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Abstract

We propose a simple continuum model to interpret the shearing
motion of dense, dry and cohesion-less granular media. Compressibil-
ity, dilatancy and Coulomb-like friction are the three basic ingredients.
The granular stress is split into a rate-dependent part representing
the rebound-less impacts between grains and a rate-independent part
associated with long-lived contacts. Because we consider stationary
flows only, the grain compaction and the grain velocity are the two
main variables. The predicted velocity and compaction profiles are in
apparent agreement with the experimental or numerical results con-
cerning free-surface shear flows as well as confined shear flows

1 Introduction

The mechanical behaviour of a flowing granular material depends strongly
on the grain compaction. While dense granular media usually exhibit rela-
tively slow motions with predominance of friction, less dense ones are usually
found in vigorous motions with predominance of two-particles collisions. The
collision-dominated regime is well described by kinetic theory, with the con-
cepts of granular temperature and inelastic collisions. On the contrary, the
current description of dense granular flows is not so fully satisfactory. It must
be understood that we are not questioning the description by soil mechanics
of quasi-static and highly stressed granular materials, but the description of
flows with relatively low stress levels encountered, for example, in avalanches



down an inclined plane. Several recent works (see e.g. [1, 2, 3]) concluded
rather pessimistically about the possibility of describing dense granular flows
within the realm of continuum mechanics. In fact, the experimental observa-
tion that most dense flows display a typical thickness of a few grain diameters
must not be a factor of pessimism. We know from several examples in sus-
pension mechanics that the continuum approach can cope with high velocity
gradients in one direction, provided one has some statistical homogeneity in
the other two directions. This situation is exactly the one met in sheared
granular media, provided we discard transient effects and focus on the final
stationary state. Once the continuum description is accepted, the number of
relevant field variables must be decided. There is no doubt that the grain
velocity is relevant and it is not less clear that the grain compaction is also a
pertinent variable. In fact the widely used assumption of an incompressible
medium is not tenable. It contradicts the dilatancy concept and, as will be
seen below, the transport coefficients of a dense granular medium display
enormous variations with only tiny modifications of the compaction. Our
aim is thus to propose a model for dense and stationary shear flows in which
the grain compaction and the grain velocity are the two fundamental vari-
ables. One could also suggest the fluctuational kinetic energy of the grains
(the granular ”temperature”) as a third variable. However, since we limit
our analysis to stationary shears, the granular temperature is no longer an
independent variable. The role of the embedding fluid will be neglected ev-
erywhere, and for these "dry” granular media, the main issue is to propose a
constitutive relation for the granular stress. To compare with previous works
on dense flows, we can say we adopt a phenomenological description some-
what similar to that proposed two decades ago by Savage [4] and by Johnson
and Jackson [5]. Like these authors, we introduce a stress tensor split into a
frictional and a collisional contribution. However, the collisional contribution
is concerned with rebound-less impacts characteristic of high grain concen-
tration, and is free of any restitution coefficient. Our constitutive relation
for the particulate stress has a form somewhat similar to that proposed by
Ancey and Evesque [6], the main differences concerning the role of the grain
compaction and a more detailed expression of the granular pressure. Our
model also shares some common features with the model proposed by Boc-
quet et al. [7] and by Louge [8], but instead of extending the kinetic theory
approach to large compaction, we prefer here to develop a model specifically
devoted to dense media. Moreover, the model we propose is quite simple in
so far as it denies any special role to the compaction gradient [9] and avoids
the non-locality concept [10].

Discarding two-particles collisions and any restitution coefficient means
that our model is restricted to volume fractions in the range between ¢,,



and ¢j;. The maximum grain compaction ¢,; corresponds to the highest
possible random packing (with ¢,; ~ 0.80 for two-dimensional flows and
¢ =~ 0.65 for three-dimensional ones) while ¢,, is the smallest compaction
compatible with the existence of a continuous network of contacts between
grains. As suggested by Azanza [1], one can define ¢,, as the minimum
compaction for which the two-particle distribution function exhibits some
swelling at a distance of two diameters. With this definition, ¢,, ~ 0.70 for
two-dimensional flows while ¢,,, ~ 0.50 for three-dimensional ones.

A phenomenological order parameter description of granular media was
recently proposed [11]. We acknowledge this approach looks efficient in de-
scribing a large number of phenomena observed in dense flows, but it suffers
from two serious drawbacks. The first one is the huge number of possible
candidates for the order parameter. For example, in the model to be pre-
sented below, the reduced compaction (¢ — ¢y,)/(dar — &) could play this
role. A second difficulty concerns the relevance of the Ginzburg-Landau re-
laxation equation for the order parameter. Here we consider the standard
conservation of mass and momentum only, without any extra equation.

The description of stationary free-surface shear flows is given in section
2 while that of confined shear flows is presented in section 3. Section 4
compares the model predictions with experimental and (or) numerical data.
The final section insists on the limitations and necessary improvements of
the proposed model, which must be considered as a minimal one.

2 Free surface shear-flows

As a prototype of shear flow with free surface, we consider the gravity-induced
chute (over a heap or an inclined plate, see Figure 1) with an angle 6 relative
to the horizontal plane. The mean grain velocity is parallel to the z-axis,
V = Ve,, while V and the solid fraction ¢ depend only on z, the distance
to the free surface. The granular stress tensor is noted 7 and the equations
of motion are:

0T : 01y,
0=——5"=+dpgsin(0) , 0=——5=+ pgcos(d) (1)

where p is the constant mass per unit volume of the grain material and g is
the acceleration of gravity.

For dense granular media, the granular stress is a consequence of long-
lived contacts and bounce-less impacts between grains. Long-lived contacts
result from compressive forces acting towards the boundaries of the gran-
ular medium. In the geometry considered, they take part in 7,, since z is



the direction of main compression. Whether gravity is responsible for com-
pressive forces or not, we choose to scale the compressive stress with pgD
where D is the grain size. The compressive stresses are related to the grain
volume fraction as pgDF'(¢), where dF'/d¢ is the non-dimensional compress-
ibility of the granular medium. In free-surface shear flows, gravity is the only
source of compaction and the magnitude of the compressive stress will also
depend on f. It is clear that the compressive role of gravity is maximum
when the compression axis z is vertical while this role vanishes when gravity
is orthogonal to it. Consequently, the general form of the gravity-induced
compressive stress is pgDF'(¢)f(6) with f(0) = 1 and f(7/2)= 0. The ex-
act expression of f(#) is not important because, as will soon be seen, the
stationary flows exist in a very limited range of # only. One of the simplest
function of # which meets the above requirement is cos(f), and we assume
henceforth that the contribution of long-lived contacts to 7,, can be written
in the form pgDF(¢)cos(#). To this gravity-induced contact stress must be
added a rate-dependent impact stress. On purely dimensional grounds, this
second contribution cannot be but Bagnold-like and the full normal stress
finally appears in the form:

res = Dun() (2 )+ paDF(@)cos(0), ®)

where py(¢) represents the compaction-dependent intensity of the normal
stress induced by the shear rate. Concerning the shear stress of the flowing
granular medium, we assume it is made of a Coulomb-like contribution with
a friction coefficient u(¢) completed by a Bagnold-like contribution involving
a coefficient ur(¢) representing the compaction-dependent intensity of the
shear stress induced by the shear rate

. v\’
The model expressions (2) and (3) contain four functions of the grain com-
paction. Before giving them some explicit (and tentative) expressions, let us
comment on their expected general behaviour. These four functions are char-
acteristic of the dense regime and have a meaning in the range ¢,, < ¢ < ¢
only. We expect F', ur and pux to become infinite when ¢ = ¢,s, because
no motion nor extra compaction is expected above the maximum random
packing. We also expect F' and uy to vanish for ¢ = ¢,,, because the nor-
mal stresses must vanish for the most tenuous contact network. Concerning
the friction coefficient y, it is the only coefficient which remains finite when
¢ = ¢p and it presumably increases [12] for smaller compactions. In short,
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the three scalars F', uy and pur are strongly increasing functions of the com-
paction, while  has a much smoother behaviour.

Since we neglect the role of the embedding fluid, the granular stress must
vanish at the free surface and consequently 7,, = tan(f)7,, everywhere. In
this case, when solving the equations of motion (1) with the model expres-
sions (2) and (3), one arrives at a compaction profile and a velocity profile
which are solution of:

do 0]
= 4
dz —6‘9 [ L | )
o l1—(un /pr)(tan(8)—pu)

D 2 awv F(sin(#) — pcos(h)) 1/2
(9) dz (uT(l — (un/pr)(tan(0) — u))) ' (5)

At the free-surface the solid fraction is ¢,, (remember we limit the description
to the dense regime). According to (4) the solid fraction increases towards
its maximum value ¢, over a depth which scales with the grain diameter but
depends on 6 if puy/pr is different from zero. Hence uy/ur represents the
relative magnitude of Reynold’s dilatancy. Concerning the velocity profile, its
characteristic value scales like (¢D)'/? and according to (5) its solution exists
for any angle 6 verifying the inequality u(¢) < tan(0) < (@) + ur(9)/un ().
For certain values of 6 this inequality is possibly satisfied in a part only of
the full range ¢, < ¢ < ¢y.

It is obviously not evident to deduce four functions of the compaction
from the rather scarce experimental or numerical results on stationary shear
flows. We assume henceforth that p and pr/puy are independent of the grain
compaction. Then, a stationary solution is possible in a well-defined angle
range gmm S 0 S gmawa with tan(em'm) =K and tan(gma:c) = U + ,UT/,U'N-
To obtain more quantitative results we consider separately the chute over a
heap from that over an inclined plane.

and

2.1 Heap flows

In the heap case, provided p and uy /ur are independant of the solid fraction,
one can deduce from (4) and (5) the total granular flux flowing down the heap

Qheap:

Quay _ _(5010) = peos(O) /“’M (F>/ ORds g
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the grain velocity Vieqp(0) at the free surface

Vaeap(0) _ (sin(8) — pcos(8))*/2 /¢M ( )1/2 OF d¢
¢ Hr

VoD (1 - £ (tan() - u))a/2 000

and the relative velocity profile

1/2
Vheap (Z) f¢heap ( ) % f
Vieap(0) — pou (_) 2 or a0

¢m  \ bT 99 ¢

Since the free-surface velocity and the flux are expected to have finite values
for Opmin < 0 < ez, the two functions F(¢) and pg(¢p) must be such as to
guarantee the convergence of the above integrals. In this case Vjeq,(0) and
Qheap are function of & with numerical prefactors depending on one’s peculiar

choice for F' and p7. In what follows we adopt the simple expressions

o 2

The same expression for F' was already proposed by Savage [4, 13] and leads
to an exponential-like volume fraction profile:

—_ ¢M
¢heap(za0) - 1+ (i_M _ 1)6—2/L(‘9)

m

(8)

(10)

with
D

S (1= B (tan(6) — 12) (1

L(6) represents the typical thickness of the layer flowing down the heap, and
it increases from L(0,) = I;O—D to infinity when 6 = 0,,,,. The relative

velocity profile is also exponential-like for

L) =

7G) R 2 (see figure 2) but displays

a Bagnold-like region of inverse concavity for +7 < 0.2 (see figure 3). In
fact, the numerical solution can be fitted by the analytical expression

3
W ECHYESEE ¢m) (e N g
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With ¢, = 0.5 and ¢,; = 0.65 the total flux flowing down the heap is
Qneay _ | J8_(sin(0) — pcos(0))
12 5/2°
DVOD s (1 - 2 (tan(0) — )

The dependence on 6 of L and Qpeqp are represented in Fig. 4, with = 0.36
and py/pr =4.7.




2.2 Chute on rough plates

The flows over inclined rough plates are more difficult to handle because the
constitutive equations (2) and (3) hold only in the bulk of the dense granular
medium and are likely to be modified close to the rough plate. Since the
role of the plate rugosity is difficult to assess quantitatively, we discard the
description of the ”basal layer” close to the plate [6, 8] and assume a slip
velocity V; at some distance 6 above the rough plate. Then we apply (2) and
(3) to a layer of thickness h, so that the free surface is located at a distance
h 4+ 6 above the rough incline. In the slab of thickness A, the solid fraction
increases from ¢, at the free surface to the value @peqp(h) at a distance §
from the rough plate where the velocity is V;. The total flux through the
core region is now given by:

Qplate — F(¢heap(h)) Vs +
DVgD ~ 1= E(tan(0) — ) VoD

(sin(0) — pcos(9))/2  [Prear® ( FINYZ HF g
/2/m ( ) o6 o 1

(1 £ tan(0) - )’ b

Hr

A rough plate is likely to slow down the core region more efficiently than a
heap would do and we expect Vs < Vieop(h). As a consequence, Qpiate (b, ) as
given in (13) is not expected to exceed Qpeap(f) given in (6). When forcing
a flux Qpiate to flow down a rough plane inclined at angle 6, two different
situations are encountered: when Qg is larger than Qpeq,(6), the granular
medium will rearrange so as to flow down over a heap of angle # + o with
Qpiate = Qneap(f + ). This gives a possible explanation for the “immature
sliding flows” that were observed in some experiments [3, 4]. Due to the very
large increase of Qpeqp Wwith 6 (see figure (4)) and because the experimental
flux is limited to some maximal value, immature sliding flows were observed
for small angles close to 0,,;, only. Conversely, when 4t is smaller than
Qheap(0) the whole layer of thickness A is in motion with a velocity everywhere
larger than V,. Moreover, when h/L(f) ~ 0.2, the Bagnold-like velocity
profile (which could hardly be observed in heap flows, see fig. (3)) is now
invading the whole core region. In fact, when expressions (9) are taken for
granted and h/L(#) ~ 0.2, the total flux (13) has the special form

Qe _ duVih 2 ¢%2(<sin(9>—ucos(0>>>1” (ﬁ)w. (14)

= + —
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When the role of the velocity slip can be neglected, the second contribution

gives the h®2 scaling which seems to be corroborated by experiments [14],
as well as numerical simulations [15].




3 Confined shear flow

In the two-dimensional shear flows we will consider the pressure load exerted
on the boundaries of the granular medium is supposed to be applied along
direction z, which is thus the direction of main compression. Because gravity
plays a minor role concerning the compressive forces, the constitutive relation
for 7,, is simply (compare with (2))

) dv\?
whatever the angle § between the z axis and gravity. The flow is along the
x axis and the constitutive relation for the shear stress 7., is still given by
(3), without any change as compared to the free-surface case.

3.1 Plane shear flow

As a first type of confined shear flow, we consider the planar shear of an
infinite horizontal granular layer bounded by two plates separated by a fixed
distance h. The pressure load and the gravity are both oriented along the
direction z and the flow is along direction z (see figure 5). The equations of
motion result in a constant shear stress S and a variable normal stress:

ro = S and 7..(2) = P(0) + pg /0 T p(e)de

where P(0) is the pressure load exerted on the upper plate z = 0 (z = h
stands for the lower plate). We will distinguish the situation without and
with gravity, the first case corresponding to numerical simulations and the
second one to experiments.

3.1.1 Without gravity

In this case the normal stress is also a constant P all over the granular layer
and the constitutive equations (15) and (3) give:

pun(o) (G2 ) =5 uo)p
P 1 (9) (2—3) — P~ pgDF(9) (16)

Depending on the sign of S — u(¢)P, we will have a static or a moving
medium. In the static case the pressure load is noted P, and the shear is
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such that S < u(¢pg) Py where ¢q is the constant compaction of the medium
related to the pressure load through Py = pgDF(¢¢). In the dynamic case,
the compaction is still ¢y (mass conservation) while the shear S is now larger
than p(¢o)Py. The velocity gradient is constant:

2 8_V 2_ S = (o) Po
pD <a> = (o) + 1(60) 1in (00)

Due to dilatancy effects the pressure load exerted on the plates is necessarily
larger than in the static case, following:

S — (o) Po
11(¢o) + pr(do) /1w (do)

As a consequence the effective friction coefficient is a function ¢y and P:

E _ pir (o)
P H(o) + pn(¢o)

P(S) =P+

(1222 P(s0).

3.1.2 With gravity

In this case the normal stress increases in the downward direction so that
the constitutive equation (3) results in

2 z

pua(o) (51 ) =5 = o)) = wtolpa [ s(€)de
It is then clear that the gravity-induced extra compaction possibly induces
shear localization because the right-hand side can have a different sign in
different parts of the flow. To simplify this issue we will now introduce the
same assumptions we have previously used in the free-surface shear flows,
namely that u and pr/uy do not depend on ¢ while F(¢) and ur () are given
by (9). We will first describe the static case before considering grain motions.
Because the compaction on the upper plate is nesessarily different in the static
and the dynamic cases, we define Py(0) as the pressure load exerted on the
upper plate when the granular medium is motionless and ¢g(z) as the static
compaction profile. As long as S < pPy(0), the granular slab is motionless,
the compaction ¢(0) at the upper plate satisfies Py(0) = pgDF(¢0(0)) and
the compaction profile is:

F
bo(2) = O with Ly = —2D
1+ ( on 1) e—#/Lo Pum
$0(0)




When the granular medium is flowing, the compaction profile ¢(z) displays
larger gradients and becomes

L
Ou with L = 0

¢(z) = Fa—T
(g 1) e L

where ¢(0) is the new compaction at the upper plate. Since mass conservation
requires

/0 16(2) — do(2)ldz = 0,

it is clear that L < Lo results in ¢(0) < ¢(0) and ¢(h) > ¢o(h). The
compaction of the moving medium is thus reduced at the upper plate as
compared to its static value while it is enhanced at the lower plate.

The velocity profile is then deduced from the compaction profile

()5 (%) -5

where S* is the dimensionless shear pgiD. Let us define the volume fraction ¢*
such that S* = pF'(¢*). It is clear that ¢* > ¢(0) because S > pFPy(0). How-
ever the above equation implies that motion exists for compactions less than
¢* only. This condition leads to check the self-consistency relation ¢(z) < ¢*
for 0 < z < h. This condition is automatically satisfied in the upper part
of the flow since ¢(0) < ¢¢(0) < ¢*. But it may be not in the lower part,
thus leading to a shear localization. This localization phenomenon is here de-
pending on S* and h/L. Fig (6) shows the compaction and velocity profiles
for two different values of ¢*(S*) investigating the two different situations
depending whether localization occurs or not.

3.2 Vertical chute flows

A second type of confined shear flow is the chute between two vertical plates
(see figure 7). The compaction is due to a pressure load P exerted on the
two plates along direction z. The flow and the gravity are oriented along
direction z. The equations of motion result in a constant normal stress and
a variable shear stress, by contrast to the preceding case:

T, = P and 7, = pg/o (b(f)df,

where z = 0 corresponds to the symmetry plane located between the two
plates at which the shear stress vanishes. The constitutive relation (3) implies
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pD%1n(6) (%—Z) = pg /0 " (€)de — u(6)P.

Either the right-hand side is everywhere negative (due to a very high pressure
load) and the medium is motionless or there is a central region of the flow
in which the shear stress does not exceed uP and consequently where the
strain rate vanishes. In this plug flow regime the solid fraction is a constant
¢* related to the pressure load as P = pgDF(¢*). The thickness z* of the
plug flow depends on ¢* (hence on the pressure load)

z u(¢*)F(¢*)

D ¢ '
Close to the vertical plates, there is a shear layer where the velocity decrease
to V,, dependent on the plate roughness. In this parietal shear layer, the
constitutive equations (15) and (3) imply:

(2)“2 v (F(¢*) - F(¢))1/2 an

g pin(9)
and 96 5
DZ- = . (18)
%2 2 l(u+12)F(¢) - L2 F(9)]

To obtain more definite results we again consider the assumptions already
made for gravity-driven and plane shear flows, namely that g and puy/pr
are independant of the solid fraction while F'(¢) and pr(¢) are given by (9).
Then, the compaction profile in the shear layer z* < z < 2z, is:

B(z) = A

= — (19)
1+ (Z—M — 1) e

where L* is the typical shear layer thickness:

L*  urky

D IUN¢M-

For the flow to be dense up to the vertical plates, the wall compaction ¢,
must be larger than ¢, and the shear layer thickness is
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As a consequence, the distance 2z, between the two plates is a function of
¢* (hence of P) and of ¢, (hence of the plate roughness). Concerning the
velocity, it increases from a value V,, at the wall to a value V4 in the central
part. The computed relative velocity field is represented in Fig (8) together

with the fit ) . 32
Vi) =Vw . o — o(z
- (550) o

4 Comparison with experimental and (or)
numerical data

4.1 Plane shear flow

Neglecting the influence of gravity (as was done in most numerical simula-
tions) our model leads to a uniform solid fraction and to a uniform velocity
gradient, in conformity with results presented in figures 5b and 5c¢ of [16] for
the dense flow regime. When gravity is taken into account, a shear local-
ization is possible, depending on the magnitude of the pressure load as well
as on the thickness of the granular layer. Unfortunately, we are unaware of
experimental or numerical data with which the predictions of Fig. (6) could
be tested.

4.2 Vertical chute flow

The uniform solid fraction and the uniform velocity in the core region are
correctly reproduced by the model. Concerning the sheared regions closed to
the vertical boundaries, the relative velocity profile (20) and the compaction
profile (19) are quite similar to results presented in fig. 7b and 7c of [16].

4.3 Heap flow

The solid fraction profile (10) and the velocity profile (12) are quite close
to those represented in fig.9b and 9c of [16] and in fig.9a and 9b of [17]. In
particular, the velocity profile displays a Bagnold-like profile very close to
the free-surface (z < 0.2L(F)), a quasi-linear profile in the central part of
the flow (0.2 < z/L(f) < 2) and finally an exponential tail for the deepest
parts of the flow, observed in [18]. At variance with confined flows for which
the shear was localized in boundary layers with thickness of the order of a
few grain diameters, heap flows are characterized by a thickness L(f) of a
few grain diameters when 6 is slightly larger than 6,,;, but which increases
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to quite large values when 6 is close to 0,4, A similar unlimited increase of
the grain flux Qpeqp is observed for 6 close to 0,44, as seen in fig. 4. Such a
behaviour is difficult to observe experimentally due to the limited values of
Qheap that can be achieved in usual laboratory devices. According to (6) and
(11), our model predicts L ~ (Qpeqp)?’® when 6 is not close to 0, a result,
slightly different from the scaling L ~ (Qpeqp)'/? suggested by fig.9j of [16].

4.4 Rough inclined planes

We explained the appearance of the so-called ”immature sliding flows”: they
develop when the imposed flux @pi.e Over a plate with inclination 6 is larger
than the flux Qpeap(f) which would fall down a heap with the same slope.
Since Qpiate 15 experimentally limited to some maximum value, immature
flows are observed for € close to 6,,;, only. When 6 comes close to 0,,,, the
thickness h of the granular layer flowing over the rough incline is smaller than
the thickness of the grain layer which would flow down a heap with similar
slope. And when 4 is less than 0.2L(0), the Bagnold-like velocity profile is
invading the whole flowing layer, with the h%/? scaling for the flux Qpiate as a
direct consequence (provided the first contribution to (14) is negligible). The
main drawback of our model is its inability to explain the quantity hse,(6)
introduced by Pouliquen [15] and which was confirmed in numerical simula-
tions [14]. The first reason is that we assumed the friction coefficient y to be
independent of the solid fraction. As a consequence 6,,;, is a constant and
hstop vanishes as soon as 6 > 0,,;,. A second reason is the possible inade-
quacy of our model close to the rough incline. In this basal or frictional layer
[6, 8], the particle rotation plays an important role, the grain stress tensor
is possibly non-symmetric and the solid fraction has a perturbed profile. All
these phenomena would require a specific modelling. In fact the explanation
of hsiop(0) proposed by Mills et al. [10] involves constitutive relations which
are different close to the boundaries from those holding in the bulk.

4.5 Annular shear

This special kind of shear flow was not considered here because to describe
it, we would need to give a constitutive equation for the 7,, component of
the granular stress, besides those for 7., and 7,,. This will be done in future
work.
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5 Conclusion

We proposed a model for dense granular flows which considers the solid
fraction as the main microstructural parameter. The granular stress is par-
titioned in a way similar to that proposed by Savage [13, 4]. One of the
distinctive features is a completely explicit expression for the contact stress
which involves a function F'(¢) of the solid fraction. The solid fraction pro-
file mainly depends on the compressibility dF'/d¢ while the velocity profile
is bound to F(¢)/ur(¢) where ur(¢) is somehow analoguous to the effective
viscosity used in the kinetic theory approach of dilute granular flows [7, 8]. In
principle the complete model contains two more functions of the solid fraction
(u(¢) and py(¢)) but we strived to show that not so bad predictions could
be obtained after assuming the friction coefficient u and the dilatancy ratio
i/ pr to be independent of the solid fraction. Obviously, these are simplify-
ing assumptions which can be released and improved. We also checked that
the tentative (and simple) expressions (9) for F'(¢) and pr(¢) led to sound
predictions. Needless to say that these expressions also can be improved.
The main drawback of constitutive equations (2) and (3) is their possible
failure in a thin layer close to rough boundaries. Their main advantage is
to contain all the ingredients necessary to interpret the shear-localization
phenomenon, and to be able to explain the quite different velocity profiles
appearing in the stationary shear flows of dense granular materials.
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Figure 1: Gravity-induced shear flow with free surface (over a heap or an
inclined plate with an angle 6 relative to the horizontal plane).
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Figure 2: Reduced velocity profile Vieap/Vheap(0) versus the adimensional
distance z/L() to the free surface. The dashed curve represents the approx-

imate expression (12). The reduced compaction profile (¢ — ¢,,)/(drr — D)
is plotted as well.

16



0.7 0.75 0.8 0.85 0.9 0.95 1

Figure 3: Zoom of figure 2 showing the Bagnold like region for z/L(#) < 0.2.
The dashed curve represents approximation (12).
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Figure 4: #-dependance of flux Qpeqp and adimensional thickness [(6) =
éuL(0)/D.
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Figure 5: Planar confined shear flow of an infinite horizontal granular layer
bounded by two plates separated by a fixed distance h. The pressure load
P and the gravity are both oriented along the direction z, the shear stress S
and the flow are along direction x).
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Figure 6: Velocity profile V' (z) and compaction profile ¢(z), left large S, right
small S.
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Figure 7: Vertical chute flow between two rough plates.
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Figure 8: Reduced velocity profiles (V(z) — Viy)/(Vpiug — Vi) versus the adi-

mensional distance % to the center. The arrow is in the increasing values

of pgg 7+ The dashed curve represents the approximate expression (20). The

reduced compaction profiles ¢/ with ¢,,/édnr = 0.7 are plotted as well.
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