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We study the long-time evolution of waves of a thin elastic plate in the limit of small deformation so
that modes of oscillations interact weakly. According to the theory of weak turbulence (successfully
applied in the past to plasma, optics, and hydrodynamic waves), this nonlinear wave system evolves
at long times with a slow transfer of energy from one mode to another. We derive a kinetic equation
for the spectral transfer in terms of the second order moment. We show explicitly that such a non-
equilibrium theory describes the approach to an equilibrium wave spectrum and represents also an
energy cascade, often called the Kolmogorov-Zakharov spectrum. We perform numerical simulations
that confirm this scenario.
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Introduction.– For more than forty years it has been es-
tablished that long time statistical properties of a random
fluctuating wave system possess a natural asymptotic clo-
sure because of the dispersive nature of the waves and
of the weakly nonlinear interaction between them [1, 2].
This “weak turbulence theory” has been shown to be a
powerful method for studying the evolution of nonlinear
dispersive wave systems [3, 4]. It follows that the long
time dynamics is driven by a kinetic equation for the
distribution of spectral densities. This method has been
applied to surface gravity waves [1, 5], surface capillary
waves [6], plasma waves [7], and nonlinear optics [8] for
instance.

The actual kinetic equation has non-equilibrium prop-
erties similar to the usual Boltzmann equation for di-
lute gases, conserving energy and momentum, and it
exhibits an H-theorem driving the system to equilib-
rium, characterized by the Rayleigh-Jeans distribution.
Most important, besides the elementary equilibrium (or
thermodynamic) solution, Zakharov has shown [7] that
power law non-equilibrium solutions also arise, namely
the Kolmogorov–Zakharov (KZ) solutions or KZ spec-
tra, which describe the exchange of conserved quantities
(e.g. energy) between large and small length scales.

Experimental evidence of KZ spectra have been found
in ocean surface [9] and in capillary surface waves [10–
12]. Numerical simulations have also shown the existence
of KZ spectra in weak turbulent capillary waves [13] and
more recently in gravity waves [14].

In this article an oscillating thin elastic plate is con-
sidered. Adding inertia to the well known (static) theory
of thin plates, one finds the existence of ballistic disper-
sive waves [15]. They interact via the nonlinear terms
that are weak if the plate deformations are small. Un-
derstanding the interaction between these waves is thus
crucial to describe acoustical properties of the plates. In

∗title borrowed from Alan C. Newell.

fact nonlinear solitary waves have been observed on the
surface of a cylindrical shell that show balance between
nonlinear effects and dispersion [16]. However, we de-
velop here the first weak turbulence theory for the surface
deflection on plate dynamics. We find that the bending
waves travel randomly through the system and interact
resonantly between each other via the weak nonlineari-
ties. The mathematics behind the resonant condition is
formally identical to the conservation of energy and mo-
mentum in a classical gas. In this sense an elastic plate
is formally equivalent to a 2D gas of classical particles
interacting with a nontrivial scattering cross section. An
isolated system evolves from a random initial condition
to a situation of statistical equilibrium like a gas of clas-
sical particles does. In addition to statistical equilibrium
for isolated systems, the weak turbulence theory predicts
here an energy cascade from a source of energy (a driv-
ing forcing) to a dissipation scale typically of irreversible
processes.

More precisely, we have in mind an elastic thin plate
under an external low frequency (few times the slowest
plate mode) random forcing. The gravest mode for a
10 × 10cm2 steel sheet of a 1/10mm thick is about 50
Hz, a bit higher for a clamped sheet. Internal resonance
among modes build-up an energy cascade from the in-
jection scale to small scales where it is ultimately dis-
sipated mostly because of the boundaries, air entrainte-
ment, viscoelastic flows or heat transfer. A genuine cas-
cade should set-up if dissipation occurs at small scales
only. Some caution should be considered because damp-
ing coefficient for heat transfer does not depend on the
oscillation frequency however its value is usually smaller
than the slowest mode. For instance, for the above exam-
ple, heat lost is about 15 times smaller than the slowest
oscillation at room temperature. As in fluids, viscosity
in solids acts only at small scale. Finally, in a real ex-
periment the boundaries play an important role because
of the finite value of the experimental set-up impedance.
Such a damping coefficient grows linearly with wavenum-
ber and is probably the most relevant source of dissipa-
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tion. Therefore, it seems possible that energy cascades
from the scale of the plate to the dissipation scale.

Moreover, while there is often a lack of direct observa-
tions of weak turbulence predictions, we exhibit numeri-
cally relaxation to equilibrium and energy cascade for the
plate dynamics, confirming the scenario presented above.
The plate dynamics is illustrated in Fig. (1) for an iso-
lated system where the plate deformations are shown at
initial time and after a long evolution.
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FIG. 1: Zoom over a portion of the surface plate deflection
ζ(x, y). The left hand image is the initial condition while the
right hand one represents a long-time evolution of the elastic
plate.

Theory.– The starting point is the dynamical version of
the Föppl–von Kármán equations [17, 18] for the ampli-
tude of deformation ζ(x, y, t) and the Airy stress function
χ(x, y, t):

ρ
∂2ζ

∂t2
= −

Eh2

12(1 − σ2)
∆2ζ + {ζ, χ}; (1)

1

E
∆2χ = −

1

2
{ζ, ζ} (2)

where h is the thickness of the elastic sheet. The ma-
terial has a mass density ρ, a Young’s modulus E and
a Poisson ratio σ. ∆ = ∂xx + ∂yy is the usual Lapla-
cian and the bracket {·, ·} is defined by {f, g} ≡ fxxgyy +
fyygxx−2fxygxy, which is an exact divergence, so Eq. (1)
preserves the momentum of the center of mass, namely
∂tt

∫

ζ(x, y, t)dxdy = 0. The first term on the rhs of (1)
represents the bending while the second one {ζ, χ} repre-
sents the stretching [18]. Here χ(x, y, t) is the Airy stress
function which follows the dynamics via eq. (2).

Despite the complexity of Eqs. (1) and (2) the sys-
tem presents a Hamiltonian structure that is straightfor-
ward in Fourier space. Defining the Fourier transforms
as ζk(t) = 1

2π

∫

ζ(x, t)eik·xd2x (with ζk = ζ∗−k), then one

gets from Eq. (2): χk(t) = − E
2|k|4 {ζ, ζ}k where {ζ, ζ}k

is the Fourier transform of {ζ, ζ}. The dynamics then
reads:

ρ
∂2ζk

∂t2
= −ω2

k

Eh2k4

12(1 − σ2)
ζk

−

∫

V−k,k2;k3,k4
ζk2

ζk3
ζk4

δ(2)(k − k2 − k3 − k4)d
2k2,3,4

where ωk = hc|k|2 = hck2 (with c =
√

E
12(1−σ2)ρ has the

dimension of a velocity) is the usual behavior of bending

waves [15, 18]. Moreover V12;34 = E
2(2π)2

|k1×k2|2|k3×k4|2
|k1+k2|4

and d2k2,3,4 ≡ d2k2d
2k3d

2k4. The hamiltonian structure
becomes evident if we define as canonical variables the
deformation ζk(t) and the momentum pk(t) = ρ∂tζk(t).

The canonical transformation ζk = Xk√
2
(Ak +A∗

−k) and

pk = − i√
2Xk

(Ak − A∗
−k) with Xk = 1√

ωkρ allows us to

write the wave equation in a diagonalized form: dAk

dt +
iωkAk = iN3(Ak), where N3(·) is the cubic nonlinear
interaction term.

Weak turbulence theory.- This nonlinear oscillator has
two distinct time scales, the rapid oscillation iωkAk and
the weak nonlinearity. Then, following the approach of
[4], one changes Ak = ak(t)e−iωkt which removes the
rapid linear oscillating term :

das
k

dt
= −is

∑

s1s2s3

∫

J−kk1k2k3
eit(sωk−s1ωk1

−s2ωk2
−s3ωk3

)as1

1 as2

2 as3

3

(3)
where we define as

k with the two possible choices s = +
or − relative to the propagation direction, such that
a+

k ≡ ak while a−
k ≡ a∗

−k. The interaction term

reads: Jk1,k2;k3,k4
= 1

6Xk1
Xk2

Xk3
Xk4

P234Vk1,k2;k3,k4

where P234 is the sum over the six possible permutations
between 2, 3 & 4. The next step consists of writing a hi-
erarchy of linear equations for the averaged moments:
〈

as1

k1
as2

k2

〉

,
〈

as1

k1
as2

k2
as3

k3
as4

k4

〉

, etc. A multi-scale analysis
provides a natural asymptotic –at long time– closure,
for higher moments: the fast oscillations drive the sys-
tem close to Gaussian statistics and higher moments are
written in terms of the second order moment:

〈

ak1
a∗

k2

〉

=

nk1
δ(2)(k1 + k2), where nk is called the wave spectrum.

The wave spectrum thus satisfies a Boltzmann-type
kinetic equation describing the exchange of energy from
one mode to another at long time through four waves
resonance:

dnp1

dt
= 12π

∫

|Jp1k1k2k3
|2

∑

s1s2s3

nk1
nk2

nk3
np1

(

1

np1

+
s1

nk1

+

× δ(ωp1
+ s1ωk1

+ s2ωk2
+ s3ωk3

) δ(2)(p1 + s1k1 + s2k2 +

As for the usual Boltzmann equation, Eq.(4) conserves
“formally” [25] the total momentum per unit area P =
h

∫

knk(t) d2k and the kinetic energy per unit area
E = h

∫

ωknk(t) d2k and exhibits a H-theorem: let
S(t) =

∫

ln(nk) d2k be the non-equilibrium entropy, then
dS/dt ≥ 0, for increasing time. However, despite the four
waves interaction type kinetic equation (4), the “wave
action” N =

∫

nk(t)d2k is not conserved. The kinetic
equation (4) describes thus an irreversible evolution of
the wave spectrum towards the Rayleigh-Jeans equilib-

rium distribution which reads, when P = 0:

neq
k =

T

ωk
, (5)
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where T is called, by analogy with thermodynamics,
the temperature (with units of energy/length, i.e. a
force) which is naturally related to the initial energy by
E0 = h

∫

ωkneqd
2k = hT

∫

d2k. The quantity
∫

d2k is
the number of degrees of freedom per unit surface. There-
fore each degree of freedom takes the same energy: hT .
Naturally, for an infinite system this number diverges (as
well as the energy). This classical Rayleigh-Jeans catas-
trophe is always suppressed due to some physical cut-off
discussed above. Numerical simulations on regular grid
provide also a natural cut-off kc = π/dx where dx is the
mesh size, which gives E0 = πhTk2

c for a large plate.

Kolmogorov Spectra.- In addition, isotropic non-
equilibrium distribution solutions can also arise [7]. They
have a major importance in the non-equilibrium pro-
cess for the energy transfer between different length.
These solutions can be guessed via a dimensional anal-
ysis argument but they are, indeed, exact solutions of
the kinetic equation. Despite some differences with the
usual kinetics equation, Zakharov method can be applied
here. Integrating over the angles the scattering ampli-
tude |Jk1k2k3k4

|2δ(2)(k1 + k2 + k3 + k4), the new scat-
tering amplitude depends only on the modulus ki = |ki|:

Sk1,k2,k3,k4
= 1

6P234

∫ |Jk1k2k3k4
|2

|k2×k3| dϕ4. This integral can

be computed and since the degree of homogeneity of |J |2

in k is zero, S scales as 1/k2.

Looking for a power-law solution of the form nk =
Ak−α, the eight terms of the collisional integral in the
rhs of Eq. (4) decompose into Coll2↔2 + Coll3↔1, where:

Coll2↔2 = 36πA3

∫

Ωup

k2dk2k3dk3Skk1k2k3

× k−α
1 k−α

2 k−α
3 k−α (kα + kα

1 − kα
2 − kα

3 )

×
(

1 + (k1/k)3α−4 − (k2/k)3α−4 − (k3/k)3α−4
)

Coll3↔1 = 12πA3

∫

Ωdown

k2dk2k3dk3Skk1k2k3

× k−α
1 k−α

2 k−α
3 k−α (kα − kα

1 − kα
2 − kα

3 )

×
(

1 − (k1/k)3α−4 − (k2/k)3α−4 − (k3/k)3α−4
)

.

In Coll2↔2 the integration domain is over Ωup = {0 ≤

k2 ≤ k &
√

k2 − k2
2 ≤ k3 ≤ k} and k2

1 = k2
2 + k2

3 − k2

while in Coll3↔1 the integration is over Ωdown = {0 ≤
k2 ≤ k & 0 ≤ k3 ≤

√

k2 − k2
2}, with k2

1 = k2 − k2
2 − k2

3 .

The collisional terms scale as Coll2↔2 = C1(α)k2−3α

and Coll3↔1 = C2(α)k2−3α. The coefficients C1/2(α) are
pure real functions depending only on α. Both coeffi-
cients vanish with double degeneracy at α = 2 indicating
that the Kolmogorov spectrum: nKZ

k ∼ 1
k2 coincides with

the Rayleigh-Jeans solution Eq. (5). In fact, this degen-
eracy reveals the existence of a logarithmic correction,
similarly to the case of the nonlinear Schrödinger equa-
tion in 2D [8]. As discussed in an heuristic way in Ref.

[19], a logarithmic correction arises, thus:

nKZ
k = C

hP 1/3ρ2/3

(12(1 − σ))2/3

ln1/3(k∗/k)

k2
. (6)

Here P is the energy flux involved in the energy cascade
between the long-wave length scales and the short ones
(it has dimensions of mass/time3). C and k∗ are pure
real numbers.

For α = 0 and 3α − 4 = 0 the collisional part Coll2↔2

also vanishes. This solution corresponds to the wave ac-
tion equipartition (α = 0) with a second KZ spectrum
nk ∼ 1/k4/3 related to wave action inverse cascade. How-
ever, this spectrum do not make the second part of the
collision term Coll3↔1 vanish, in agreement with the non
conservation of the wave action mentioned above. There-
fore, an important consequence is the non existence here
of this second inverse cascade nk ∼ 1/k4/3, as usually
found for four wave interaction systems such as gravity
waves or the nonlinear Schrödinger equation. Neverthe-
less, we have observed that for elastic plates the wave
action conservation is only weakly violated during the
dynamics (inset of Fig. 2). We suggest that this weak
violation might explain why large scale structures can
developp for large time (see Figs. 1 and 2).

Numerical simulation.– Numerical simulations of the
full nonlinear system of Eqs. (1) and (2) are first per-
formed to validate the fomation of the equilibrium spec-
trum Eq. (5). In all the presented results c = 1 so
that the aspect ratio (thickness/linear size) is the only
dimensionless parameter of the numerics. We have im-
plemented a pseudo-spectral scheme using FFT routines
[20], with periodic boundary conditions: the linear part
of the dynamics is calculated exactly in Fourier space:

ζk(t + ∆t) = ζk(t) cos(ωk∆t)+ ζ̇k(t)
ωk

sin(ωk∆t). The non-

linear terms in (1) and (2) are first computed in real space
and the integration in time is then performed in Fourier
space using an Adams-Bashford scheme. It interpolates
the nonlinear term of (1) as a polynomial function of
time (of order one in the present calculations). Energy
is conserved within a 1/100 relative error. As initial con-

ditions, we have taken: ζk = ζ0e
−k2/k2

0eiϕk with ϕk a
random phase, and a zero velocity field ζ̇k = 0. As time
evolves, the random waves oscillate with a disorganized
behavior, as shown in Fig. 1. After a long time the sys-
tem builds up an equilibrium distribution in agreement
with the Rayleigh-Jeans nk ∼ T/k2 spectrum, which cor-
respond for the plate deflection to:

〈

|ζk|2
〉

= X2
knk =

nk

ρωk
= T

ρh2c2k4 as shown in Fig. 2.
Non equilibrium distributions can also be observed nu-

merically. One requires to input energy and pump wave
action at low wavenumbers (k < kin) and to dissipate
it at large ones (k > kout) defining a window of trans-
parency kin < k < kout. This artifact is implemented by
adding a term (Fk −γk ζ̇k) to the plate equation (1). Fol-
lowing [14] the forcing term Fk is a nonzero random force
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FIG. 2: Numerical simulation for a 1000 × h square plate
using 10242 modes. The initial condition is with k0 = 1 and
ζ0 = 0.02. We plot the power spectrum of mean deflection
〈

|ζk|
2
〉

versus wave number k after 1200 time units. The the

line plots the Rayleigh-Jeans power law 1/k4. The inset plots
the evolution of the wave action with time.

for the large scales, and γk is a fictitious linear damping
for short length scales. Fig. 3 shows a good agreement
with the predicted KZ spectrum Eq. (6) with an expo-
nant for the logarithmic correction 1/3 (inset Fig. 3).
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FIG. 3: Average power spectrum
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for the energy cas-

cade. The injection scale is kin ∈ (0.1, 0.25) while the dis-
sipation is at kout = 3. The line plots the power law 1/k4.

Inset plots k4
〈

|ζk|
2
〉

vs. log(k∗/k) in logarithmic scale with

k∗ = kout. The straight line corresponds to z = 1/3.

Conclusions.– We have successfully applied weak tur-
bulence theory for the new case of elastic thin plates.
The results allow for an analogy between an important
property of fluid dynamics and the mechanics of elastic
plates. Numerical simulations exhibit both the conver-
gence towards statistical equilibrium for a free system

and an energy cascade when forcing and dissipation are
introduced, as predicted by the weak turbulence analy-
sis. It suggests also a new experimental way of studying
weak turbulence dynamics through the analysis of acous-
tic waves produces by the plate oscillations[21].
In addition to the limitation of the model for small scales
due to plastic deformation, the weak turbulence analy-
sis fails for large deformations amplitude. The elastic
plate equations are still valid, but stretching cannot be
longer treated as weak perturbation and a “wave break-
ing” phenomenon is expected: energy focuses into local-
ized structures as ridges [22] and conical surfaces (named
d-cones)[23]. Amazingly, a regime dominated by ridges
shows a power spectrum |ζk|2 ∼ 1/k4 similar to the weak
turbulence spectrum derived here. On the other hand
for d-cones dominated regimes, as seemingly observed in
[24], the expected spectrum should follow |ζk|2 ∼ 1/k6.
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