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Self-organization in nonlinear wave turbulence
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We present a statistical equilibrium model of self-organization in a class of focusing, nonintegrable nonlin-
ear Schro¨dinger~NLS! equations. The theory predicts that the asymptotic-time behavior of the NLS system is
characterized by the formation and persistence of a large-scale coherent solitary wave, which minimizes the
Hamiltonian given the conserved particle number~L2-norm squared!, coupled with small-scale random fluc-
tuations, or radiation. The fluctuations account for the difference between the conserved value of the Hamil-
tonian and the Hamiltonian of the coherent state. The predictions of the statistical theory are tested against the
results of direct numerical simulations of NLS, and excellent qualitative and quantitative agreement is dem-
onstrated. In addition, a careful inspection of the numerical simulations reveals interesting features of the
transitory dynamics leading up to the long-time statistical equilibrium state starting from a given initial
condition. As time increases, the system investigates smaller and smaller scales, and it appears that at a given
intermediate time after the coalescense of the soliton structures has ended, the system is nearly in statistical
equilibrium over the modes that it has investigated up to that time.

PACS number~s!: 05.20.2y, 05.45.2a, 52.35.Mw
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I. INTRODUCTION: NLS AND SOLITON TURBULENCE

A fascinating feature of many turbulent fluid and plasm
systems is the emergence and persistence of large-sca
ganized states, or coherent structures, in the midst of sm
scale turbulent fluctuations. A familiar example is the form
tion of macroscopic quasisteady vortices in a turbulent lar
Reynolds-number two-dimensional fluid@1–3#. Such
phenomena also occur for many classical Hamiltonian s
tems, even though the dynamics of these systems is form
reversible@4#. In the present work, we shall focus our atte
tion on another class of nonlinear partial differential equ
tions whose solutions exhibit the tendency to form persis
coherent structures immersed in a sea of microscopic tu
lent fluctuations. This is the class of nonlinear wave syste
described by the well-known nonlinear Schro¨dinger ~NLS!
equation:

i ] tc1Dc1 f ~ ucu2!c50, ~1!

wherec(r ,t) is a complex field andD is the Laplacian op-
erator. The NLS equation describes the slowly varying en
lope of a wave train in a dispersive conservative system
models, among other things, gravity waves on deep w
@5#, Langmuir waves in plasmas@6#, pulse propagation along
optical fibers @7#, and superfluid dynamics@8#. When
f (ucu2)56ucu2 and Eq.~1! is posed on the whole real lin
or on a bounded interval with periodic boundary conditio
the equation is completely integrable@9#. Otherwise, it is
nonintegrable.

The NLS equation~1! may be cast in the Hamiltonia
form i ] tc5dH/dc* , wherec* is the complex conjugate o
the fieldc, andH is the Hamiltonian:
PRE 611063-651X/2000/61~2!/1527~13!/$15.00
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H~c!5E @ u¹cu22F~ ucu2!#dr . ~2!

Here, the potentialF is defined via the relationF(a)
5*0

af (y)dy. The dynamics~1! conserves, in addition to the
Hamiltonian, the particle number

N~c!5E ucu2dr . ~3!

We shall assume throughout that Eq.~1! is posed in a
bounded one-dimensional interval with either periodic or h
mogeneous Dirichlet boundary conditions. We restrict o
attention to attractive, or focusing, nonlinearitiesf satisfying
f (a)>0 and f 8(a).0 for a>0, such that the dynamics de
scribed by Eq.~1! is nonintegrable, free of wave collaps
and admits stable solitary-wave solutions. The dynamics
der these conditions has been referred to as soliton tu
lence @10#. Such is the case for the important power-la
nonlinearities,f (ucu2)5ucus, with 0,s,4 ~in the periodic
case,sÞ2 for nonintegrability! @11,12#, and also for the
physically relevant saturated nonlinearitiesf (ucu2)
5ucu2/(11ucu2) and f (ucu2)512exp(2ucu2), which arise
as corrections to the cubic nonlinearity for large wave a
plitudes@13#.

Equation~1! in one spatial dimension has solitary-wav
solutions of the formc(x,t)5f(x)exp(il2t), wheref satis-
fies the nonlinear eigenvalue equation:

fxx1 f ~ ufu2!f2l2f50. ~4!

It has been argued@10,14# that the solitary-wave solution
play a prominent role in the long-time dynamics of Eq.~1!,
in that they act as statistical attractors to which the sys
relaxes. The numerical simulations in Ref.@10#, as well as
1527 ©2000 The American Physical Society
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1528 PRE 61RICHARD JORDAN AND CHRISTOPHE JOSSERAND
the simulations we shall present within this paper, supp
this conclusion. Indeed, it is seen that for rather generic
tial conditions the fieldc evolves, after a sufficiently long
time, into a state consisting of a spatially localized coher
structure, which compares quite favorably to a solution
Eq. ~4!, immersed in a sea of turbulent small-scale turbul
fluctuations. At intermediate times the solution typically co
sists of a collection of these solitonlike structures, but as t
evolves, the solitons undergo a succession of collisions
which the smaller soliton decreases in amplitude, while
larger one increases in amplitude. When solitons collide
interact, they shed radiation, or small-scale fluctuations.
interaction of the solitons continues until eventually a sin
soliton of large amplitude survives amid the turbulent ba
ground radiation. Figure 1 illustrates the evolution of t
solution of Eq. ~1! for the particular nonlinearityf (ucu2)
5ucu and with periodic boundary conditions on the spat
interval @0, 256#.

In modeling the long-time behavior of a Hamiltonian sy
tem such as NLS, it seems natural to appeal to the meth
of equilibrium statistical mechanics. That such an appro
may be relevant for understanding the asymptotic-time s
for NLS has already been suggested in Ref.@10#, although
the thermodynamic arguments presented by these author
rather formal and somewhat incomplete. Motivated in p
by the ideas outlined in Ref.@10#, Jordanet al. @15# have

FIG. 1. Profile of the modulusucu2 at four different times for the
system~1! with nonlinearity f (ucu2)5ucu and periodic boundary
conditions on the interval@0, 256#. The initial condition isc(x,t
50)5A, with A50.5, plus a small random perturbation. The n
merical scheme used to approximate the solution is the split-
Fourier method. The grid size isdx50.125, and the number o
modes isn52048. ~a! t550 unit time: Due to the modulationa
instability, an array of solitonlike structures separated by the typ
distancel i52p/AA/254p is created;~b! t51050 unit time: The
solitons interact and coalesce, giving rise to a smaller numbe
solitons of larger amplitude;~c! t515 050: The coarsening proces
has ended. One large soliton remains in a background of sm
amplitude radiation. Notice that fort555 050 time units@Fig. 1~d!#,
the amplitude of the fluctuations has diminished while the am
tude of the soliton has increased.
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recently constructed a mean-field statistical theory to cha
terize the large-scale structure and the statistics of the sm
scale fluctuations inherent in the asymptotic-time state of
focusing nonintegrable NLS system~1!. The main prediction
of this theory is that the coherent state that emerges in
long-time limit is the ground-state solution of Eq.~4!. That
is, it is the solitary wave that minimizes the HamiltonianH
given the constraintN5N0, whereN0 is the initial and con-
served value of the particle number integral. This predict
is in accord with previous theories@10,14#, but the approach
taken in Ref.@15# is new, and provides a definite interpret
tion to the notion set forth in the earlier works that it
‘‘thermodynamically advantageous’’ for the NLS system
approach a coherent solitary-wave structure that minimi
the Hamiltonian subject to a fixed particle number. The s
tistical theory also gives predictions for the particle numb
spectral density and the kinetic energy spectral density
least for a finite-dimensional spectral truncation of the N
dynamics~1!. In particular, it predicts an equipartition o
kinetic energy among the small-scale fluctuations.

In the present work, we shall begin with a brief review
this statistical theory. The predictions of the statistical the
will then be compared in detail with the results of dire
numerical simulations of the NLS system. In addition, w
will also closely examine the evolution of the particle num
ber spectrum in our numerical simulations, as well as
dynamics~of finite spectral approximations! of the integrals
Sm(c)5* uDmcu2dx, whereDm denotes themth derivative
with respect to the spatial variable. The statistical mod
being strictly an equilibrium theory, does not give pred
tions concerning the finite time dynamics of these quantit
However, we shall see that it does give accurate estimate
the long-time saturation values of these quantities for a fin
dimensional spectral approximation of the NLS dynamics.
addition, the numerics indicate that the integralsSm exhibit
power law growth in time with an exponent depending onm,
in accord with predictions of the weak turbulence theory
Pomeau@14#, and also with existing theoretical upper boun
on the growth of higher order Sobolev norms of solutions
NLS equations@16#. The power-law growth of these quant
ties is indicative of the existence of an energy cascade f
low modes to high modes.

II. MEAN-FIELD STATISTICAL MODEL

In order to develop a meaningful statistical theory, w
begin by introducing a finite-dimensional approximation
the NLS equation~1!. To fix ideas and notation, we wil
consider the NLS system with homogeneous Dirich
boundary conditions on an intervalV of lengthL. Our meth-
ods can easily be modified to accommodate other bound
conditions, and we will consider below the predictions of t
theory for periodic boundary conditions, as well. In additio
our techniques can easily be extended to higher dimensi
but we wish to concentrate on the one-dimensional case
ease of presentation.

Let ej (x)5A2/L sin(kjx) with kj5p j /L, and for any
function g(x) on V denote bygj5*Vg(x)ej (x)dx its j th
Fourier coefficient with respect to the orthonormal ba
ej , j 51,2,... . Define the functions u(n)(x,t)
5S j 51

n uj (t)ej (x) andv (n)(x,t)5S j 51
n v j (t)ej (x), where the
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real coefficientsuj ,v j , j 51,...,n, satisfy the coupled system
of ordinary differential equations

u̇ j2kj
2v j1@ f „~u~n!!21~v ~n!!2

…v ~n!# j50,
~5!

v̇ j1kj
2uj2@ f „~u~n!!21~v ~n!!2

…u~n!# j50,

Then the complex functionc (n)5u(n)1 iv (n) satisfies the
equation

ic t
~n!1cxx

~n!1Pn
„f ~ uc~n!u2!c~n!

…50,

wherePn is the projection onto the span of the eigenfun
tions e1 ,...,en . This equation is a natural spectral appro
mation of the NLS equation~1!, and it may be shown that it
solutions converge asn→` to solutions of Eq.~1! @11,17#.

For givenn, the system of equations~5! defines a dynam-
ics on the 2n-dimensional phase spaceR2n. This finite-
dimensional dynamical system is a Hamiltonian system, w
conjugate variablesuj andv j , and with Hamiltonian

Hn5Kn1Qn , ~6!

where

Kn5
1

2 EV
@~ux

~n!!21~vx
~n!!2#dx5

1

2 (
j 51

n

kj
2~uj

21v j
2!, ~7!

is the kinetic energy, and

Qn52
1

2 E
V

F„~u~n!!21~v ~n!!2
…dx, ~8!

is the potential energy. The HamiltonianHn is, of course, an
invariant of the dynamics. The truncated version of the p
ticle number

Nn5 1
2 E

V
@~u~n!!21~v ~n!!2#dx5

1

2 (
j 51

n

~uj
21v j

2!, ~9!

is also conserved by the dynamics~5!. The factor 1/2 is
included in the definition of the particle number for conv
nience. The Hamiltonian system~5! satisfies the Liouville
property, which is to say that the measure) j 51

n dujdv j is
invariant under the dynamics@18#. This property together
with the assumption of ergodicity of the dynamics provi
the usual starting point for a statistical treatment of a Ham
tonian system@19#.

With the finite-dimensional Hamiltonian system in han
we now consider a macroscopic description in terms o
probability density r (n)(u1 ,...,un ,v1 ,...,vn) on the
2n-dimensional phase spaceR2n. We seek a probability den
sity that describes the statistical equilibrium state for
truncated dynamics. In accord with standard statistical m
chanics and information theoretic principles, we define t
state to be the densityr (n) on 2n-dimensional phase spac
which maximizes the Gibbs-Boltzmann entropy functiona

S~r!52E
R2n

r ln r)
j 51

n

dujdv j , ~10!
-

h

r-

l-

,
a

e
e-
s

subject to constraints dictated by the conservation of
Hamiltonian and the particle number under the dynamics~5!
@19,20#.

The usual canonical ensemble

r}exp~2bHn2mNn!,

results from maximizing the entropy subject to the me
constraintŝ Hn&5H0 and ^Nn&5N0, whereH0 andN0 are
the given values of the Hamiltonian and the particle numb
respectively, andb and m are the Lagrange multipliers to
enforce these constraints. However, it has been show
Refs.@15#, @21# that, for the focusing nonlinearities we con
sider here, the canonical ensemble is ill defined in the se
that it is not normalizable ~i.e., *R2n exp@2bHn

2mNn#) j51
n dujdvj diverges!. Thus, we are obliged to con

sider an alternative statistical equilibrium description of t
NLS system based on constraints other than those that
rise to the canonical ensemble. The key to constructing
appropriate statistical model is based on the observa
from numerical simulations that, for a large number
modesn, in the long-time limit, the field (u(n),v (n)) decom-
poses into two essentially distinct components: a large-s
coherent structure, and small-scale radiation, or fluctuatio
As time progresses, the amplitude of the fluctuations
creases, until eventually the contribution of the fluctuatio
to the particle number and the potential energy componen
the Hamiltonian becomes negligible compared to the con
bution from the coherent state, so thatNn andQn are deter-
mined almost entirely by the coherent structure. We ha
checked that this effect becomes even more pronoun
when the resolution of the numerical simulations is improv
~i.e., when the number of modes is increased with the len
L of the spatial interval fixed!. On the other hand, as th
fluctuations exhibit rapid spatial variations, the amplitude
their gradient does not, in general, become negligible in
asymptotic time limit. Consequently, the fluctuations c
make a significant contribution to the kinetic energy comp
nentKn of the Hamiltonian. This is illustrated in Fig. 2.

Denoting by ^uj& and ^v j& the means of the variable
uj and v j with respect to the yet to be determined e
semble r (n), we now identify the coherent state wit
the mean-field pair (̂u(n)(x)&,^v (n)(x)&)5@( j 51

n ^uj&ej (x),
( j 51

n ^v j&ej (x)]. The fluctuations, or small-scale radiatio
inherent in the long-time state then correspond to the dif
ence (du(n),dv (n))[(u(n)2^u(n)&,v (n)2^v (n)&) between the
state vector (u(n),v (n)) and the mean-field vector. The stati
tics of the fluctuations are encoded in the probability dens
r (n). Based on the considerations of the preceding paragr
and the results of the numerical simulations displayed
Figs. 1 and 2, it seems reasonable to conjecture that the
plitude of the fluctuations of the fieldc (n) in the long-time
state of the NLS system~5! should vanish entirely~in some
appropriate sense! in the continuum limitn→`. Thus we are
led to the following vanishing of fluctuations hypothesis:

E
V

@^~du~n!!2&1^~dv ~n!!2&#dx

[(
j 51

n

@^~duj !
2&1^~dv j !

2&#→0, as n→`. ~11!
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Here,duj5uj2^uj& represents the fluctuations of the Fo
rier coefficientuj about its mean valuêuj&, and similarly
for dv j . We emphasize that Eq.~11! is a hypothesis used t
construct our statistical theory, and not a conclusion dra
from the theory itself.

An immediate consequence of the vanishing of fluct
tions hypothesis is that forn sufficiently large, the expecta
tion ^Nn& of the particle number is determined almost e
tirely by the mean (̂u(n)&,^v (n)&). Furthermore, the
hypothesis~11! implies that for n large, the expectation
^Qn(u(n),v (n))& of the potential energy is well approximate
by Qn(^u(n)&,^v (n)&), which is the potential energy of th
mean. This may be seen by expanding the potentialF about
the mean (̂u(n)&,^v (n)&) in Eq. ~8!, taking expectations, an
noting that because of the vanishing of fluctuations hypo
esis ~11!, there holdsu^Qn(u(n),v (n))&2Qn(^u(n)&,^v (n)&)u
5o(1) as n→`. Notice, however, that the vanishing o
fluctuations hypothesis doesnot imply that the contribution

FIG. 2. Numerical simulation for the saturated nonlinear
f (ucu2)5ucu2/(11ucu2) and for periodic boundary conditions. Th
total number of modes isn51024 and the spatial grid size isdx
50.25, so that the length of periodic interval isL5256. Displayed
are the modulus of the fielducu2 ~first and second rows!, and the
modulus of the gradient of the fielducxu2 ~third row! at unit times
t530 000~left! and t5220 000~right!. The second row shows th
same results as the first row, except that the we have restricte
range on the vertical axis in order to focus in on the the fluctuati
of the field. Notice that the dynamics for this saturated nonlinea
is qualitatively similar to that for the power law nonlineari
f (ucu2)5ucu shown in Fig. 1: the long-time state consists of
large-scale coherent solitary wavelike structure interacting wit
sea of small-scale fluctuations~top row!. The typical amplitude of
the fluctuations of the field has decreased fromt530 000 to t
5220 000~second row!, while the amplitude of the coherent stru
ture has increased somewhat. The maximum of the modulus o
field is on the order of 50 times larger than the typical modulus
the fluctuations att5220 000. On the other hand, the typical am
plitude of the fluctuations of the gradient of the field has actua
increased somewhat fromt530 000 tot5220 000, and the typica
amplitude of the fluctuations of the gradient is only several tim
smaller than the maximum amplitude of the gradient of the fi
~bottom row!. Clearly, the fluctuations make a significant contrib
tion to the kinetic energy in the long-time limit.
n

-

-

-

of the fluctuations to the expectation of the kinetic ener
becomes negligible in the limitn→`. Indeed, this contribu-
tion is (1/2)( j 51

n kj
2@^(duj )

2&1^(dv j )
2&#, which need not

tend to 0 asn→`, even if Eq.~11! holds. Thus, from these
arguments, we conclude that forn sufficiently large,

^Hn&'
1

2 (
j 51

n

kj
2~^uj

2&1^v j
2&!

2
1

2 E
V

F~^u~n!&21^v ~n!&2!dx.

These considerations lead us to impose the following me
field constraints on the admissible probability densitiesr on
the 2n-dimensional phase space:

Ñn~r![
1

2 (
j 51

n

~^uj&
21^v j&

2!5N0,

H̃n~r![
1

2 (
j 51

n

kj
2~^uj

2&1^v j
2&!

2
1

2 EV
F~^u~n!&21^v ~n!&2!dx5H0. ~12!

Here, N0 and H0 are the conserved values of the partic
number and the Hamiltonian, as determined from initial co
ditions. The statistical equilibrium states are then defined
be probability densitiesr (n) on the phase-spaceR2n that
maximize the entropy~10! subject to the constraints~12!.
We shall refer to the constrained maximum entropy princi
that determines the statistical equilibria as MEP. We emp
size that the mean-field constraints~12! in this maximum
entropy principle are nonstandard, and the resulting
semble isnot the canonical ensemble. Indeed, as we ha
already mentioned, the canonical ensemble is not even
malizable for the focusing nonlinearities that we consid
here@15,21#.

Further justification and motivation for the vanishing
fluctuations hypothesis~11!, which leads to the mean-field
constraints in the MEP, are provided in Ref.@15#. In particu-
lar, it is proved in Ref.@15# that the solutionsr (n) of the
MEP concentrate on the phase-space manifold on wh
Hn5H0 and Nn5N0 in the continuum limitn→`, in the
sense that̂ Nn&→N0, ^Hn&→H0, and varNn→0, varHn
→0 in this limit. Here, varW denotes the variance of th
random variableW. This concentration property establishes
form of asymptotic equivalence between the mean-field
semblesr (n) and the microcanonical ensemble, which is t
invariant measure concentrated on the phase-space man
on which Hn5H0 and Nn5N0. It therefore provides a
strong theoretical justification for the mean-field statistic
model.

III. CALCULATION AND ANALYSIS
OF EQUILIBRIUM STATES

The solutionsr (n) of MEP are calculated by an applica
tion of the Lagrange multiplier rule
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S8~r~n!!5mÑb8~r~n!!1bH̃n8~r~n!!,

whereb andm are the Lagrange multipliers to enforce th
the probability densityr (n) satisfy the constraints~12!. A
straightforward but tedious calculation yields the followin
expression for the maximum entropy distributionr (n) @15#:

r~n!~u1 ,...,un ,v1 ,...,vn!5)
j 51

n

r j~uj ,v j !, ~13!

where, for j 51,...,n,

r j~uj ,v j !5
bkj

2

2p
expH 2

bkj
2

2
@~uj2^uj&!21~v j2^v j&!2#J ,

~14!

with

^uj&5
1

kj
2 @ f ~^u~n!&21^v ~n!&2!^u~n!&# j2

m

bkj
2 ^uj&,

~15!

^v j&5
1

kj
2 @ f ~^u~n!&21^v ~n!&2!^v ~n!&# j2

m

bkj
2 ^v j&,

Thus, for eachj, uj and v j are independent Gaussian va
ables, with means given by the nonlinear equations~15! and
with identical variances

var uj5var v j5
1

bkj
2 . ~16!

Note that varuj5^(duj )
2& by definition, and likewise for

v j . Obviously, the multiplierb must be positive. Notice also
that, since the probability densityr (n) factors according to
Eq. ~13!, the Fourier modesuj ,v j , j 51,...,n, are mutually
uncorrelated. In addition, we see from Eq.~15! that the com-
plex mean field̂ c (n)&5^u(n)&1 i ^v (n)& is a solution of~set-
ting l5m/b!

^c~n!&xx1Pn~ f ~ u^c~n!&u2!^c~n!& !2l^c~n!&50, ~17!

which is clearly the spectral truncation of the eigenva
equation~4! for the continuous NLS system~1!. It follows,
therefore, that the mean field predicted by our theory co
sponds to a solitary-wave solution of the NLS equation.
ternatively, the mean (^u(n)&,^v (n)&) is a solution of the
variational equationdHn1ldNn50, wherel is a Lagrange
multiplier to enforce the particle number constraintNn
5N0.

Now, as the maximum entropy distributionr (n) is re-
quired to satisfy the mean-field Hamiltonian constraint~12!,
it follows from Eqs.~13!–~17! that

H05
n

b
1Hn~^u~n!&,^v ~n!& !. ~18!

The termn/b represents the contribution to the kinetic e
ergy from the Gaussian fluctuations, andHn(^u(n)&,^v (n)&) is
the Hamiltonian of the mean. Notice that the contribution
the fluctuations to the kinetic energy is divided even
among then Fourier modes.
e

-
-

f

Using Eqs.~13!–~18!, we may easily calculate the entrop
of any solutionr (n) of the MEP. This yields, after som
algebraic manipulations, that

S~r~n!!5C~n!1n lnS L2@H02Hn~^u~n!&,^v ~n!& !#

n D ,

~19!

whereC(n)5n2S j 51
n ln(j2p/2) depends only on the num

ber of Fourier modesn. Clearly, the entropyS(r (n)) will be
maximum if and only if the mean-field pair (^u(n)&,^v (n)&)
corresponding tor (n) realizes the minimum possible value o
Hn over all fields (u(n),v (n)) that satisfy the constrain
Nn(u(n),v (n))5N0. Thus, Eq.~19! reveals that in statistica
equilibrium the entropy is, up to additive and multiplicativ
constants, the logarithm of the kinetic energy contained
the turbulent fluctuations about the mean state. This res
therefore, provides a precise interpretation to the notions
forth by Zakharovet al. @10# and Pomeau@14# that the en-
tropy of the NLS system is directly related to the amount
kinetic energy contained in the small-scale fluctuations, a
that it is ‘‘thermodynamically advantageous’’ for the sol
tion of NLS to approach a ground state which minimizes
Hamiltonian for the given number of particles.

We now know thatHn(^u(n)&,^v (n)&)5Hn* , whereHn* is
the minimum vale ofHn allowed by the particle numbe
constraintNn5N0. As a consequence, the Lagrange mu
plier b is uniquely determined by Eq.~18! to be

b5
n

H02Hn*
. ~20!

That the ‘‘inverse temperature’’b scales linearly with the
number of Fourier modesn is required in order to obtain a
meaningful continuum limitn→` in which the expectations
of the Hamiltonian and particle number both remain fini
The scaling of the inverse temperature with the number
modes is also a common feature of the equilibrium statist
mechanics of finite-dimensional approximations of oth
plasma and fluid systems with infinitely many degrees
freedom@22,23#. The parameterl ~which depends onn! is
also determined by the requirement that the me
(^u(n)&,^v (n)&) realize the minimum value of the Hamil
tonianHn given the particle number constraintNn5N0.

Using Eqs.~16! and ~20!, we may now obtain an exac
expression for the contribution of the fluctuations to the e
pectation of the particle number. This is

1

2 (
j 51

n

@^~duj !
2&1^~dv j !

2&#5
H02Hn*

n (
j 51

n
1

kj
2

5OS 1

nD , as n→`. ~21!

Recall that in the derivation of the mean-field constrai
~12!, we assumed the vanishing of fluctuations conditi
~11!. The calculation~21! shows, therefore, that the max
mum entropy distributionsr (n) indeed satisfy the hypothesi
~11!, and hence, that the mean-field statistical theory is c
sistent with the assumption that was made to derive it. Bu
the analysis of this section has shown, the maximum entr
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distributions r (n) provide much more information than i
contained in the hypothesis~11!. In addition, the theory
yields predictions for the particle number and kinetic ene
spectral densities, at least for the 2n-dimensional spectrally
truncated NLS system~5! with n large. Indeed, we have th
following prediction for the particle number spectral densi

^uc j u2&5u^c j&u21
H02Hn*

nkj
2 , ~22!

where we have used the identityc j5uj1 iv j , and Eqs.~16!
and~20!. The first term on the right hand side of Eq.~22! is
the contribution to the particle number spectrum from
mean, and the second term is the contribution from the fl
tuations. Since the mean field is a smooth solution of
ground-state equation, its spectrum decays rapidly, so
for j @1, we have the approximation̂ uc j u2&'(H0

2Hn* )/(nkj
2). The kinetic energy spectral density is obtain

simply by multiplying Eq.~22! by kj
2. As emphasized above

we have the prediction that the kinetic energy arising fr
the fluctuations is equipartitioned among then spectral
modes, with each mode contributing the amount (H0

2Hn* )/n.
While we have chosen to present the statistical the

specifically for homogeneous Dirichlet boundary conditio
it is straightforward to develop the theory for NLS on a p
riodic interval of lengthL, as well. In this case, it is mos
convenient to write the spectrally truncated complex fi
c (n) as

c~n!5 (
j 52n/2

n/2

c j exp~ ik jx!,

for n an even positive integer, wherekj52p j /L. The pre-
dictions of the statistical theory remain the same as in
case of Dirichlet boundary conditions. In particular, t
mean field ^c (n)& is a minimizer of the HamiltonianHn
given the particle number constraintNn5N0, and the par-
ticle number spectrum satisfies Eq.~22! for j Þ0. The Fou-
rier coefficientc0 may be consistently chosen to be det
ministic ~i.e., varc050 and ^c0&[c0!, to eliminate the
ambiguity arising from the zero mode.

IV. NUMERICAL RESULTS

The general predictions of the statistical theory outlin
above do not depend crucially on the particular nonlinea
f in the NLS equation~1!. Indeed, for anyf satisfying the
conditions stated in the introduction, the coherent struct
predicted by the theory in the continuum limitn→` corre-
sponds to the solitary wave that minimizes the Hamilton
for the given number of particlesN0. Also, for any such
nonlinearityf, the particle number spectrum in the long-tim
limit for the spectrally truncated NLS system~5!, according
to the statistical theory, should obey the relation~22!. Of
course, the minimum valueHn* of the HamiltonianHn which
enters this formula does depend onf.

In this section we will present numerical results primar
for periodic boundary conditions and for the focusing pow
law nonlinearity f (ucu2)5ucu. That is, we shall solve nu
merically the particular NLS equation
y

:

e
c-
e
at

y
,
-

e

-

d
y

re

n

r

i ] tc1]xxc1ucuc50, ~23!

on a periodic interval of lengthL. We have, however, carried
out similar numerical experiments for different focusing no
linearities and for Dirichlet boundary conditions, and we o
served that the general qualitative features of the long-t
dynamics are unaltered by such changes~see Ref.@15# for
long-time simulations of NLS with the saturated nonlinear
f (ucu2)5ucu2/(11ucu2) and with homogeneous Dirichle
boundary conditions imposed!. The nonlinearity f (ucu2)
5ucu actually represents a nice compromise between the
cusing effect and nonlinear interactions. For weaker non
earities~such as the saturated ones!, the interaction between
modes is weak, and the time required to approach
asymptotic equilibrium state is quite long. On the other ha
for stronger nonlinearities, the solitary-wave structures t
emerge exhibit narrow peaks of large amplitude, and the
fore, greater spatial resolution is required in the numeri
simulations.

The numerical scheme that we use for solving Eq.~23! is
the well-known split-step Fourier method for a given numb
n of Fourier modes. Throughout the duration of the simu
tions, the relative error in the particle number is kept at le
than 1026%, and the relative error in the Hamiltonian is n
greater than 0.1 %. Notice that the numerical simulatio
performed naturally for a finite number of modes, provide
ideal context for comparisons with the mean-field statisti
theory outlined above.

On the whole real line, the nonlinear Schro¨dinger equa-
tion ~23! has solitary-wave solutions of the formc(x,t)
5f(x)eil2t, with

f~x!5
3l2

2 cosh2S l~x2x0!

2 D . ~24!

The particle numberN and the HamiltonianH of these soli-
tonlike solutions are determined by the parameterl through

FIG. 3. Solitary-wave solutions of Eq.~23! for particle numbers
N51, 5, and 10. The modulusucu2 is shown as a function of the
position.
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the relationshipsN56l3 and H52(18/5)l5. These solu-
tions are centered atx5x0 , as shown in Fig. 3, and becaus
of the focusing property of Eq.~23!, as N increases, the
amplitude of the solitary wave increases, while its width d
creases. For a given value of the particle numberN, the soli-
tary wave~24! is the global minimizer of the HamiltonianH
@when the integrals in the definitions~2! and ~3! of the
Hamiltonian and the particle number extend over the r
line#. Of course, the solitary-wave solutions for Eq.~23! on a
finite interval, as well as those for the spectrally trunca
version ~5!, differ from the solution~24! over the infinite
interval. However, because the solitary waves~24! exhibit an
exponential decay, for a large enough interval, and fo
large enough number of modesn, such differences can b
neglected for all practical purposes.

For constantA, the condensatec(x,t)5AeiAt is an equi-
librium solution of Eq.~23!. However, since the nonlinearit
is focusing, this spatially homogeneous solution is modu
tionally unstable. Indeed, if we expandc around this solution
in a series of the form

c~x,t !5S A1( cke
~st1 ikx!DeiAt

we obtain the dispersion relation:

s25Ak22k4.

Thus, the condensate is stable fork2.A, and unstable for
k2,A. The most unstable wave number iski5AA/2.

We choose to present in this paper the following set
numerical simulations: starting with the spatially homog
neous solutionc(x,t50)5A ~with A of order 1!, we add
initially a small spatially uncorrelated random perturbatio
so that the modulational instability develops. Although w
have checked that the long-time behavior of the solution
not dependent on the initial conditions, except through
initial and conserved valuesN0 andH0 of the particle num-
ber and the Hamiltonian, this class of initial conditions
particularly convenient for our purposes. For example,
considering different realizations of the initial random pe
turbation, we may perform an ensemble average over dif
ent initial conditions for a givenA ~and therefore for fixed
N0 and H0!. Such initial conditions provide interestin
analogies to standard fluid turbulence problems, as we
emphasize in the conclusion.

The spatially uniform initial conditions we consider he
may be thought of as being far away from the expected
tistical attractor described by the maximum entropy proba
ity densityr (n). Indeed, the spectrum of the condensate d
fers considerably from the predicted statistical equilibriu
spectrum~22!. The numerical simulations that we perfor
here provide strong evidence that the solutions of the sp
trally truncated NLS system converge in the long-time lim
to a state that may be considered as statistically steady.
main purpose here is to compare the statistical propertie
this long-time state with the predictions of the mean-fie
statistical theory that was developed and analyzed above
addition, we shall also investigate the following questio
concerning the nature of the evolution leading from the i
tial state to the long-time statistical equilibrium state:~1!
How long does it take for the system to reach the vicinity
-

l

d

a

-

f
-

,
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e

y
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ill
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-

c-
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f

its statistical attractor, so that subsequently its statistical
tures may be considered as stationary?~2! How well can we
characterize the ‘‘path’’ that a solution follows en route
the statistically steady state? That is, what are the gen
features of the transitory dynamics?

Figure 1 demonstrates that the transitory dynamics can
roughly decomposed into three stages: in the first stage
lustrated in Fig. 1~a!, the modulational instability creates a
array of solitonlike structures separated by a typical dista
l i52p/ki associated with the most unstable wave num
ki . The second stage is characterized by the interaction
coalescence of these solitons. In this coarsening process
number of solitons decreases, while the amplitudes of
surviving solitons increase, until eventually a single solit
of large amplitude persists among a sea of small-amplit
background radiation@Fig. 1~b! and 1~c!#. This intermediate
stage has previously been observed for other nonlin
Schrödinger equations in one and two spatial dimensio
@10,24#, and it was shown in Ref.@24# that this coarsening
process follows a self-similar dynamics. The dynamical e
ponents of these processes are not very well understoo
this point, however. During the final stage of the dynami
the surviving large-scale soliton interacts with the sma
scale fluctuations. As time increases, the amplitude of
soliton increases, while the amplitude of the fluctuations
creases@note the changes from Fig. 1~c! to 1~d!#. In this
stage of the dynamics, the mass~or number of particles! is
gradually transferred from the small-scale fluctuations to
large-scale coherent soliton. For a finite number of moden,
the dynamics eventually reaches a ‘‘stationary’’ state wh
properties are very well described by the mean-field stat
cal equilibrium theory developed above, as we shall dem
strate. This implies that the long-time state may, in fact,
thought of as a ‘‘statistical attractor,’’ in the sense that, a
cording to the statistical theory, it corresponds to a ma
mizer of the entropy functional~10! subject to the dynamica
constraints~12!. Note that because the dynamics is reve
ible, intermediate states such as those in Fig. 1~b! theoreti-
cally could still be attained even after the statistical equil
rium state has been reached. In fact, a numerical simula
starting from the state in Fig. 1~d! but with the time step
taken negative shows the reverse dynamics up to round
errors, where one can observe the decomposition of the
lution into an array of solitonlike structures as in Fig. 1~a! for
intermediate times, while in the limitt→2` an equilibrium
state such as the one of Fig. 1~d! is once again attained.

The tendency of the solution of the NLS system~23! to
approach the statistical equilibrium state is also captured
the evolution of the kinetic and potential energies~see Fig.
4!. While the sum of these two quantities, which is t
Hamiltonian, remains constant in time, we observe that
kinetic energy increases monotonically, and, consequen
the potential energy decreases monotonically as time g
on. The initial time period where these quantities evo
most rapidly ~say t,20 000! corresponds to the first two
stages of the dynamics described above, in which the mo
lational instability creates an array of solitonlike structur
which then coalesce into a single coherent soliton. After
coalescence has ended, the kinetic~potential! energy in-
creases~decreases! very slowly to its saturation value. In th
process, fluctuations develop on finer and finer spatial sca
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which accounts for the gradual increase of kinetic ener
while the surviving soliton slowly absorbs mass from t
background fluctuations, thereby increasing the magnitud
the contribution to the potential energy from the coher
structure. In the long-time limit, therefore, the soliton a
counts for the vast majority of the potential energy, while t
fluctuations make a substantial contribution to the kine
energy.

The mean-field statistical theory provides a prediction
the expected value of the kinetic energyKn in statistical
equilibrium for a given number of modesn. This is ^Kn&
5Kn(^c (n)&)1H02Hn* , which follows directly upon mul-
tiplying Eq. ~22! by kj

2 and summing overj. The first term in
this expression for̂Kn& is the contribution to the mean ki
netic energy from the coherent soliton structure which m
mizes the HamiltonianHn subject to the particle numbe
constraintNn5N0. The second term in̂Kn& is the contribu-
tion to the expectation of the kinetic energy from the flu
tuations.Hn* is the minimum value ofHn given the particle
number constraint. Asn→`, we see that̂Kn& converges to
K(c`)1H02H* , wherec` is the minimizer of the Hamil-
tonian H given the particle number constraintN5N0 for
continuous NLS system on the interval@0, L#, and H*
5H(c`). ApproximatingK(c`) and H(c`) by K(f) and
H(f), wheref is the solitary wave on the real line whos
particle number isN0, we obtain for the setting considered
Fig. 4 the large n estimatesKn(^c (n)&)'9.2, H02Hn*
'22.4, and therefore,̂Kn&'31.6. Also, according to the
statistical theory, the expected value^Qn& of the potential
energy in statistical equilibrium should converge asn→` to
Q(c`). Approximating this byQ(f), with f as above, we
have the estimatêQn&'237.1, which we expect to be ac
curate for sufficiently largen. We see that the kinetic~poten-

FIG. 4. Time evolution of the kinetic~upper curve! and the
potential~middle curve! energies. The kinetic energy is increasin
and consequently the potential energy is decreasing, in accord
the statistical theory developed above. The lower line indicates
potential energy of the solitary wave that contains all the partic
of the system. The curves are obtained from an ensemble ave
over 16 initial conditions forn5512. The length of the system i
L5128, and the~conserved! values of the particle number and th
Hamiltonian are, respectively,N0520.48 andH0525.46.
y,

of
t

-
e
c

r

-

-

tial! energy of the numerical solution is bounded above~be-
low! by the estimate based on the statistical theory, bu
expected, the solution does not attain the theoretically p
dicted value for a finite number of modes. This is becau
for the spectrally truncated system, a finite amount of
particle number and the potential energy integrals are a
ally contained in the small-scale fluctuations@according to
the statistical theory, the contribution of the fluctuations
these quantities should beO(1/n), wheren is the number of
spectral modes—this follows from Eq.~22! @15##. It may be
checked that the spatial resolution is improved~i.e., when the
number of modesn is increased, while the lengthL of the
spatial interval, and the valuesH0 and N0 of the Hamil-
tonian, and the particle number are held fixed!, the contribu-
tions of the fluctuations to the particle number and the
tential energy decrease, and the saturation values of
kinetic and potential energy attained in the numerical sim
lations come closer to the predicted statistical equilibriu
averages of these quantities. We expect that the contribut
of the fluctuations to the particle number and the poten
energy should vanish entirely asn→` for fixed L, H0, and
N0, and that the predicted statistical equilibrium values
the mean kinetic energy and potential energy should be
proached very closely by the numerical solution in the lon
time limit when the number of modes in the simulation
sufficiently large.

Figures 1 and 4 clearly illustrate that for a given~large!
number of modesn, the dynamics approaches a long-tim
state consisting of a large-scale coherent soliton, which
counts for all but a small fraction of the particle number a
the potential energy integrals, coupled with small-scale
diation, or fluctuations, which account for the kinetic ener
that is not contained in the coherent structure. Formula~22!
suggests, in fact, that in the long-time limit, the cohere
structure, and the background radiation exist in balance~or
in statistical equilibrium! with each other, through the equ
partition of kinetic energy of the fluctuations. In Fig. 5, w
display the particle number spectral densityucku2, whereck
is the Fourier transform of the fieldc, as a function of the
wave numberk for a long-time run. To obtain this spectrum
we have performed both an ensemble average over 16 in
conditions, and a time average over the final 1000 time u
for each run. For comparison, we have displayed in this
ure the spectrum of the solitary wave~24! whose particle
number is equal to the conserved value of the particle nu
ber for the simulation. Observe that there is both a qualita
and quantitative agreement between the spectrum of
solitary-wave solution and the small wave-number portion
the spectrum arising from the numerical simulations. This
in accord with the statistical equilibrium theory, which pr
dicts that the coherent structure should coincide with t
solitary wave~in the limit n→`!. For larger wave numbers
the spectrum of the numerical solution is dominated by
small-scale fluctuations. We have indicated on the graph
large wave-number spectrum predicted by the statist
theory. This prediction comes from the second expression
the right hand side of Eq.~22!, except that we have approx
mated the minimum valueHn* of the Hamiltonian for the
spectrally truncated system withn modes by the Hamiltonian
H* of the above-mentioned solitary wave solution for t
continuum system. Not only is there a good qualitati
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agreement with the predicted equipartition of kinetic ene
among the small-scale fluctuations~i.e., thek22 slope!, but
there is also an excellent quantitative agreement between
numerical results and the formula~22! for large k. Let us
mention that the long-time spectrum obtained from a sin
simulation starting from a given initial condition, and with
out time averaging, though similar to the spectrum displa
in Fig. 5, is much noisier.

As we have mentioned above, the numerical spectr
shown in Fig. 5 arises from an ensemble average over l
time and over different initial conditions~with the same val-
ues of the particle number and the Hamiltonian!. Now, under
the assumption that the dynamics is ergodic, such an ave
should coincide with an average with respect to the mic
canonical ensemble for the spectrally truncated NLS sys
@19#. Since it can be shown that the the mean-field statist
ensemblesr (n) constructed above concentrate on the mic
canonical ensemble in the continuum limitn→` ~see Theo-
rem 3 of Ref.@15#!, it should be that averages with respect
r (n) for largen agree with the ensemble average of the n
merical simulations over initial conditions and time, assu
ing ergodicity of the dynamics. While we have not show
that the dynamics is ergodic, we have, in fact, demonstra
what we believe to be a convincing agreement between
predictions of the mean-field ensemblesr (n) and the results
of direct numerical simulations. In an investigation curren
underway@23#, we are monitoring the probability densit
functions of the Fourier coefficientsuk andvk , and we have
observed that in the long-time limit, they closely fit a Gau
ian profile, which is also in agreement with the statistic
theory.

We have also monitored the time evolution of the quan
ties

FIG. 5. Particle number spectral densityucku2 as a function ofk
for t51.13106 unit time ~upper curve!. The lower curve~smooth
one! is the particle number spectral density for the solitary wa
that contains all the particles of the system. The straight line dra
for largek corresponds to the statistical prediction~22! for the spec-
tral density for large wave numbers. The numerical simulation
been performed withn5512, dx50.25, N0520.48 and H05
25.46.
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Sm~c~n!!5(
j

kj
2muc j u2, ~25!

for m a positive integer. For the periodic boundary con
tions considered here, the indexj ranges from2n/2 to n/2
and the wave numberkj is given bykj52p j /L. Note thatS1
is the kinetic energy. In general,Sm(c) is the squaredL2

norm of themth derivative of the fieldc. The growth ofSm
in time is an indicator of the development of fluctuations
the field on fine spatial scales, which in turn, points to t
existence of a cascade of kinetic energy from large to sm
scales. In addition, we may consider thatSm gives an esti-
mate of the evolution of the typical wave numberK(t) of the
fluctuations since, roughly speaking, we can estimateSm

;K(t)2(m21).
The mean-field statistical theory provides the followin

prediction for the expectation ofSm in statistical equilibrium
for a given number of modesn:

^Sm&5 (
j 52n/2

n/2

kj
2mu^c j&u2

1S 2p

L D 2~m21! H02Hn*

n (
j 52n/2

n/2

j 2~m21!, ~26!

where we have used Eq.~22!. The first term is the contribu-
tion to ^Sm& from the mean field~the coherent structure!, and
the second term is the contribution from the fluctuatio
Note that for a finite number of modesn, ^Sm& is finite for
each m, but only ^S1&, which is the mean of the kinetic
energy, remains finite in the continuum limitn→`. The
divergence of̂ Sm& for m>2 comes from the second expre
sion on the right hand side of Eq.~26! ~i.e., from the fluc-
tuations!, which is of the ordern2(m21) as n→`. For ex-
ample, whenm52 this expression is found to bep2(H0

2Hn* )(n213n12)/(3L2), and we have the following for-
mula for ^S2& for a given number of modesn in the spec-
trally truncated NLS system:

^S2&5 (
j 52n/2

n/2

kj
2u^c j&u21

p2~H02Hn* !~n213n12!

3L2 .

~27!

Based on the considerations of the previous paragraph
expect that the numerical simulations for a given number
modesn will reveal that the quantitiesSm are bounded and
saturate whent→`, but that the larger the number of mode
n, the larger the saturation value ofSm ~at least form>2!.
Figure 6 shows the evolution in time ofS2 for different val-
ues ofn ~with the sameL, N0, and H0!. We observe that
saturation does indeed occur for a finite number of mod
Also, asn increases, the saturation value increases, as d
the time required to reach saturation. By approximating
sum in Eq.~27! by *2`

` ufxxu2dx and approximatingHn* by
H(f), wheref is the solitary wave on the whole real lin
whose particle number is equal to the conserved part
number for the simulations treated in Fig. 6, we obtain
following estimates:̂ S2&'27.1, 45.5, 97.6, and 170.3 fo
n548, 64, 96, and 128, respectively. Note that these e
mates for^S2& agree closely with the observed saturati
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values ofS2 in the numerical simulations forn548 and 64.
For n596, saturation has not quite yet been reached, but
value of S2 at the final timet533105 is still reasonably
close to the theoretical estimate of 97.6. Forn5128, S2 is
still growing considerably at the final time of the simulatio
and so we cannot make comparisons with the statistical
diction for ^S2& at this point. The inset in Fig. 6 shows th
evolution of the kinetic energyS1 as a function of time for
n548, 64, 96, and 128. We see that the kinetic energy s
rates nearly at the same rate for all of the values ofn con-
sidered here. Clearly,S1 remains bounded asn increases. As
discussed above,^S1&, the statistical equilibrium value of o
the mean kinetic energy, converges asn→` to K(c`)
1H02H(c`), wherec` is the solitary wave that minimize
the HamiltonianH for the given particle numberN0 for the
NLS system on the interval@0, L#. Once again, approximat
ing c` by the solitary wavef on the whole real line tha
minimizes H given the particle number constraintN5N0,
we may estimate the limiting valuêS1& by K(f)1H0

2H(f), which is'7.3 for the valueN059.6 considered in
Fig. 6. This estimate provides an upper bound on the sat
tion values ofS1 observed in the simulations, and as t
number of modes in the simulations increases,S1 saturates
closer to this approximation of the statistical equilibriu
value.

When the spatial resolution of the numerical simulatio
is improved~i.e., whenn is increased withL fixed!, the quan-
tities Sm are typically seen to exhibit power-law growth
time before reaching saturation~see Fig. 7!. Indeed, we ob-
serve form52, 3, and 4 thatSm obeys the following power-
law dynamics:

FIG. 6. S2 as a function of time forn548, 64, 96, and 128
~lower to upper curve!. The simulations are all performed for a bo
of size L538.4, for N059.6 andH0523.2. The curves are ob
tained from an ensemble average over 16 runs for eachn. Saturation
is reached forn548 and 64, while it is almost obtained forn
596. As n is increased, the time required to reach saturation
creases, and the saturation value also increases. The inset sho
kinetic energyS1 as a function of time for the same values ofn. As
opposed toS2 , the saturation ofS1 seems to be occurring at abo
the same rate for eachn. The saturation value ofS1 increases
slightly asn increases, but it remains bounded above by the sta
tical equilibrium valuê S1&.
e

e-

u-

a-

s

Sm}t2~m21!n, ~28!

with n50.2560.01. This behavior is observed fort large
enough that the coalescence process has ended. It c
sponds, therefore, to the regime where the kinetic energy
essentially reached saturation. Analytical results prov
power-law upper bounds for the growth in time of high
order Sobolev norms for solutions of NLS equations@16#.
The exponents in these estimates are larger than those
we have observed numerically. Thus, one might won
whether the existing analytical techniques could be refine
obtain tighter estimates on the growth of these norms.

In Ref. @14#, Pomeau has developed a weak turbulen
theory for the cubic defocusing NLS equation in two spat
dimensions~or higher!. This theory estimates the evolutio
of the typical wave numberK(t) of the fluctuations as time
increases. The estimate comes from a dimensional ana
of the weak turbulence equation deduced from the N
equation. Describing the fluctuation fielddc as

dc5
1

AL
E dk~dI k!

1/2ei ~kx2vt !,

the relation between the energyv and the wave numberk is
called the spectrum of excitations~we refer the reader to Ref
@14# for details!. In Ref. @14#, it has been shown that if this
wave numberK(t) is in the range where the spectrum
excitations obeysv(k);k2, which means that the fluctua
tions behave essentially like free particles, then, assum
that there is two-wave resonance in the weak turbulence
proximation, it follows thatK(t);(et)1/4. Here,e is the spa-
tial energy density of the fluctuations@so e;(H02H* )/L#.
Remarkably, this result is in good agreement with the d
namical exponent that we have observed in our numer
simulations. We caution that the analysis in Ref.@14# was
carried out for the cubic defocusing NLS equation in tw

-
the

s-

FIG. 7. Sm as a function of time form52, 3, and 4~lower to
upper curve!. The growth of these quantities is indicative of th
development of fluctuations on fine spatial scales as time increa
The Sm have been calculated for 512 modes withN0512.8, H05
24.26, anddx50.1, with an ensemble average over 16 runs. Th
have been rescaled in order to display them on the same grap
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spatial dimensions, and, therefore, does not immediately
over to the case under consideration here. In fact, stri
speaking, in the regimev(k)5k2, the resonance of two
waves cannot hold in one spatial dimension. However,
conjecture that, due to the interactions with the large-sc
coherent structure, the resonance may in fact be meanin
in the present setting. Therefore, we believe that a dim
sional weak turbulence analysis along the lines of that de
oped in Ref.@14# may be relevant. We do not see immed
ately how to carry out such an analysis, but we plan
explore this possibility in the future. Interestingly, for th
NLS system, the approximationv(k)5k2 is usually valid in
the limit k@1. In the numerical simulations, the finite num
ber of modes provides an ultraviolet cutoff since the larg
wave number of the system is

kmax5
p

dx
5n

p

L
.

We remark that we have been able to recognize the pow
law growth in time of the quantitiesSm only for the smallest
dx we have considered in our simulations. For largerdx the
free particle regime might not be realized, and it is not s
prising in this case that the power-law behavior is not o
served.

The previous considerations allow us to attach a m
precise meaning to what we have been referring to as
transitory dynamics and the equilibrium state for the sp
trally truncated NLS system. For sufficiently small grid siz
dx, one may consider thatSm grows according to the powe
law ~28! until the timetn at which the typical wave numbe
K(t) reaches the largest available wave numberkmax. This
time tn ~which appears to scale asn4 for fixed L, N0, and
H0! defines a crossover between the transitory regime
which the solution evolves towards the spectrum~22!, and
the statistical equilibrium regime where the system inve
gates its phase space according to the probability den
r (n). Notice that in the continuum limitn→`, tn diverges,
so that a continuous NLS system cannot reach statis
equilibrium in finite time. Such conjectures are supported
the investigation of the dynamics of the particle numb
spectrum during the intermediate time regime after which
coarsening process has ended, but before the final statis
equilibrium state has been reached. Note that the statis
equilibrium model does not provide predictions about
time evolution of the spectrum, because it is strictly an eq
librium theory. In fact, based on statistical theory alon
nothing can be said about the path that the system foll
from the statistically unlikely initial condition to the fina
statistical equilibrium state. Figure 8 displays the parti
number spectrum att553105 unit time for a spatial resolu
tion of dx50.1.

This figure illustrates that the system investigates sma
and smaller scales as time increases. Indeed, the pa
number spectrum for the modesk>20 is still at the level of
the initial noise. Thus, the smallest scales available to
system have yet to be excited at the timet553105. For
larger scales, however, one can recognize both the spec
corresponding to the coherent soliton structure, and the fl
tuation spectrum which appears to follow, at least appro
mately, the equilibrium lawucku2}k22. This suggests the
o
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following scenario for the spectrally truncated NLS dyna
ics: as time increases, smaller and smaller scales are
plored, until eventually all available modes are excite
However, at any given time after the coalescence process
ended, the system may be considered as being in statitis
equilibrium over all the modes that have been excited up
that point. Definingkmax(t) to be the largest wave numbe
that the system has reached up to timet, we then obtain from
Eq. ~28! that kmax(t);(et)1/4, if kmax is large enough. Now if
we denote byn(t) the number of modes that have been e
cited up to timet, then based on our previous arguments,
have thatkmax(t)5pn(t)/L. Using this result and the assump
tion that the system is in statistical equilibrium over all t
modes excited up to that time, we obtain the following es
mate for the spectrum of the fluctuations at timet:

^udcku2&;
H02H*

n~ t !k2 ;
pe3/4

t1/4k2 , ~29!

for uku<kmax(t). The total particle number spectrum at timet,
of course, has to be taken as the sum of the spectrum co
sponding to the large-scale coherent structure~which de-
creases exponentially for largek! and the spectrum of the
fluctuations.

We emphasize that the derivation of Eq.~29! describing
the particle number spectrum at an intermediate timet cru-
cially depends on the assumption that the system evolve
such a way that it is nearly in statistical equilibrium over
the modes that have been investigated up to that time. Fig
8 has motivated us to make this assumption, but clearly
ther numerical investigations should be carried out in or
to test the validity of this hypothesis, as well as the accur

FIG. 8. The particle number spectral density forn5512 and
dx50.1 ~thusL551.2! at unit timet553105. The coherent soli-
ton structure already accounts for almost the entire number of
ticles of the system, but the system has not yet reached statis
equilibrium. The initial noise level is still present for large wav
numbers (k>20), while at smaller wave numbers, one can reco
nize both the solitonlike structure and a fluctuation spectrum
lowing approximately ak22 law. The spectrum has been obtaine
by an ensemble average over 16 initial conditions and a time a
age over the final 10 unit times.
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of formula~29!. Nevertheless, we find it quite interesting th
the fluctuation spectrum~29! agrees with the prediction in
Ref. @14#, which was derived from a dimensional analysis
the weak turbulence equations for the NLS system.

V. DISCUSSION AND CONCLUSION

The primary purpose of the present work has been to
the predictions of a mean-field statistical model of se
organization in a generic class of nonintegrable focus
NLS equations defined by Eq.~1!. This statistical theory,
which has been summarized above, was originally develo
and analyzed in Ref.@15#. In fact, we have demonstrated
remarkable agreement between the predictions of the st
tical theory and the results of direct numerical simulations
the NLS system. There is a strong qualitative and quan
tive agreement between the mean field predicted by the
tistical theory and the large-scale coherent structure obse
in the long-time numerical simulations. In addition, the s
tistical model accurately predicts the long-time spectrum
the numerical solution of the NLS system. The main conc
sions we have reached are~1! the coherent structure tha
emerges in the asymptotic time limit is the solitary wave t
minimizes the system Hamiltonian subject to the parti
number constraintN5N0, whereN0 is the given~conserved!
value of N; and ~2! the difference between the conserv
Hamiltonian and the Hamiltonian of the coherent state
sides in Gaussian fluctuations equipartitioned over w
numbers.

While the statistical model we have developed is an eq
librium theory, and, strictly speaking, only provides pred
tions concerning the long-time statistical properties of
NLS system, we have combined this theory with insig
gained from numerical simulations to paint a picture of t
nature of the dynamics leading up to the statistical equi
rium state. Specifically, the simulations~and, in particular,
the results shown in Fig. 8! indicate that evolution is such
that, at a given time after the coarsening process has en
the system is nearly in statistical equilibrium over all t
modes that have been excited by that time. From this ob
vation and the fact that the quantitiesSm defined in Eq.~25!
are seen to exhibit the power-law growth in time accord
to Eq. ~28!, we have arrived at prediction~29! for the time
dependence of the spectrum of the fluctuations. As we h
mentioned above, results such as Eqs.~28! and ~29! have
previously been derived by Pomeau@14# from weak turbu-
lence arguments, but for the defocusing cubic NLS equa
in a bounded two-dimensional spatial domain. We belie
that it would be an interesting exercise to check whet
these formulas can be derived directly from a weak tur
S.
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lence analysis in the present context, that is, for o
dimensional~1D! nonintegrable focusing NLS equations
the absence of collapse.

We would like to point out certain analogies between t
dynamics of the NLS systems we have considered here,
the dynamics of a turbulent 2D Navier-Stokes fluid.
prominent feature of large Reynolds number 2D Navi
Stokes turbulence is the formation of quasisteady cohe
vortex structures@1–3#. Starting from generic initial condi-
tions, the evolution of the fluid is characterized by the fo
mation of a collection of large-scale vortices, and the sub
quent merger or coalescence of like-signed vortices@3#. The
large-scale soliton structures in~focusing, nonintegrable!
NLS play a role similar to that of the vortices in 2D Navie
Stokes turbulence. Indeed, we have observed in our num
cal simulations of NLS the formation of an array of solito
like structures which eventually coalesce into a sin
persistent soliton of large amplitude. Another characteris
feature of turbulence in two dimensions is the presence
dual cascade@25#. There is a direct cascade of enstrophy
small scales and an inverse cascade of energy to large sc
As pointed out long ago by Kraichnan@25#, the existence of
the inverse cascade of energy is indicative of the format
of a large-scale structure in the system. In NLS, there is a
a dual cascade. Indeed, our numerical simulations, wh
correspond to injecting as initial conditions particle numb
and energy at a given scalel i associated with the modula
tional instability, have revealed that there is a direct trans
of kinetic energy to spatial scales smaller thanl i , while the
particle number is transferred to large scales. While the
NLS equation is a much simpler system to investigate, b
analytically and numerically, than a turbulent 2D fluid sy
tem, we believe that the understanding of the coalesce
and transfer processes in this generic model of nonlin
wave turbulence might provide important insight into t
nature of turbulent systems in general.
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