

equation: and admits stable solitary-wave solutions. The dynamics un-
der these conditions has been referred to as soliton turbu-

) lence [10]. Such is the case for the important power-law
[0+ A+ E(|¢]?) =0, (1) nonlinearities,f (|2 =||°, with 0<s<4 (in the periodic

case,s#2 for nonintegrability [11,12, and also for the
physically relevant saturated nonlinearitied (||?)

where /(r,t) is a complex field and\ is the Laplacian op-  =|y|%/(1+|4|?) and f(|4|?)=1—exp(|#?), which arise

erator. The NLS equation describes the slowly varying enveas corrections to the cubic nonlinearity for large wave am-

lope of a wave train in a dispersive conservative system. Iplitudes[13].

models, among other things, gravity waves on deep water Equation(1) in one spatial dimension has solitary-wave

[5], Langmuir waves in plasmds], pulse propagation along splutions of the formy(x,t) = ¢(x)exp(rZ), where¢ satis-

optical fibers [7], and superfluid dynamicg8]. When fies the nonlinear eigenvalue equation:

f(|¢]?)==|4|? and Eq.(1) is posed on the whole real line

or on a bounded interval with periodic boundary conditions, Duxt T(| %) p—N29p=0. (4)
the equation is completely integrabf@]. Otherwise, it is
nonintegrable. It has been arguefll0,14 that the solitary-wave solutions

The NLS equation(l) may be cast in the Hamiltonian play a prominent role in the long-time dynamics of Etj,
formid.p= SHI/ 5¢*, wherey™ is the complex conjugate of in that they act as statistical attractors to which the system
the field ¢, andH is the Hamiltonian: relaxes. The numerical simulations in REf0], as well as
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a) b) recently constructed a mean-field statistical theory to charac-
15 ' ' s ' ' terize the large-scale structure and the statistics of the small-
4t . scale fluctuations inherent in the asymptotic-time state of the
w T 1 st 1 focusing nonintegrable NLS systefh). The main prediction
§ of this theory is that the coherent state that emerges in the
2 05 2t 1 long-time limit is the ground-state solution of E@). That
’ L ] is, it is the solitary wave that minimizes the Hamiltonidin
given the constrain=N°, whereN is the initial and con-
% 700 200 % 100 200 served value of the particle number integral. This prediction
25 : : , : is in accord with previous theori¢40,14], but the approach
w0l 180t 1 taken in Ref[15] is new, and provides a definite interpreta-
tion to the notion set forth in the earlier works that it is
RTINS 4 20l ] “thermodynamically advantageous” for the NLS system to
3 approach a coherent solitary-wave structure that minimizes
£ 10 - 1 . . . . .
10 L i the Hamiltonian subject to a fixed particle number. The sta-
5r ] tistical theory also gives predictions for the particle number
0 et an o 0 . . spectral density and the kinetic energy spectral density, at
0 00 200 0 o 200 least for a finite-dimensional spectral truncation of the NLS
c) position d) position

dynamics(1). In particular, it predicts an equipartition of
kinetic energy among the small-scale fluctuations.

In the present work, we shall begin with a brief review of
this statistical theory. The predictions of the statistical theory
P S . will then be compared in detail with the results of direct
=0)=A, with A=0.5, plus a small random perturbation. The nu- numerical simulations of the NLS system. In addition, we
merical scheme used to approximate the solution is the spllt-steev. . . -

X AL ill also closely examine the evolution of the particle num-
Fourier method. The grid size @x=0.125, and the number of b t ’ ical simulati I h
modes isn=2048. (a) t=50 unit time: Due to the modulational €r Spectrum in our numerical simufations, as well as the

instability, an array of solitonlike structures separated by the typicaijnam'CS(Ofmf"’"Zte spectral a%proxmatlomsaf the |n'tegr'als
distancel ;= 2/ JAl2= 4 is created(b) t=1050 unit time: The Sm(#)=[|D™y|*dx, whereD™ denotes thenth derivative
solitons interact and coalesce, giving rise to a smaller number ofVith respect to the spatial variable. The statistical model,
solitons of larger amplitude(r) t=15 050: The coarsening process P€ing strictly an equilibrium theory, does not give predic-
has ended. One large soliton remains in a background of smallions concerning the finite time dynamics of these quantities.
amplitude radiation. Notice that for= 55 050 time unit$Fig. 1(d)], However, we shall see that it does give accurate estimates for
the amplitude of the fluctuations has diminished while the ampli-the long-time saturation values of these quantities for a finite
tude of the soliton has increased. dimensional spectral approximation of the NLS dynamics. In
addition, the numerics indicate that the integrgls exhibit
the simulations we shall present within this paper, supporPOWer law growth in time with an exponent dependingnan
this conclusion. Indeed, it is seen that for rather generic inilnN @ccord with predictions of the weak turbulence theory of
tial conditions the fieldy evolves, after a sufficiently long ~°meaul4], and also with existing theoretical upper bounds
time, into a state consisting of a spatially localized coherenP" the growth of higher order Sobolev norms of solutions of
structure, which compares quite favorably to a solution of\-S €quationg16]. The power-law growth of these quanti-
Eq. (4), immersed in a sea of turbulent small-scale turbulenties is |nd|cat|vg of the existence of an energy cascade from
fluctuations. At intermediate times the solution typically con-/0W Modes to high modes.
sists of a collection of these solitonlike structures, but as time
evolves, the solitons undergo a succession of collisions in Il. MEAN-FIELD STATISTICAL MODEL
which the smaller soliton decreases in amplitude, while the
larger one increases in amplitude. When solitons collide or In order to develop a meaningful statistical theory, we
interact, they shed radiation, or small-scale fluctuations. Théegin by introducing a finite-dimensional approximation of
interaction of the solitons continues until eventually a singlethe NLS equation(1). To fix ideas and notation, we will
soliton of large amplitude survives amid the turbulent back-consider the NLS system with homogeneous Dirichlet
ground radiation. Figure 1 illustrates the evolution of theboundary conditions on an interv@l of lengthL. Our meth-
solution of Eq.(1) for the particular nonlinearityf (| |?) ods can easily be modified to accommodate other boundary
=|4| and with periodic boundary conditions on the spatialconditions, and we will consider below the predictions of the
interval [0, 258 theory for periodic boundary conditions, as well. In addition,
In modeling the long-time behavior of a Hamiltonian sys- our techniques can easily be extended to higher dimensions,
tem such as NLS, it seems natural to appeal to the methoddt we wish to concentrate on the one-dimensional case for
of equilibrium statistical mechanics. That such an approaci¢ase of presentation.
may be relevant for understanding the asymptotic-time state Let ej(x)= \/ﬁsin(ij) with kj=j/L, and for any
for NLS has already been suggested in R&f], although function g(x) on Q denote byg;=[g(x)e;(x)dx its jth
the thermodynamic arguments presented by these authors dreurier coefficient with respect to the orthonormal basis
rather formal and somewhat incomplete. Motivated in part;,j=1,2,.... Define the functions  u(M(x,t)
by the ideas outlined in Ref10], Jordanet al. [15] have ~ =37_,u;(t)e;(x) andv(”)(x,t)=2-”=1vj(t)ej(x), where the

FIG. 1. Profile of the modululsy|? at four different times for the
system(1) with nonlinearity f(|#|?)=|| and periodic boundary
conditions on the interval0, 256. The initial condition isi(x,t
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real coefficientsy;,v;,j=1,...n, satisfy the coupled system subject to constraints dictated by the conservation of the

of ordinary differential equations Hamiltonian and the particle number under the dynar(gs
[19,20.
Uy — K2y +[F((u™)2+ (vM)2)v(M]; =0, The usual canonical ensemble
)
v+ kauj —[f((uM)2+ (v(“))z)u“‘)]j =0, peexp—BH,— uN,),

results from maximizing the entropy subject to the mean
constraintg'H,)=H? and(N,)=N°, whereH° andN° are

the given values of the Hamiltonian and the particle number,
co(n) (M) pn (M2 (M) — respectively, ang3 and u are the Lagrange multipliers to
L™+ o+ PRECH ™) =0, enforce these constraints. However, it has been shown in
Refs.[15], [21] that, for the focusing nonlinearities we con-
sider here, the canonical ensemble is ill defined in the sense

Then the complex functions(™=u™+iv(" satisfies the
equation

where P" is the projection onto the span of the eigenfunc-
tionseq,...,e,. This equation is a natural spectral approxi- o . .
mation of the NLS equatiofil), and it may be shown that its that 'tn IS not. normalizable (i.e., fRz”,qu_'BH“

solutions converge as— = to solutions of Eq(1) [11,17.  ~#Nallli-,dydv; diverges. Thus, we are obliged to con-

For givenn, the system of equatior(s) defines a dynam- sider an alternative statistical equilibrium description of the
ics on the :ﬁ—dimensional phase spade®. This finite- NLS system based on constraints other than those that give

dimensional dynamical system is a Hamiltonian system, witdiS€ t0 the canonical ensemble. The key to constructing an

conjugate variables; andv;, and with Hamiltonian appropriate _statlst_lcal model is based on the observation
from numerical simulations that, for a large number of

H =K, +0,, (6)  modesn, in the long-time limit, the field ¢ ,v(") decom-
poses into two essentially distinct components: a large-scale
where coherent structure, and small-scale radiation, or fluctuations.
As time progresses, the amplitude of the fluctuations de-
1 1" creases, until eventually the contribution of the fluctuations
K”ZEJ [(u™M)?+ (v{")2]dx= EZ k?(u?+v?), (7)  to the particle number and the potential energy component of
@ =1 the Hamiltonian becomes negligible compared to the contri-
bution from the coherent state, so tiNyf and® , are deter-
mined almost entirely by the coherent structure. We have
1 checked that this effect becomes even more pronounced
On=—3 J F((uM)2+ (viM)2)dx, (8)  when the resolution of the numerical simulations is improved
Q (i.e., when the number of modes is increased with the length
, ) L L of the spatial interval fixed On the other hand, as the
is the potential energy. The Hamiltonih, is, of course, an g ctuations exhibit rapid spatial variations, the amplitude of
|_nvar|ant of the dynamics. The truncated version of the paryqir gradient does not, in general, become negligible in the
ticle number asymptotic time limit. Consequently, the fluctuations can
Lo make a significant contribution to the kinetic energy compo-
_1 n)y2 (MY27 4y — 2.2 nentK, of the Hamiltonian. This is illustrated in Fig. 2.
Nn=2 fg[(U( )+ ]dx_zgl (uj+vi), Denoting by(u;) and (v;) the means of the variables
uj and v; with respect to the yet to be determined en-
is also conserved by the dynami¢s). The factor 1/2 is semble p(™, we now identify the coherent state with
included in the definition of the particle number for conve-the mean-field pair (@™ (x)),(v(M(x))) =[=_1(u;)e;(x),
nience. The Hamiltonian systef®) satisfies the Liouville E}‘:l(vj>ej(x)]. The fluctuations, or small-scale radiation
property, which is to say that the measdté_,dujdv; is inherent in the long-time state then correspond to the differ-
invariant under the dynamicil8]. This property together ence @u(n)l5V(n))E(u(n)_<u(n)>'v(n)_<v(n)>) between the
with the assumption of ergodicity of the dynamics providestate vector ((™,v(™) and the mean-field vector. The statis-
the usual starting point for a statistical treatment of a Hamiltics of the fluctuations are encoded in the probability density
tonian systenj19]. p(". Based on the considerations of the preceding paragraph,
With the finite-dimensional Hamiltonian system in hand, and the results of the numerical simulations displayed in
we now consider a macroscopic description in terms of gigs. 1 and 2, it seems reasonable to conjecture that the am-
probability density p(™(uy,....un,v1,....v)) on the piitude of the fluctuations of the fielg!™ in the long-time
2n-dimensional phase spaé". We seek a probability den- state of the NLS systert5) should vanish entirelyin some
sity that describes the statistical equilibrium state for theappropriate sengén the continuum limitn— . Thus we are

truncated dynamics. In accord with standard statistical mered to the following vanishing of fluctuations hypothesis:
chanics and information theoretic principles, we define this

state to be the density™ on 2n-dimensional phase space (M2 (M2
which maximizes the Gibbs-Boltzmann entropy functional fﬂ[((&u )9+ (VM) ]dx

is the kinetic energy, and

S(p)=— jRan In pj[ll dujdv;j, (10 Ejzl [((5uj)2)+((5vj)2>]_>0, as N—oo, (11
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: : : : of the fluctuations to the expectation of the kinetic energy
10 110} becomes negligible in the limit— . Indeed, this contribu-
tion is (L/2)=]_;K7[((du;)?)+((8v;)?)], which need not
tend to 0 an—oo, even if Eq.(11) holds. Thus, from these

0 - J 0 — - arguments, we conclude that forsufficiently large,
0 100 200 0 100 200

modulus
[3,]
T
(4]
T
)

1 n
(Hy=5 2, k() +(v}))

modulus

0 100 200 0 100 200

1
> fQF(<u< N2+ (v(M)2)dx.

These considerations lead us to impose the following mean-
field constraints on the admissible probability densigiemn
the 2n-dimensional phase space:

modulus of gradient

0 100 200 0 100 200
position position

2, ((uj)?+(v))*)=N°,
FIG. 2. Numerical simulation for the saturated nonlinearity =1
f(|¢|?) =|¥|?(1+]¢|?) and for periodic boundary conditions. The
total number of modes in=1024 and the spatial grid size @« ~ 1.
=0.25, so that the length of periodic intervallis=256. Displayed Ha(p)= 52 KP((uf)y+(v?))
are the modulus of the fielgy|? (first and second rowsand the =1
modulus of the gradient of the fielas,|? (third row) at unit times 1
t=30000(left) andt= 220 000(right). The second row shows the - —f F(uM24+(v(M2)dx=H® (12
same results as the first row, except that the we have restricted the 2J)a
range on the vertical axis in order to focus in on the the fluctuations
of the field. Notice that the dynamics for this saturated nonlinearityHere, N® and H® are the conserved values of the particle
is qualitatively similar to that for the power law nonlinearity number and the Hamiltonian, as determined from initial con-
f(J¢|?)=|4| shown in Fig. 1: the long-time state consists of a ditions. The statistical equilibrium states are then defined to
large-scale coherent solitary wavelike structure interacting with e probability densitiesp(”) on the phase-spaCBZ” that
sea of small-scale fluctuatiori®p row). The typical amplitude of maximize the entropy(10) subject to the constraint&l2).
the fluctuations of the field has decreased from30000 tot We shall refer to the constrained maximum entropy princip'e
=220 000(second row, while the amplitude of the coherent struc- that determines the statistical equilibria as MEP. We empha-
ture has increased somewhat. The maximum of the modulus of th§~Ize that the mean-field constraint?) in this maximum
field is on the order of 50 times larger than the typical modulus Ofentropy principle are nonstandard, and the resulting en-
the fluctuations at=220000. On the other hand, the typical am- g0, 110 isnot the canonical ensemble. Indeed, as we have
plltude of the fluctuations of the gradEant of the field has aqtua”yalready mentioned, the canonical ensemble is not even nor-
increased somewhat froiw= 30 000 tot=220 000, and the typical . . . - .
; . I —__malizable for the focusing nonlinearities that we consider
amplitude of the fluctuations of the gradient is only several tlmeshere[lS 21]
smaller than the maximum amplitude of the gradient of the field = - L.
(bottom row. Clearly, the fluctuations make a significant contribu- Further Justlflcatlon and mqt|vat|on for the vanlshln.g of
tion to the kinetic energy in the long-time limit. fluctuat!ons_hypotheS|$11), whlch Ieads to the meary—ﬁeld
constraints in the MEP, are provided in REf5]. In particu-
Here, 6u;=u;—(u;) represents the fluctuations of the Fou- lar, it is proved in Ref[15] that the solutiong(™ of the
rier coefficientu; about its mean valueu;), and similarly ~ MEP concentrate on the phase-space manifold on which
for ov;. We emphasize that E¢L1) is a hypothesis used to H,=H° and N,=N° in the continuum limitn—o, in the
construct our statistical theory, and not a conclusion drawsense that{N,)—N° (H,)—H° and vaN,—0, varH,
from the theory itself. —0 in this limit. Here, vaW denotes the variance of the
An immediate consequence of the vanishing of fluctuarandom variabl&V. This concentration property establishes a
tions hypothesis is that far sufficiently large, the expecta- form of asymptotic equivalence between the mean-field en-
tion (N,,) of the particle number is determined almost en-semblesp(™ and the microcanonical ensemble, which is the
tirely by the mean (u™),(v(M)). Furthermore, the invariant measure concentrated on the phase-space manifold
hypothesis(11) implies that forn large, the expectation on which H,=H® and N,=N°. It therefore provides a
(0©,(u™,v(M)) of the potential energy is well approximated strong theoretical justification for the mean-field statistical
by ©,((u™),(v(M)), which is the potential energy of the model.
mean. This may be seen by expanding the potehtiabout
the mean (u™),(v(M)) in Eq. (8), taking expectations, and
noting that because of the vanishing of fluctuations hypoth-
esis (11), there holds|(®,(u™,v(M))—@,((u™),(v(M))]|
=0(1) asn—ox. Notice, however, that the vanishing of  The solutionsp(™ of MEP are calculated by an applica-
fluctuations hypothesis doemt imply that the contribution tion of the Lagrange multiplier rule

[lI. CALCULATION AND ANALYSIS
OF EQUILIBRIUM STATES
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Using Eqs(13)—(18), we may easily calculate the entropy
of any solutionp™ of the MEP. This yields, after some

where 8 and u are the Lagrange multipliers to enforce that algebraic manipulations, that

the probability densityp(™ satisfy the constraint§12). A

straightforward but tedious calculation yields the following

expression for the maximum entropy distributipf? [15]:

p™(Ug,...Up, Ve,V (13)

n

n=11 pj(uj,vy),
j=1

where, forj=1,...n,

pj(Uj,vj)= —EXP{——[(UJ (U)Z+(vi=(v)21y,
(14
with

(uy),

1
(Uj>:k—jz[f(<u(”)>2+<v(”)>2)<u(”)>]j Bk2

L (15
(O A ﬁika<v,->,

Thus, for eachj, u; andv; are independent Gaussian vari-
ables, with means given by the nonlinear equatidr® and
with identical variances

var u;=var v;= (16

1
BK;
Note that vau;=((dy; )?) by definition, and likewise for

. Obviously, the multlpllerﬂ must be positive. Notice also
that since the probability densip(™ factors according to
Eq. (13), the Fourier modesi;,v;,j=1,..n, are mutually
uncorrelated. In addition, we see from Eg5) that the com-
plex mean field ()= (uM)+i(v(M) is a solution of(set-
ting A= u/B)

(Pt PYE( M2 () =N (M) =0,  (17)

L2[HO—

Ha((u™) (v))]

S(p'™)=C(n)+nin .

(19

whereC(n)=n-— 2 1In(j?m/2) depends only on the num-
ber of Fourier modes Clearly, the entropys(p™) will be
maximum if and only if the mean-field paif(™),(v(M))
corresponding te(™ realizes the minimum possible value of
H, over all fields (™,v(M) that satisfy the constraint
N,(u™,v(M)=NC. Thus, Eq.(19) reveals that in statistical
equilibrium the entropy is, up to additive and multiplicative
constants, the logarithm of the kinetic energy contained in
the turbulent fluctuations about the mean state. This result,
therefore, provides a precise interpretation to the notions set
forth by Zakharovet al. [10] and Pomeaii1l4] that the en-
tropy of the NLS system is directly related to the amount of
kinetic energy contained in the small-scale fluctuations, and
that it is “thermodynamically advantageous” for the solu-
tion of NLS to approach a ground state which minimizes the
Hamiltonian for the given number of particles.

We now know thatH ,((u™),(v(M))=H* , whereH} is
the minimum vale ofH, allowed by the particle number
constraintN,=N°. As a consequence, the Lagrange multi-
plier B8 is uniquely determined by Eq18) to be

n

——— (20
HO—H}

IB:

That the “inverse temperature3 scales linearly with the
number of Fourier modes is required in order to obtain a
meaningful continuum limih— oo in which the expectations
of the Hamiltonian and particle number both remain finite.
The scaling of the inverse temperature with the number of
modes is also a common feature of the equilibrium statistical
mechanics of finite-dimensional approximations of other
plasma and fluid systems with infinitely many degrees of
freedom[22,23. The parametek (which depends om) is

which is clearly the spectral truncation of the eigenvaluealso determined by the requirement that the mean

equation(4) for the continuous NLS systeifi). It follows,

(uMy (v(M)) realize the minimum value of the Hamil-

therefore, that the mean field predicted by our theory corretonianH,, given the particle number constraiNf,=N°.

sponds to a solitary-wave solution of the NLS equation. Al-

ternatively, the mean(¢™),(v(M)) is a solution of the
variational equatiordH,+\ N,=0, where\ is a Lagrange
mulgiplier to enforce the particle number constraiNt,
=N".

Now, as the maximum entropy distributigif™ is re-
quired to satisfy the mean-field Hamiltonian constrdiif),
it follows from Eqgs.(13)—(17) that

H°=%+Hn<<u<”>>,<v<“>>>. 18)

Using Egs.(16) and (20), we may now obtain an exact
expression for the contribution of the fluctuations to the ex-
pectation of the particle number. This is

1 H-Hy & 1
2 o o= S
1
:O(ﬁ , as n—c, (21)

Recall that in the derivation of the mean-field constraints
(12), we assumed the vanishing of fluctuations condition

The termn/B represents the contribution to the kinetic en-(11). The calculation(21) shows, therefore, that the maxi-
ergy from the Gaussian fluctuations, ag((u™),(v(M)) is  mum entropy distributions("™ indeed satisfy the hypothesis
the Hamiltonian of the mean. Notice that the contribution of(11), and hence, that the mean-field statistical theory is con-
the fluctuations to the kinetic energy is divided evenlysistent with the assumption that was made to derive it. But as
among then Fourier modes. the analysis of this section has shown, the maximum entropy
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5

distributions p(™ provide much more information than is
contained in the hypothesi€ll). In addition, the theory
yields predictions for the particle number and kinetic energy
spectral densities, at least for tha-Bimensional spectrally
truncated NLS systertb) with n large. Indeed, we have the
following prediction for the particle number spectral density:

4

0

*
n

n—ka’ (22)

Q12 = (|2 +

modulus

where we have used the identiy=u;+iv;, and Eqs(16)
and(20). The first term on the right hand side of EG2) is

the contribution to the particle number spectrum from the
mean, and the second term is the contribution from the fluc-
tuations. Since the mean field is a smooth solution of the
ground-state equation, its spectrum decays rapidly, so tha
for j>1, we have the approximatior|y;|%)~(H°
—Hy)/(n ka). The kinetic energy spectral density is obtained
simply by multiplying Eq.(22) by ka. As emphasized above,
we have the prediction that the kinetic energy arising from
the fluctuations is equipartitioned among tine spectral
modes, with each mode contributing the amoum® (
—H})/n.

While we have chosen to present the statistical theory
specifically for homogeneous Dirichlet boundary conditions
it is straightforward to develop the theory for NLS on a pe-
riodic interval of lengthL, as well. In this case, it is most
c?n)venient to write the spectrally truncated complex field
Y\ as

0
position x

-10 10

FIG. 3. Solitary-wave solutions of ER3) for particle numbers
N=1, 5, and 10. The modulds/|? is shown as a function of the
position.

i+ dutp+ |l =0, (23

'on a periodic interval of length. We have, however, carried
out similar numerical experiments for different focusing non-
linearities and for Dirichlet boundary conditions, and we ob-
served that the general qualitative features of the long-time
dynamics are unaltered by such chan¢e=e Ref[15] for
long-time simulations of NLS with the saturated nonlinearity
f(ly|?)=|y|?(1+|¥|?) and with homogeneous Dirichlet
boundary conditions imposgd The nonlinearity f(||?)
o . =|4| actually represents a nice compromise between the fo-
for n-an even positive integer, whekg=2mj/L. The pre- -\ sing effect and nonlinear interactions. For weaker nonlin-
dictions of the statistical theory remain the same as in th%arities(such as the saturated ohethe interaction between
case of Dirichlet boundary conditions. In particular, the 5des is weak, and the time required to approach an
mean f|e|d<¢(_”)) is a minimizer of the (I)—|am|Iton|ar1-|n asymptotic equilibrium state is quite long. On the other hand,
given the particle number constraiNt,=N", and the par-  for stronger nonlinearities, the solitary-wave structures that
ticle number spectrum satisfies §@2) for j#0. The Fou-  emerge exhibit narrow peaks of large amplitude, and there-
rier coefficientyyo may be consistently chosen to be deter-fore greater spatial resolution is required in the numerical

n/2

ym= 2/2 ¥ explikx),
j=-n

ministic (i.e., vargy=0 and (¥o)=1y), to eliminate the
ambiguity arising from the zero mode.

IV. NUMERICAL RESULTS

The general predictions of the statistical theory outline

above do not depend crucially on the particular nonlinearity

f in the NLS equation1). Indeed, for anyf satisfying the
conditions stated in the introduction, the coherent structur
predicted by the theory in the continuum linmt—< corre-
sponds to the solitary wave that minimizes the Hamiltonia
for the given number of particlesl®. Also, for any such
nonlinearityf, the particle number spectrum in the long-time
limit for the spectrally truncated NLS systefh), according
to the statistical theory, should obey the relati@2). Of
course, the minimum valud; of the HamiltoniarH , which
enters this formula does depend fon

In this section we will present numerical results primarily

n

simulations.

The numerical scheme that we use for solving &9) is
the well-known split-step Fourier method for a given number
n of Fourier modes. Throughout the duration of the simula-
tions, the relative error in the particle number is kept at less
han 10 %%, and the relative error in the Hamiltonian is no
reater than 0.1 %. Notice that the numerical simulations,
erformed naturally for a finite number of modes, provide an
ideal context for comparisons with the mean-field statistical
theory outlined above.
On the whole real line, the nonlinear Sctilmger equa-
tion (23) has solitary-wave solutions of the formi(x,t)

= p(x)e™™, with

g

32

$(0= e (24)

2 cosi 5

for periodic boundary conditions and for the focusing power
law nonlinearity f(|¢|%) =|y|. That is, we shall solve nu- The particle numbeN and the HamiltoniarH of these soli-
merically the particular NLS equation tonlike solutions are determined by the paramaté¢nrough
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the relationshipdN=61% and H=— (18/5)\°. These solu- its statistical attractor, so that subsequently its statistical fea-
tions are centered at=X,, as shown in Fig. 3, and because tures may be considered as stationa@j?How well can we

of the focusing property of Eq(23), as N increases, the characterize the “path” that a solution follows en route to
amplitude of the solitary wave increases, while its width de-the statistically steady state? That is, what are the generic
creases. For a given value of the particle nunbethe soli-  features of the transitory dynamics?

tary wave(24) is the global minimizer of the Hamiltoniald Figure 1 demonstrates that the transitory dynamics can be
[when the integrals in the definition&) and (3) of the  youghly decomposed into three stages: in the first stage, il-
Hamiltonian and the particle number extend over the reaj;strated in Fig. (a), the modulational instability creates an
line]. Of course, the solitary-wave solutions for EB3) on & 5rray of solitonlike structures separated by a typical distance
f|n|te_ mterval,_ as well as those for the spectrally.trl.m.cateqi:277”(i associated with the most unstable wave number
version (5), differ from the solution(24) over the infinite | The second stage is characterized by the interaction and
interval. However, because the solitary wava) exhibitan — ;oajescence of these solitons. In this coarsening process, the
exponential decay, for a large enough interval, and for &, mper of solitons decreases, while the amplitudes of the
large enough number of modes such differences can be g,njving solitons increase, until eventually a single soliton
neglected for all practical purposes. of large amplitude persists among a sea of small-amplitude

_ A . .
For constan®, the condensatg(x,t) =Ae"" is an equi- background radiatiofFig. 1(b) and ¥c)]. This intermediate

librium solution of Eq.(23). However, since the nonlinearity stage has previously been observed for other nonlinear

i_s focusing, this spatially _homogeneous solutiqn is m‘,)du'aSchr"cdinger equations in one and two spatial dimensions
tionally unstable. Indeed, if we expagidaround this solution [10,24, and it was shown in Ref24] that this coarsening

in a series of the form process follows a self-similar dynamics. The dynamical ex-
ponents of these processes are not very well understood at
P(x, )= A+, gelettika | glAt this point, however. During the final stage of the dynamics,

the surviving large-scale soliton interacts with the small-
scale fluctuations. As time increases, the amplitude of the
soliton increases, while the amplitude of the fluctuations de-
o?=AK>—Kk*. creasednote the changes from Fig.(d to 1(d)]. In this
stage of the dynamics, the ma@ number of particlgsis
Thus, the condensate is stable fér>A, and unstable for gradually transferred from the small-scale fluctuations to the
k?<A. The most unstable wave numberkis= \A/2. large-scale coherent soliton. For a finite number of mages
We choose to present in this paper the following set ofthe dynamics eventually reaches a “stationary” state whose
numerical simulations: starting with the spatially homoge-properties are very well described by the mean-field statisti-
neous solutiony(x,t=0)=A (with A of order 1, we add cal equilibrium theory developed above, as we shall demon-
initially a small spatially uncorrelated random perturbation,strate. This implies that the long-time state may, in fact, be
so that the modulational instability develops. Although wethought of as a “statistical attractor,” in the sense that, ac-
have checked that the long-time behavior of the solution igording to the statistical theory, it corresponds to a maxi-
not dependent on the initial conditions, except through themizer of the entropy functiondll0) subject to the dynamical
initial and conserved values® andH® of the particle num-  constraints(12). Note that because the dynamics is revers-
ber and the Hamiltonian, this class of initial conditions isible, intermediate states such as those in Fity) theoreti-
particularly convenient for our purposes. For example, bycally could still be attained even after the statistical equilib-
considering different realizations of the initial random per-rium state has been reached. In fact, a numerical simulation
turbation, we may perform an ensemble average over differstarting from the state in Fig.(d) but with the time step
ent initial conditions for a giverA (and therefore for fixed taken negative shows the reverse dynamics up to round-off
N° and H°. Such initial conditions provide interesting errors, where one can observe the decomposition of the so-
analogies to standard fluid turbulence problems, as we willution into an array of solitonlike structures as in Figa)lfor
emphasize in the conclusion. intermediate times, while in the limit— — o an equilibrium
The spatially uniform initial conditions we consider here state such as the one of Figdlis once again attained.
may be thought of as being far away from the expected sta- The tendency of the solution of the NLS systé3) to
tistical attractor described by the maximum entropy probabil-approach the statistical equilibrium state is also captured in
ity density p(™. Indeed, the spectrum of the condensate dif-the evolution of the kinetic and potential energiese Fig.
fers considerably from the predicted statistical equilibrium4). While the sum of these two quantities, which is the
spectrum(22). The numerical simulations that we perform Hamiltonian, remains constant in time, we observe that the
here provide strong evidence that the solutions of the speddnetic energy increases monotonically, and, consequently,
trally truncated NLS system converge in the long-time limitthe potential energy decreases monotonically as time goes
to a state that may be considered as statistically steady. Oon. The initial time period where these quantities evolve
main purpose here is to compare the statistical properties ahost rapidly (say t<<2000Q corresponds to the first two
this long-time state with the predictions of the mean-fieldstages of the dynamics described above, in which the modu-
statistical theory that was developed and analyzed above. lational instability creates an array of solitonlike structures
addition, we shall also investigate the following questionswhich then coalesce into a single coherent soliton. After the
concerning the nature of the evolution leading from the ini-coalescence has ended, the kinggiotentia) energy in-
tial state to the long-time statistical equilibrium staté) creasegdecreasesvery slowly to its saturation value. In the
How long does it take for the system to reach the vicinity ofprocess, fluctuations develop on finer and finer spatial scales,

we obtain the dispersion relation:
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' ' ' tial) energy of the numerical solution is bounded abdve-
30 L i low) by the estimate based on the statistical theory, but as
bt PP e expected, the solution does not attain the theoretically pre-
dicted value for a finite number of modes. This is because,
for the spectrally truncated system, a finite amount of the
particle number and the potential energy integrals are actu-
ally contained in the small-scale fluctuatiofeccording to
the statistical theory, the contribution of the fluctuations to
-10 T these quantities should l&(1/n), wheren is the number of
spectral modes—this follows from E2) [15]]. It may be
checked that the spatial resolution is improvee., when the
30 | T bty " VPRI number of mode® is increased, while the length of the
spatial interval, and the valuds® and N° of the Hamil-
tonian, and the particle number are held fixettie contribu-
. 1 ‘ tions of the fluctuations to the particle number and the po-
300000 600000 900000 tential energy decrease, and the saturation values of the
time kinetic and potential energy attained in the numerical simu-
lations come closer to the predicted statistical equilibrium
potential(middle curvé energies. The kinetic energy is increasing averages of these quantities. We expect that the contributions

and consequently the potential energy is decreasing, in accord Witﬂf the fluctuations .to the .partlcle numbe-r and th% potential
the statistical theory developed above. The lower line indicates th@'?)ergy should vanish entirely as—c for fixed L, H", and
potential energy of the solitary wave that contains all the particled\ » @nd that the predicted statistical equilibrium values for
of the system. The curves are obtained from an ensemble avera$d® mean kinetic energy and potential energy should be ap-
over 16 initial conditions fom=512. The length of the system is Proached very closely by the numerical solution in the long-
L =128, and theconservejivalues of the particle number and the time limit when the number of modes in the simulation is
Hamiltonian are, respectivelyy°=20.48 andH®= —5.46. sufficiently large.

Figures 1 and 4 clearly illustrate that for a givéarge
number of modes, the dynamics approaches a long-time
State consisting of a large-scale coherent soliton, which ac-
ounts for all but a small fraction of the particle number and
e potential energy integrals, coupled with small-scale ra-

10 E

energy

FIG. 4. Time evolution of the kineti¢upper curvg¢ and the

which accounts for the gradual increase of kinetic energy
while the surviving soliton slowly absorbs mass from the
background fluctuations, thereby increasing the magnitude q

the contribution to the potential energy from the COheremdiation, or fluctuations, which account for the kinetic energy

igﬂg:gr]% Ir !(Retcgsltor?ggme (I)'fn:;]t’e thoire?rg;?é:é? Sowﬁirlleatlﬁéthat is not contained in the coherent structure. Forni2a
fluctuations make a sjubs{antial cl:Dontribution t(?}fc’he kineticsuggeStS’ in fact, that in the long-time limit, the coherent
energy structure, and the background radiation exist in baldioce

' - . I in statistical equilibriumh with each other, through the equi-
The mean-field statistical theory provides a prediction for__ .- N ' .
the expected value of the kinetic enerdy, in statistical partition of kinetic energy of the fluctuations. In Fig. 5, we

; ; ]2
equilibrium for a given number of modeas This is (K,) display the particle number spectral dengif|”, where

: . is the Fourier transform of the fielg, as a function of the
— (n) 0_ g* _ g ' . ’
=Kn((¢")) + H'=H{, which follows directly upon mul- \\4ye numbek for a long-time run. To obtain this spectrum,

tiplying Eq. (22) by k} and summing ovej. The firsttermin  \ye have performed both an ensemble average over 16 initial
this expression fo(Kp) is the contribution to the mean ki- ¢onditions, and a time average over the final 1000 time units
netic energy from the coherent soliton structure which mini-for each run. For comparison, we have displayed in this fig-
mizes the HamiltoniarH, subject to the particle number e the spectrum of the solitary waw@4) whose particle
constraintN,=N°. The second term ifK) is the contribu-  nymber is equal to the conserved value of the particle num-
tion to the expectation of the kinetic energy from the fluc-per for the simulation. Observe that there is both a qualitative
tuations.Hy is the minimum value ofH,, given the particle and quantitative agreement between the spectrum of this
number constraint. Aa—c, we see thatK) converges to  solitary-wave solution and the small wave-number portion of
K(4”™)+H°—H*, wherey” is the minimizer of the Hamil-  the spectrum arising from the numerical simulations. This is
tonian H given the particle number constraitt=N° for  in accord with the statistical equilibrium theory, which pre-
continuous NLS system on the intervid, L], and H*  dicts that the coherent structure should coincide with this
=H(¢™). ApproximatingK(¢”) andH(¢™) by K(¢) and  solitary wave(in the limit n—o). For larger wave numbers,
H(¢), where¢ is the solitary wave on the real line whose the spectrum of the numerical solution is dominated by the
particle number iN°, we obtain for the setting considered in small-scale fluctuations. We have indicated on the graph the
Fig. 4 the largen estimatesK,({#M))~9.2, HO—H?* large wave-number spectrum predicted by the statistical
~22.4, and therefore(K,)~31.6. Also, according to the theory. This prediction comes from the second expression on
statistical theory, the expected valy®,) of the potential the right hand side of Eq22), except that we have approxi-
energy in statistical equilibrium should convergenas~ to ~ mated the minimum valuél} of the Hamiltonian for the

O (4”). Approximating this by®(¢), with ¢ as above, we spectrally truncated system withmodes by the Hamiltonian
have the estimaté® ,)~ —37.1, which we expect to be ac- H* of the above-mentioned solitary wave solution for the
curate for sufficiently large. We see that the kinetipoten-  continuum system. Not only is there a good qualitative
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° i Su(#™)= 2 K"y (25
£ 10° L | for m a positive integer. For the periodic boundary condi-
2 E tions considered here, the indgxanges from—n/2 to n/2
8 Fluctuations and the wave numbdy; is given bykj=2j/L. Note thatS,
o is the kinetic energy. In generaf, () is the squared.?
£10° | . norm of themth derivative of the fields. The growth ofS,,
§ ] in time is an indicator of the development of fluctuations of
s the field on fine spatial scales, which in turn, points to the
& existence of a cascade of kinetic energy from large to small
10 F E scales. In addition, we may consider ti&} gives an esti-
mate of the evolution of the typical wave numli&(t) of the
fluctuations since, roughly speaking, we can estingie
10°° - L 1 ~K(t)2m D,
10° 10 10 The mean-field statistical theory provides the following
Wave number k prediction for the expectation &, in statistical equilibrium
for a given number of modes
FIG. 5. Particle number spectral denditg|? as a function ok n/2
for t=1.1x 10° unit time (upper curve The lower curve(smooth (S = 2 k_2m|<¢.>|2
one is the particle number spectral density for the solitary wave i==nh2 ! !

that contains all the particles of the system. The straight line drawn

for largek corresponds to the statistical predicti@®) for the spec- 27\ 2m-DHO_* n'2 ime1)

tral density for large wave numbers. The numerical simulation has + T T < " J , (26
been performed withn=512, dx=0.25, N°=20.48 andH°= J==n

—5.46.

where we have used E(R2). The first term is the contribu-
tion to (S;,) from the mean fieldthe coherent structureand
agreement with the predicted equipartition of kinetic energythe second term is the contribution from the fluctuations.
among the small-scale fluctuatiofise., thek 2 slope, but  Note that for a finite number of modes (S, is finite for
there is also an excellent quantitative agreement between tfe@chm, but only (S;), which is the mean of the kinetic
numerical results and the formul@2) for large k. Let us  energy, remains finite in the continuum limit—c. The
mention that the long-time spectrum obtained from a singlg@livergence of S;,) for m=2 comes from the second expres-
simulation starting from a given initial condition, and with- Sion on the right hand side of E6) (i.e., from the fluc-
out time averaging, though similar to the spectrum displayeduations, which is of the ordem*™ 1) asn—. For ex-
in Fig. 5, is much noisier. ample, whenm=2 this expression is found to be?(H°
As we have mentioned above, the numerical spectrunt Hy)(n?+3n+2)/(3L?), and we have the following for-
shown in Fig. 5 arises from an ensemble average over longiula for (S;) for a given number of modes in the spec-
time and over different initial conditionsvith the same val-  trally truncated NLS system:
ues of the particle number and the Hamiltoniadxow, under

2
the assumption that the dynamics is ergodic, such an average B nz (gt m?(H°=H})(n*+3n+2)
should coincide with an average with respect to the micro- <SZ>_J-=,n,2 i) 3L% :
canonical ensemble for the spectrally truncated NLS system (27

[19]. Since it can be shown that the the mean-field statistical
ensembles™ constructed above concentrate on the micro- Based on the considerations of the previous paragraph, we
canonical ensemble in the continuum limit- (see Theo- expect that the numerical simulations for a given number of
rem 3 of Ref[15]), it should be that averages with respect tomodesn will reveal that the quantitie§;, are bounded and
p"™ for largen agree with the ensemble average of the nu-saturate whet—, but that the larger the number of modes
merical simulations over initial conditions and time, assum-n, the larger the saturation value 8f, (at least form=2).
ing ergodicity of the dynamics. While we have not shownFigure 6 shows the evolution in time & for different val-
that the dynamics is ergodic, we have, in fact, demonstratedes ofn (with the sameL, N° andH®). We observe that
what we believe to be a convincing agreement between theaturation does indeed occur for a finite number of modes.
predictions of the mean-field ensemb|&® and the results Also, asn increases, the saturation value increases, as does
of direct numerical simulations. In an investigation currentlythe time required to reach saturation. By approximating the
underway[23], we are monitoring the probability density sum in Eq.(27) by [”..| ¢,,%dx and approximatindd} by
functions of the Fourier coefficients, andv, , and we have H(¢), where ¢ is the solitary wave on the whole real line
observed that in the long-time limit, they closely fit a Gauss-whose particle number is equal to the conserved particle
ian profile, which is also in agreement with the statisticalnumber for the simulations treated in Fig. 6, we obtain the
theory. following estimates(S,)~27.1, 45.5, 97.6, and 170.3 for
We have also monitored the time evolution of the quanti-n=48, 64, 96, and 128, respectively. Note that these esti-
ties mates for(S,) agree closely with the observed saturation
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FIG. 6. S; as a function of time fon=48, 64, 96, and 128 FIG. 7. S, as a function of time fom=2, 3, and 4(lower to
(lower to upper curve The simulations are all performed for a box upper curvé The growth of these quantities is indicative of the

of sizeL=38.4, for N°=9.6 andH®=—3.2. The curves are ob- development of fluctuations on fine spatial scales as time increases.
tained from an ensemble average over 16 runs for eaBlaturation  The S have been calculated for 512 modes with=12.8, HO=
is reached fom=48 and 64, while it is almost obtained for  _ 426 anddx=0.1, with an ensemble average over 16 runs. They

creases, and the saturation value also increases. The inset shows the

kinetic energyS; as a function of time for the same valuesofAs
opposed tdS,, the saturation 0§, seems to be occurring at about
the same rate for each. The saturation value 08, increases

Smth(mfl)V’ (28)

slightly asn increases, but it remains bounded above by the statisWith »=0.25-0.01. This behavior is observed forlarge

tical equilibrium value(S,). enough that the coalescem_:e process has. en'ded. It corre-
sponds, therefore, to the regime where the kinetic energy has
essentially reached saturation. Analytical results provide
Bower—law upper bounds for the growth in time of higher
order Sobolev norms for solutions of NLS equatidis$].

The exponents in these estimates are larger than those that

close to the theoretical estimate of 97.6. Fer 128, S, is : .
: : . ' : . . we have observed numerically. Thus, one might wonder
still growing considerably at the final time of the simulation, o ; . .
whether the existing analytical techniques could be refined to

and so we cannot make comparisons with the statistical pre-

- . ) . R obtain tighter estimates on the growth of these norms.
d|ct|on_ for(S,) at_th|s_ point. The inset in F_|g. 6 shows the In Ref. [14], Pomeau has developed a weak turbulence
evolution of the kinetic energ$, as a function of time for

n=48, 64, 96, and 128. We see that the kinetic energy sat theory for the cubic defocusing NLS equation in two spatial

rates nearly at the same rate for all of the values gbn- LHlmenslons(or highep. This theory estimates the evolution

sidered here. Clearlys, remains bounded asincreases. As of the typical wave numbeK(t) of the fluctuations as time
. ) B . S : increases. The estimate comes from a dimensional analysis
discussed abovés, ), the statistical equilibrium value of of

e f th k [ i f he NL
the mean Kinetic energy, converges ms»o to K(¢*) of the weak turbulence equation deduced from the S

+H%—H(y”), wherey” is the solitary wave that minimizes equation. Describing the fluctuation fielt as

the HamiltonianH for the given particle numbex? for the

NLS system on the intervdD, L]. Once again, approximat- Sih= if dk( 81 ,) Y2l (kx—wv

ing 4 by the solitary wavep on the whole real line that JL ’

minimizes H given the particle number constraiht=N°,

we may estimate the limiting valu¢S;) by K(#)+H?  the relation between the energyand the wave numbeis

—H(¢), which is~7.3 for the valueN®=9.6 considered in called the spectrum of excitatiofwe refer the reader to Ref.

Fig. 6. This estimate provides an upper bound on the saturgi4] for detail9. In Ref.[14], it has been shown that if this

tion values ofS; observed in the simulations, and as thewave numberK(t) is in the range where the spectrum of

number of modes in the simulations increas®ssaturates excitations obeyso(k)~k?, which means that the fluctua-

closer to this approximation of the statistical equilibriumtions behave essentially like free particles, then, assuming

value. that there is two-wave resonance in the weak turbulence ap-
When the spatial resolution of the numerical simulationsproximation, it follows thak (t) ~ (et)%. Here, e is the spa-

is improved(i.e., whenn is increased with. fixed), the quan-  tial energy density of the fluctuatiofiso e~ (H°—H*)/L].

tities S, are typically seen to exhibit power-law growth in Remarkably, this result is in good agreement with the dy-

time before reaching saturatigeee Fig. 7. Indeed, we ob- namical exponent that we have observed in our numerical

serve form=2, 3, and 4 tha&,, obeys the following power- simulations. We caution that the analysis in Rdf4| was

law dynamics: carried out for the cubic defocusing NLS equation in two

values ofS, in the numerical simulations far=48 and 64.
Forn=96, saturation has not quite yet been reached, but th
value of S, at the final timet=3x10 is still reasonably
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spatial dimensions, and, therefore, does not immediately gc ' '
over to the case under consideration here. In fact, strictly -
speaking, in the regimes(k)=k?, the resonance of two
waves cannot hold in one spatial dimension. However, we
conjecture that, due to the interactions with the Iarge-scaleg
coherent structure, the resonance may in fact be meaningfug
in the present setting. Therefore, we believe that a dimen-&
sional weak turbulence analysis along the lines of that devel-£
oped in Ref[14] may be relevant. We do not see immedi-
ately how to carry out such an analysis, but we plan to
explore this possibility in the future. Interestingly, for the
NLS system, the approximatian(k) =k? is usually valid in 100 L _
the limit k>1. In the numerical simulations, the finite num-
ber of modes provides an ultraviolet cutoff since the largest
wave number of the system is

-4
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- FIG. 8. The particle number spectral density for512 and
dx=0.1 (thusL=51.2 at unit timet=5x 10°. The coherent soli-
ton structure already accounts for almost the entire number of par-

?X we h?VIe Con§|dereq lf:]tou; Elmula'lt!ong. FO& l.?rgg'thf ticles of the system, but the system has not yet reached statistical
ree particle regime might not be realized, and 1t 1S no Sur'equilibrium. The initial noise level is still present for large wave

prlsmg in this case that the power-law behavior is not Ob'numbers k=20), while at smaller wave numbers, one can recog-
served.

) ) ) nize both the solitonlike structure and a fluctuation spectrum fol-
The previous considerations allow us to attach a morgyying approximately &2 law. The spectrum has been obtained

precise meaning to what we have been referring to as thgy an ensemble average over 16 initial conditions and a time aver-
transitory dynamics and the equilibrium state for the specage over the final 10 unit times.

trally truncated NLS system. For sufficiently small grid sizes

dx, one may consider tha&,, grows according to the power following scenario for the spectrally truncated NLS dynam-
law (28) until the timet, at which the typical wave number ics: as time increases, smaller and smaller scales are ex-
K(t) reaches the largest available wave numkgy,. This  plored, until eventually all available modes are excited.
time t,, (which appears to scale @& for fixed L, N°, and  However, at any given time after the coalescence process has
HO defines a crossover between the transitory regime iended, the system may be considered as being in statitistical
which the solution evolves towards the spectr(28), and  equilibrium over all the modes that have been excited up to
the statistical equilibrium regime where the system investithat point. Definingk,(t) to be the largest wave number
gates its phase space according to the probability densityat the system has reached up to titpwe then obtain from
p™. Notice that in the continuum limin—c, t, diverges, Eq. (28) thatka(t)~ ()" if kyaxiS large enough. Now if

so that a continuous NLS system cannot reach statisticale denote byn(t) the number of modes that have been ex-
equilibrium in finite time. Such conjectures are supported bycited up to timet, then based on our previous arguments, we
the investigation of the dynamics of the particle numberhave thatk,,,(t)=mn(t)/L. Using this result and the assump-
spectrum during the intermediate time regime after which theion that the system is in statistical equilibrium over all the
coarsening process has ended, but before the final statistio@lodes excited up to that time, we obtain the following esti-
equilibrium state has been reached. Note that the statisticahate for the spectrum of the fluctuations at titne

equilibrium model does not provide predictions about the

We remark that we have been able to recognize the powe
law growth in time of the quantitieS,, only for the smallest

time evolution of the spectrum, because it is strictly an equi- Sunl? HO—H* 7€ 29
librium theory. In fact, based on statistical theory alone, (lound*)~ nk?  t7%2 (29

nothing can be said about the path that the system follows

from the statistically unlikely initial condition to the final for |k|<kga(t). The total particle number spectrum at time

statistical equilibrium state. Figure 8 displays the particleof course, has to be taken as the sum of the spectrum corre-

number spectrum at=5x 10° unit time for a spatial resolu- sponding to the large-scale coherent struct(which de-

tion of dx=0.1. creases exponentially for large and the spectrum of the
This figure illustrates that the system investigates smallefluctuations.

and smaller scales as time increases. Indeed, the particle We emphasize that the derivation of E§9) describing

number spectrum for the mod&s= 20 is still at the level of the particle number spectrum at an intermediate tiroeu-

the initial noise. Thus, the smallest scales available to theially depends on the assumption that the system evolves in

system have yet to be excited at the tilve5x10°. For  such a way that it is nearly in statistical equilibrium over all

larger scales, however, one can recognize both the spectrutime modes that have been investigated up to that time. Figure

corresponding to the coherent soliton structure, and the flu®B has motivated us to make this assumption, but clearly fur-

tuation spectrum which appears to follow, at least approxither numerical investigations should be carried out in order

mately, the equilibrium law¢,|?k~2. This suggests the to test the validity of this hypothesis, as well as the accuracy



1538 RICHARD JORDAN AND CHRISTOPHE JOSSERAND PRE 61

of formula(29). Nevertheless, we find it quite interesting that lence analysis in the present context, that is, for one-
the fluctuation spectrunmi29) agrees with the prediction in dimensional(1D) nonintegrable focusing NLS equations in
Ref.[14], which was derived from a dimensional analysis ofthe absence of collapse.

the weak turbulence equations for the NLS system. We would like to point out certain analogies between the
dynamics of the NLS systems we have considered here, and
V. DISCUSSION AND CONCLUSION the dynamics of a turbulent 2D Navier-Stokes fluid. A

) prominent feature of large Reynolds number 2D Navier-

The primary purpose of the present work has been to tesfiokes turbulence is the formation of quasisteady coherent
the predictions of a mean-field statistical model of self-yortex structureg1-3]. Starting from generic initial condi-
organization in a generic class of nonintegrable focusingjons, the evolution of the fluid is characterized by the for-
NLS equations defined by Ed1). This statistical theory, mation of a collection of large-scale vortices, and the subse-
which has been summarized above, was originally develope&uem merger or coalescence of like-signed vort[@sThe
and analyzed in Ref15]. In fact, we have demonstrated & |5rge-scale soliton structures iffocusing, nonintegrabje
remarkable agreement between the predictions of the statigy g play a role similar to that of the vortices in 2D Navier-
tical theory and the results of direct numerical simulations ofsiokes turbulence. Indeed, we have observed in our numeri-
the NLS system. There is a strong qualitative and quantitags| simulations of NLS the formation of an array of soliton-
tive agreement between the mean field predicted by the stgye structures which eventually coalesce into a single
tistical theory and the large-scale coherent structure observegrsistent soliton of large amplitude. Another characteristic
in the long-time numerical simulations. In addition, the sta-feature of turbulence in two dimensions is the presence of a
tistical model accurately predicts the long-time spectrum ofyya| cascadé25]. There is a direct cascade of enstrophy to
the numerical solution of the NLS system. The main conclu-smga)| scales and an inverse cascade of energy to large scales.
sions we have reached af#&) the coherent structure that ag pointed out long ago by Kraichn4@5], the existence of
emerges in the asymptotic time limit is the solitary wave thatne inverse cascade of energy is indicative of the formation
minimizes the system Hamiltonian subject to the particleof 5 |arge-scale structure in the system. In NLS, there is also
number constraii=N°, whereN® is the given(conservell a3 dual cascade. Indeed, our numerical simulations, which
value of N; and (2) the difference between the conserved correspond to injecting as initial conditions particle number
Hamiltonian and the Hamiltonian of the coherent state rexpg energy at a given scaleassociated with the modula-
sides in Gaussian fluctuations equipartitioned over wavgional instability, have revealed that there is a direct transfer
numbers. o . ~of kinetic energy to spatial scales smaller thanwhile the
_ While the statistical model we have developed is an equiparticle number is transferred to large scales. While the 1D
librium theory, and, strictly speaking, only provides predic- N5 equation is a much simpler system to investigate, both
tions concerning the long-time statistical properties of thenaytically and numerically, than a turbulent 2D fluid sys-
NLS system, we have combined this theory with insightem "we believe that the understanding of the coalescence
gained from numerical simulations to paint a picture of thegng transfer processes in this generic model of nonlinear

nature of the dynamics leading up to the statistical equilibyaye turbulence might provide important insight into the
rium state. Specifically, the simulatiortand, in particular, nature of turbulent systems in general.

the results shown in Fig.)8ndicate that evolution is such
that, at a given time after the coarsening process has ended,
the system is nearly in statistical equilibrium over all the
modes that have been excited by that time. From this obser- It is a pleasure to thank Robert Alimgren, Shiyi Chen, Leo
vation and the fact that the quantitiSs, defined in Eq(25) Kadanoff, Yves Pomeau, Bruce Turkington, Craig Zirbel,
are seen to exhibit the power-law growth in time accordingand Scott Zoldi for valuable discussions and suggestions.
to Eq. (28), we have arrived at predictiof29) for the time  R.J. acknowledges support from the NSF. The research of
dependence of the spectrum of the fluctuations. As we hav€.J. was supported by the ASCI Flash Center at the Univer-
mentioned above, results such as E@8) and (29 have sity of Chicago under DOE Contract No. B341495. Much of
previously been derived by Pomefl4] from weak turbu- the research described in this manuscript was carried out
lence arguments, but for the defocusing cubic NLS equatiomvhile the authors were affiliated with the Center for Nonlin-
in a bounded two-dimensional spatial domain. We believeear Studies at Los Alamos National Laboratory. While at Los
that it would be an interesting exercise to check whetheAlamos, the research of both authors was supported in part
these formulas can be derived directly from a weak turbuby the DOE.
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