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FOREWORD BY YVES POMEAU

This contribution is dedicated to the memory of a good friend and of a remarkable scientist who we shall all miss.
Carlos was among the few scientists who perceived at the end of the nineteen eighties that there was going to be a

shift of interest from the dynamical systems with a few degrees of freedom to the study of non equilibrium patterns,
and he had many interesting new ideas to bring to this field, that has expanded so remarkably since. On the occasion
of a visit to Pamplona (Navarra, Spain), we discussed possible realizations of the ‘end of grain boundary’ defect,
generic for roll-like structures [? ]. He managed to have very quickly a good computer model for this defect and we
began to examine various experimental possibilities. At the time we were both very busy with many things with very
little time left for long distance collaboration. Sadly this did not led to any joint publication between the two of us,
something I still regret.

INTRODUCTION

In the present contribution, we show how universal are the principles underlying the physics of the nonequilibrium
patterns. This is particularly evident when one reads the papers by Carlos and his collaborators. An unified view
of the field is presented in the recent book by Len Pismen, a monument of scholarship and of physical insight [? ].
Universality must be given a precise meaning, particularly by showing how difficulties in a subfield of science can be
dealt with thanks to ideas of another field.

The problem we examine in this light is the theory of supersolids. It is likely quite far from the interests of most
of those working on patterns. This is too bad, because, as we are going to show, it can greatly benefit from various
results obtained in the general theory of patterns. Supersolids is a concept with a rather long history, going back
to a paper by Penrose and Onsager, where it was introduced for the first time, and then shown, incorrectly, to be
physically irrelevant. The profound idea of [? ] is that the ground state of an assembly of many identical quantum
particles can be a crystal, periodic in space. This question of the structure of the ground state of many identical
classical objects has a very long history. If one accepts that the packing of non overlapping (identical and classical)
objects with the same shape and maximum density belongs to this class of problems, then already Democritos (ca
450 b.c.) had the idea that hooked atoms arranged compactly make crystals. Much later, Kepler conjectured that the
most compact packing of identical spheres is either a hcp or a fcc crystal, something proved recently only. Besides the
1D case, there are very few hard results on either the densest packing or on the ground state of interacting classical
points. The existence of quasicrystals shows that even simple atoms may have rather complex ground states. It is not
even totally excluded that the ground states is ‘turbulent’, that is without any type of long range order [? ]. Until
recently this possibility of a quantum system with a crystal as a ground state was considered as a theoretician fancy
more than as a real possibility (despite however a overwhelming evidence: besides Helium most materials are crystals
at very low temperature). Recent experiments seem to indicate at last that such a supersolid state exists and has
some of the properties one expects, including that a rotating crystal has not the inertia that would result from a bulk
motion. There is another interpretation of this property based on the idea that the crystal remains classical whilst
the vacancies undergo a Bose-Einstein condensation. We shall not discuss this complicated matter and assume that
the supersolid is a crystal that is also a quantum ground state. The connection with the theory of patterns is made by
noticing that a slight extension of the Gross-Pitaevskii (G–P) equation for superfluids describes a first order transition
toward a crystal state as the density is increased. This gives an opportunity to have a model of quantum system
with a ground state that is not uniform in space and that can be studied in details, particularly for its dynamical
properties in the limit of long wave-slow perturbations, the one visible macroscopically. This study is done with the
same techniques as the one used for non equilibrium patterns. In particular it is possible to disentangle the dynamics
of the lattice from the one of the phase, something that is non trivial.
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THE GROSS-PITAEVSKII LIKE MODEL OF SUPERSOLID

Our model is based upon the original form of the Gross-Pitaevskii (G–P) equation for the wavefunction of a weakly
interacting Bose-Einstein condensate. This is an equation for a complex valued function ψ of space (variable r and
time (t) that reads:

i~
∂ψ

∂t
= −

~
2

2m
∇

2ψ + ψ(r)

∫

U(r′ − r)|ψ(r′)|2dr
′, (1)

This equation can be derived from the full Schrödinger equation of many interacting bosons in the limit where
the interaction potential is both weak and very long-ranged, the so-called van der Waals limit where the two-body
interaction potential is of the form U(|ri −rj|) = γDU(|ri −rj |γ) where U is fixed and smooth and γ a real parameter
tending to zero in such a way that the integral

∫

drU(|r|) is a constant, independent on γ. We shall comment later
upon the applicability of this model to real crystals. The difference with the most commonly used form of the G–P
equation is that the potential of interaction between atoms includes a nontrivial dependence on the distance although
usually this interaction is taken as a delta function in such a way that the cubic term in equation (??) becomes simply
gψ(r)|ψ(r)|2. For dilute vapours at low temperature, the latter model is a fair approximation of the dynamics, g
being proportional to the scattering length for s-waves.

Below we derive first the equations for steady solutions (but for a global time dependent phase) for the Gross-
Pitaevskii equation within a Lagrange formalism. Then we do the same for the G–P equation with a nonlocal
potential and a supersolid ground state. The final result is an interesting system where the phase of the wavefunction,
the displacement field of the crystal lattice and its density are coupled to each other. We derive next the dynamical
equations for the perturbations with a small amplitude (the spectrum in the classical terminology) and we address
the issue of the boundary conditions for these coupled Bernoulli-Cauchy equations (Bernoulli for the ‘fluid-like’ part
and Cauchy for the ‘solid-like’ behaviour).

The Gross-Pitaevskii (or non linear Schrödinger) equation reads [? ]:

i~
∂ψ

∂t
= −

~
2

2m
∇

2ψ + g|ψ|2ψ. (2)

In this equation ψ(r, t) is a complex amplitude (this is a c-number, not an operator), normalized in such a way that

m|ψ|2 is the mass density, m being the mass of the atoms, g = 4πa~
2

m is the interaction coefficient, a being the positive
scattering length, r is the position.

The G–P equation is the Euler–Lagrange condition making the following functional of ψ (or action) stationary
under variations of ψ:

S =

∫

dr

∫

dt

[

i~

2

(

ψ
∂ψ∗

∂t
− ψ∗ ∂ψ

∂t

)

+
~

2

2m
|∇ψ|2 +

g

2
|ψ|4

]

. (3)

In the equation above, ψ∗ is the complex conjugate of ψ. The integrand in this equation, or Lagrangian, will be denoted
as L. By writing that S is stationary under variations of the modulus and phase of ψ, one finds the Bernoulli-like
equations coupling the velocity potential (the phase, up to a multiplicative constant) and the density. Let us write ψ
as ρ1/2eiφ, ρ real positive and φ real. The set of coupled equations for φ and ρ reads:

∂ρ

∂t
+

~

m
∇ · (ρ∇φ) = 0, (4)

and

∂φ

∂t
+

~
2

2m
(∇φ)

2
+
g

2
ρ+

~
2

2m

∇
2ρ

ρ
= 0. (5)

In the long wave limit, the quantum pressure ~
2

2m
∇

2ρ
ρ that appears in equation (??) is negligible and (??) and (??)

yield the Bernoulli equations for a compressible inviscid fluid where φ is m
~

times the velocity potential.
As shown in [? ] a model of supersolid is found by changing the local interaction in the G–P equation (the cubic

term) by a nonlocal term. In equation (??) this amounts to change g|ψ|2ψ into ψ(r)
∫

dr′v(r′ − r)|ψ(r′)|2, where
v(.) is a two body potential depending on the distance, as introduced already by Bogoliubov [? ]. Because there
is a simple one-to-one relation between the spectrum (the energy-momentum relation) of the excitations and the
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potential in Bogoliubov theory if the ground state is a superfluid (without positional order) one can derive from the
knowledge of this spectrum a concrete expression for the two body potential. We have shown [? ] that, with a
potential constructed in this way, there is a critical value of the density such that at larger densities the ground state
shows a periodic modulation in space. The transition is first order as the density increases. As shown by Penrose and
Onsager the phase of the ground state is always uniform in space, including when this state is modulated.

We shall take as our starting point the property of this system to have a ground state that is nonuniform but

periodic in space. It means that the solution of the G–P equation (??) is of the form ψ0(r)e−i
E0t

~ , where ψ0(r) is
a periodic function such that ψ0(r + qaa + qbb + qcc) = ψ0(r) for qa,b,c arbitrary integers, a, b and c being vectors
defining the elementary lattice cell (unit cell later). This solution is the ground state in the sense that, given an
average number density, called later on n, the lattice parameters and the function ψ0(r) are such that the energy
E0 is the smallest possible. This formal statement introduces an important difference between ordinary (classical)
crystals and supersolids: in perfect classical crystals there is an integer (or a simple fraction) number of atoms per
unit cell. Therefore the number density and the lattice parameters are not independent quantities. On the contrary,
in our model of supersolid, there is a priori no such relation. The lattice parameters and the average density can be
changed independently. This can be done as follows: one can write the equation for the ground state amplitude as
an integro-differential equation for the amplitude ψ0(r) with imposed periodic boundary conditions and a fixed total
mass in this cell, E0 being then an eigenvalue. For a given number density and cell parameters, the elliptic problem
that minimizes a functional has a solution. Changing now the geometry of the cell (and keeping the average number
density to its fixed value) on can find the solution with the smallest energy, the ground state. In a classical crystal
one could not carry the same procedure without changing the number density.

Therefore the ground state solution depends on three sets of parameters, the average density, n, the absolute position
of the lattice in space and lastly the global phase of the wavefunction. Following the general method of derivation of
the mechanical equations for continuous media (that traces back its origin to the derivation of the equation of 3D-
elasticity by Cauchy from a mass-spring model) the long wave-low frequency perturbations of the supersolid change
the constant parameters into slowly varying quantities. This set of parameters are the average density n that become
now n(r, t), the displacement field u(r, t) of the crystal lattice and the phase Φ(r, t). In the coming two sections we
shall derive equations for the three fields (n(r, t),u(r, t) and Φ(r, t)). Since the matter is not completely trivial, we
shall decompose the derivation into the derivation for the steady case, that gives equations for (n(r),u(r) and Φ(r)
without dependence on t and next we shall derive the equation including the posibility of time dependent fields.

GROUND STATE

Let the ground state be the wavefunction ψ0(r|n)e−i
E0t

~ , a solution of equation (??) such that the average number
density is n, although the energy E0 is the smallest possible. Indeed for an infinite system there is continuum of
such solutions, because an arbitrary translation, a multiplication by a phase factor and a change of n make another
solution. Note also that the lattice parameters are not free in this formulation. They are such that the energy is
minimum, although there is likely a continuous range of values where they can be found but by increasing in general
the energy.

By steady state we mean a solution of the equation (??) that depends on time only through a phase factor e−i µt
~ ,

µ constant, independent on r. A r-dependent µ would introduce a time dependent piece in the Lagrangian, through
the gradient square term |∇ψ|2 term. A constant µ may be seen as a Lagrange multiplier for the total mass, since it
appears in the product µρ. Indeed this value of the energy is related to the density, since in our model the energy of
the ground state is a function of the density. In the simple G–P model, µ = gρ.

With such a constant µ, all time dependence has disappeared in the Lagrangian. Therefore the minimization of the
action yields a set of differential equations for functions of r only.

The full Lagrangian for the G–P equation reads:

L = −

∫
(

~ρ
∂φ

∂t
+

~
2

2m

(

ρ(∇φ)2 +
1

4ρ
(∇ρ)2

))

dr −
1

2

∫

U(|r − r
′|)ρ(r)ρ(r′)drdr

′. (6)

For steady situation this Lagrangian becomes:

Lst =

∫
(

µρ−
~

2

2m

(

ρ(∇φ)2 +
1

4ρ
(∇ρ)2

))

dr
′ −

1

2

∫

U(|r − r
′|)ρ(r)ρ(r′)drdr

′. (7)

The ground state is given by the solution of the nonlinear integro-differential equation for ρ derived by variation of
the action whose integrand is the Lagrangian (??). Furthermore the phase field φ, because it appears only proportional
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to (∇φ)2, makes the action the smallest when it is uniform in space: φ = µt, µ constant. Therefore, the ground state
is with an uniform φ and a density solution of:

−µ+
~

2

4m

(

(∇ρ)2

2ρ2
−

∇2ρ

ρ

)

+

∫

U(|r − r
′|)ρ(r′)dr

′ = 0. (8)

In Ref. [? ] we have presented a weakly nonlinear analysis for the study of ground state solutions as a modulation

of a homogeneous state. This ground state depends on a single parameter : Λ = U0
ma2

~2 na
3, where U0 measures the

strength of the potential, a its range and n = 1
Ω

∫

drρ(r) is the average number density over the total volume Ω.
Although this analysis is valid only for moderate values of Λ, that is whenever the roton minima of the Bogoluibov
dispersion relation does not touch the zero energy axis, a ground state is found numerical for a large range for the
parameter Λ. In two space dimensions a hexagonal structures appears to be the most stable one (see Figure ??),
however in three dimensions a hcp structure is the most stable one.

a b

FIG. 1: We plot the density modulations |ψ|2 (the dark points means a large mass concentration) of a numerical Simulation of
eqn. (??) in a 1282 with periodic boundary conditions. We use a Crank-Nicholson scheme that conserves the total energy and
mass. The mesh size is dx = 1, the nonlocal interaction parameters are chosen as U0 = 0.01 and a = 8 (physical constants ~

and m are 1), finally the initial condition is an uniform solution ψ = 1 plus small fluctuations.

We shall leave the detail of the weakly nonlinear analysis and the stability among various structures in various
dimension for a future publication.

a b

FIG. 2: A three dimensional contour plot of density |ψ|2 = 0.3 of a numerical Simulation of eqn. (??) in a 323 box with periodic
boundary conditions. We use a Crank-Nicholson scheme that conserves the total energy and mass. The mesh size is dx = 1,
the nonlocal interaction parameters are chosen as U0 = 0.02 and a = 4 (physical constants ~ and m are 1), finally the initial
condition is an uniform solution ψ = 1 plus small fluctuations.

As we have seen, µ can be also interpreted as a Lagrange multiplier to determine the average number density, that
we shall denote as n. Furthermore this ground state solution, if periodic in space, depends on some absolute position.
Let ρ0(r|n) be a ground state solution, then ρ0(r−u|n) is also a ground state solution with the same µ, for a constant
displacement field u. This is the classical situation of a solid. However, there is a difference between the classical
solid and the present model. This is because, having to solve integrodifferential equations instead of conditions of
mechanical equilibrium of a set of points in a regular lattice, the average density and the lattice spacing are independent
parameters now (concretely in a classical lattice, n would be related to the gradient of the displacement making it
an ‘enslaved’ variable). The change of lattice spacing can be represented by a displacement field that is linear in the
position, ui = ǫijrj where ǫij are the entries of a constant real symmetric matrix, i, j, etc. being the component-index
running from 1 to 3, and Einstein’s convention of summation on like indices is applied. The integrodifferential equation
(??) can be solved in a periodic box of fixed size, for a given µ, the Lagrange parameter for the number density. This
has certainly a solution, because of the variational formulation of the problem. Therefore this family of ground state
solutions depends on lattice parameters that can vary continuously and independently on the average density n. The
limit we are interested in is the one of states that are close to the ground state, but for the fact that the parameters
of this ground state change very little at the scale of the period of the lattice.

HOMOGENIZATION TECHNIQUE FOR THE LONG-WAVE EFFECTIVE LAGRANGIAN

We have next to consider the phase that will be assumed to be slowly varying in space. We carry the calculation
for this case in details. As written in reference [? ] we follow the general method called homogenization. This
splits cleanly the long-wave behaviour of the various parameters and the short range periodic dependence upon the
lattice parameters. This splits cleanly the long-wave behaviour of the various parameters and the short range periodic
dependence upon the lattice parameters.
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The displacement enters into the modulated density that is a function ρ0(r − u(r)|n). To this density must be
added a small correction ρ̃ that is of the order of magnitude of the gradients of u but that depends on r on scale of
the order of the (small) lattice size. Similarly we add a small correction φ̃ to the slowly varying phase Φ(r). This
small correction plays the same role as ρ̃ before. Let write the Ansatz for density and phase:

ρ = ρ0(r − u, n(r, t)) + ρ̃(r − u, n, t) + . . .

φ = −µ/~t+ Φ(r, t) + φ̃(r − u, n, t) + . . . (9)

where Φ, u and n are slow varying fields and φ̃ and ρ̃ are small and fast varying periodic functions. Taking gradients
and time derivatives of various expressions

(∇ρ)i = (δik − ∂iuk)
∂ρ0

∂xk
+
∂ρ0

∂n

∂n

∂xi
+ (δik − ∂iuk)

∂ρ̃

∂xk
+
∂ρ̃

∂n

∂n

∂xi
, (10)

∂tφ = µ/~ + ∂tΦ − ∂tuk
∂φ̃

∂xk
+ ∂tφ̃+

∂ρ̃

∂n
∂tn, (11)

(∇φ)i = (∇Φ)i + (δik − ∂iuk)
∂φ̃

∂xk
+
∂φ̃

∂n
(∇n)i (12)

and keeping the relevant contributions for the long-wave description (from now on we shall forget the dependence of
ρ0 with respect to n).

ρ∂tφ = (µ/~ + ∂tΦ)ρ0 − ρ0∂tuk∂kφ̃+ µ/~ρ̃+ ∂tΦρ̃+ h.o.t, (13)

(∇ρ)2 = (δik + ǫik)∂iρ0∂kρ0 + 2(δik + ǫik)∂iρ0∂kρ̃+ (∂iρ̃)
2 + h.o.t, (14)

(∇φ)2 = (∂iΦ)2 + 2(δik − ∂iuk)∂iΦ∂kφ̃+ (∇φ̃)2 + h.o.t, (15)

where ǫik = −(∂iuk + ∂kui) + ∂lui∂luk is the strain.
Let us consider the non local term

N (ρ, ρ) =
1

2

∫

U(|r − r
′|)ρ(r − u(r))ρ(r′ − u(r′))drdr

′.

If ρ(r−u) is a periodic function of r with u constant. The result would be an exactly periodic function of r. However
if u is not constant, the integration makes it depend on values of u in a small domain. We shall expand up to first
order in the small derivative of u(r). The final result requires some steps:

i) using the change of variables R = r − u(r) and R′ = r′ −u(r′) one finds that the metric of these new variables
are: |dR|2 = (δik + ǫik)dxidxk, and |dR′|2 = (δik + ǫ′ik)dx′idx

′
k, where ǫ′ik means derivatives respect to r′.

ii) the relative distance ∆R = R − R′ is |∆R|2 = |∆r|2 + ǫik∆xi∆xk.
iii) ǫik in previous formulas are functions of r, however up to first order in ǫik one may approximate ǫik&ǫ′ik in

terms of derivatives respect the new variable R&R′.
The final result reads

N (ρ, ρ) =
1

2

∫

U

(

|∆R| −
ǫik
2

∆Xi∆Xk

|∆R|
+ . . .

)

ρ(R)dR
√

det(δik + ǫik)

ρ(R′)dR′

√

det(δik + ǫ′ik)

=
1

2

∫
(

1 −
1

2
(ǫll + ǫ′ll)

) (

U(|r − r
′|) −

1

2
ǫikfik(r − r

′) + . . .

)

ρ(r)ρ(r′)drdr
′, (16)

in the last expression we have re-named the variables (R&R
′) as (r&r

′), and we define fik(r − r
′) = (xi − x′i)(xk −

x′k)U ′(r−r
′)

|r−r
′| .

Introducing this Ansatz into the Lagragian (??) one gets five kind of terms:
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L = Ln + LΦ + Lu + Lφ̃ + Lρ̃ (17)

Ln =

∫
(

µρ0 −
~

2

8m

(∇ρ0)
2

ρ0

)

dr −
1

2

∫

U(|r − r
′|)ρ0(r)ρ0(r

′)drdr
′, (18)

LΦ = −

∫
(

~∂tΦ +
~

2

2m
(∇Φ)2

)

ρ0(r) dr, (19)

Lu = −

∫

~
2

8m
ǫik
∂iρ0∂kρ0

ρ0
dr +

1

4

∫

(ǫikfik(r′ − r) + (ǫll + ǫ′ll)U(|r − r
′|)) ρ0(r)ρ0(r

′)drdr
′, (20)

Lφ̃ = ~

∫

ρ0(r)

(

∂tuk∂kφ̃+
~

m
∂iuk∂iΦ∂kφ̃−

~

m
∇Φ · ∇φ̃−

~

2m
(∇φ̃)2

)

dr, (21)

Lρ̃ =

∫

µρ̃(r)dr −
~

2

8m

∫
(

2
∂iρ0

ρ0
∂iρ̃−

1

ρ2
0

(∇ρ0)
2ρ̃

)

dr −
1

2

∫

U(|r − r
′|)(ρ0(r)ρ̃(r′) + ρ0(r

′)ρ̃(r))drdr
′ −(22)

−
~

2

8m

∫
(

−ǫik
∂iρ0∂kρ0

ρ2
0

ρ̃+ 2ǫik
∂iρ0

ρ0
∂kρ̃+

1

ρ0
(∇ρ̃)2

)

dr −
1

2

∫

U(|r − r
′|)ρ̃(r)ρ̃(r′)drdr

′

−
1

4

∫

(ǫikfik(r′ − r) + (ǫll + ǫ′ll)U(|r − r
′|)) (ρ0(r)ρ̃(r′) + ρ0(r

′)ρ̃(r))drdr
′ (23)

where in the last action (??) we have omitted terms having a single dependence on fast varying variable ρ̃, like

−
∫

ρ̃(~∂tΦ + ~
2

2m (∇Φ)2)dr, because they vanish after integration in the unit cell.
We analyze each Lagrangian step by step in the following sections.

The “internal energy” part: Ln.

As the average density changes continuously the solution of the integrodifferential equation (??) can be considered
as a periodic function of r, say ρ0(r) and as a regular function of the Lagrange multiplier µ imposing the average
density n. Therefore by integrating over an unit cell of the lattice the action from which (??) is derived one obtains
an averaged energy density that depends on the parameter n only, and that we shall write as

Ln = −

∫

E(n)dr

where

E(n) =
1

V

∫

V

dr

(

−µρ0(r) +
~

2

8mρ0
(∇ρ0)

2 +
1

2
ρ0(r)

∫

dr
′U(|r − r

′|)ρ0(r
′)

)

= −
1

2V

∫

V

drρ0(r)

∫

U(|r−r
′|)ρ0(r

′)dr
′.

(24)
This yields the-formally- simplest case of homogenization.

The “hydrodynamical” part I: LΦ.

Similarly, terms mixing the slow varying phase field Φ(r, t) and ρ0(r) can be averaged directly leading to

LΦ = −

∫

n

(

~∂tΦ +
~

2

2m
(∇Φ)2

)

dr (25)

where n = 1
V

∫

V
ρ0(r) dr.

The elastic part: LΦ.

The Lagrangian (??) can also be averaged directly

Lu = −

∫

(ǫikc
(1)
ik + ǫllc

(2))dr (26)
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where

c
(1)
ik = −

1

V

∫

V

(

~
2

8m

∂iρ0∂kρ0

ρ0
+

1

4

∫

fik(r′ − r)ρ0(r)ρ0(r
′)dr

′

)

dr,

and

c(2) = −
1

V

∫

V

(

1

2

∫

U(|r − r
′|)ρ0(r

′)dr
′

)

ρ0(r)dr,

are two elastic constant. In the last expression we approximate ǫ′ll by ǫll because the short range of the potential.
Naturally they depend on the average density n(r, t), however if this dependence is weak the second term of (??).

The “hydrodynamical” part II : Lφ̃.

The φ̃ dependence term of this Lagrangian can be re-written of the form:

Lφ̃ = −
~

2

2m

∫

(

2ρ0A · ∇φ̃+ ρ0(∇φ̃)2
)

dr,

where A =
(

∇Φ − (∇Φ · ∇)u − m
~
∂tu

)

(considered as a constant in the unit cell). The Euler-Lagrange condition for
Lφ̃ reads

A · ∇ρ0 + ∇ ·
(

ρ0∇φ̃
)

= 0.

This Poisson-like equation is to be solved within the unit cell of the lattice, for a function φ̃ that is periodic with the
same period as ρ0. The result (that can be expressed as the minimum of a certain Rayleigh-Ritz functional) is linear
in A and can be written as

φ̃ = KiAi

where K(r) is a vector-valued function of r that is periodic and satisfies

∇iρ0 + ∇ · (ρ0∇Ki) = 0.

Putting the result into the Lagrangian Lφ̃ one obtains the relevant contribution for the slowly varying part of the
phase:

Lφ̃ =
~

2

2m
̺ijAiAj (27)

with the positive defined matrix

̺ij =
1

V

∫

V

ρ0(r)∇Ki · ∇Kj dr . (28)

The Lagrange function Lφ̃ depends on the slow variables only. We shall restrict ourselves below to crystal structures
sufficiently symmetric to make ̺ij diagonal ̺ij = ̺(n)δij . The quantity ̺(n) is zero if the crystal modulation is absent
and would be very small for Bose-Einstein condensate with a non local interaction term. ̺(n) → n when all the mass
is strongly localized in the center of the cell site with a small overlap in between the different sites. This is presumably
the situation of almost all materials in their solid state at low temperature. A large Young modulus is likely a measure
of the small overlap of the wave functions from one site to the next, making 4He exceptional at this respect. In other
words when ̺(n) → n the supersolid behaves as a ordinary solid state.

The elastic part II : Lρ̃.

The same method of homogenization can be used to obtain the general equations for steady states of the supersolid
with long-wave perturbations of the displacement u.
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We know already that a function ρ0(r) is a solution, periodic in space, the average number density n being linked
to the Lagrange multiplier µ. We are looking for solutions close to this ρ0, but with a slowly varying displacement
field u.

The relevant terms of the Lagrangian Lρ̃ (??) are quadratic in the gradients of ρ̃, no contribution linear in the
perturbation may appear, because the action is at a minimum when ρ = ρ0 (thah the first line (??) of the Lagrangian
(??) vanish identically since the ρ0(r) terms satisfy (??) because this last equation is an extreme of the Lagrange
functional, the only linear terms relevant in (??) are the one proportional to gradients of displacements). A variation
of this Lagrangian yields the sought after equations for the short wave perturbation ρ̃ in the unit cell:

~
2

4m
∇ ·

(

∇ρ̃

ρ0

)

−

∫

U(|r − r
′|)ρ̃(r′)dr

′ =
~

2

8m
ǫik

(

∂iρ0∂kρ0

ρ2
0

− 2
∂ikρ0

ρ0

)

+

+ ǫik

∫
(

1

2
fik(r′ − r) + δikU(|r − r

′|)

)

ρ0(r
′)dr

′ (29)

One sees easily that the solution of this equation is of the form

ρ̃ = ǫikEik(r). (30)

Plugging into this expression for the Lagrangian the value of ρ̃ given in equation (??) with ǫik constant, independent
on r, integrating Lρ̃ over the volume of the unit cell and dividing by this volume, one obtains the Lagrange function
for the slow variations of u :

Lρ̃ =
1

2

∫

λijklǫijǫkldr. (31)

The coefficients λijkl are given by integrals over the unit cell of functions introduced in equation (??) and (??)

λijkl =
1

V

∫

V

(

~
2

8m

1

ρ0
(∇Eij) · (∇Ekl) +

1

2

∫

U(|r − r
′|)ρ̃(r)ρ̃(r′)

)

dr
′. (32)

The coefficients λijkl are given by integrals over the unit cell of various functions defined explicitely. This is the
familiar elastic energy of a Hookean solid.

Indeed one recognizes in 1
2λijklǫijǫkl the familiar expression of the elastic density energy of a solid following Hooke’s

laws of elasticity.

The effective Lagrangian : Leff .

Summarizing, the effective Lagrangian for the long wave perturbations of the displacement, of the average density
and of the phase is the sum of the various contributions to this Lagrangian given in equation (??) for the average
density, (??) for the phase dynamics, in (??) for the phase and in (??) for the displacement:

Leff = −~n
∂Φ

∂t
−

~
2

2m

[

n (∇Φ)
2 − ̺ik(n)

(

∇Φ −
m

~

Du

Dt

)

i

(

∇Φ −
m

~

Du

Dt

)

k

]

− E(n) +
1

2
λijkl

∂ui

∂xj

∂uk

∂xl
(33)

where

Du

Dt
=
∂u

∂t
+

~

m
∇Φ · ∇u.

This expression is remarkable because it is fully explicit for a given ground state of the GP model. As one can
check this Lagrangian is Galilean invariant.

We conjecture that, because this Lagrangian satisfies the symmetries imposed by the underlying physics and because
it includes a priori all terms with the right order of magnitude with respect to the derivatives, the general Lagrangian
of any supersolid at zero temperature has the same structure. In a recent paper, Son [? ] derives a Galilean invariant
Lagrangian such that (??) is a sub-class but with well defined coefficients like ̺(n), E(n) and λijkl depending on the
details of the crystal structure.
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SUPERSOLID DYNAMICS AT T = 0.

The dynamical equations are derived by variation of the action S =
∫

Ldt taken as a functional of n, Φ and u. The
final result is a set of coupled partial differential equations for the those fields. The variation with respect to n, u

and Φ yields (we have taken an isotropic density ̺ik(n) = ̺(n)δik, and we write ̺′(n) = d̺/dn, etc.):

~
∂Φ

∂t
+

~
2

2m

[

(∇Φ)
2 − ̺′(n)

(

∇Φ −
m

~

Du

Dt

)2
]

+ E ′(n) +
1

2
λ′ijkl

∂ui

∂xj

∂uk

∂xl
= 0 (34)

m
∂

∂t

[

̺(n)

(

Dui

Dt
−

~

m

∂Φ

∂xi

)]

−
∂

∂xj

(

λijkl
∂uk

∂xl

)

+ ~
∂

∂xk

[

̺

(

Dui

Dt
−

~

m

∂Φ

∂xi

)

∂Φ

∂xk

]

= 0 (35)

∂n

∂t
+

~

m
∇ · (n∇Φ) −

~

m

∂

∂xj

(

̺(n)(δik − ∂kui)

(

∂iΦ −
m

~

Dui

Dt

))

= 0 (36)

The latter equation reduces to the familiar equation of mass conservation for potential flows whenever ̺(n) = 0,
namely in the absence of modulation of the ground state. Although our equations of motion (??,??,??) and the one
of Andreev–Lifshitz are almost identical in the zero temperature limit (see eqns. (16) of Ref. [? ]), our model has
significant differences with their. Our solid cannot be considered as the normal component of a two “fluids” system,
because it is on the same footing (phase coherent) as the superfluid part at T = 0K. Therefore, at small finite
temperature, our model has a normal component that is a fluid of vanishing density at T = 0K, besides its coherent
superfluid and solid part and should change the superfluid density fraction. Following Landau’s ideas, this normal
fluid is a gas of quasi-particles with the mixed spectrum able to carry momentum whilst the coherent part (superfluid
plus solid) stays at rest.

The Euler-Lagrange conditions impose also the boundary conditions for the equations of motion:

~

m

(

n∂kΦ − ̺(δik − ∂kui)

(

∂iΦ −
m

~

Dui

Dt

))

êk = nVkêk.

where Vk is the local speed of the solid wall of the container and êk is normal to it. The displacement moves with the
wall: Du

Dt = V .

SOUND WAVES, NONCLASSICAL ROTATIONAL OF INERTIA, MATTER FLOW UNDER STRESS

JE NE SAIS PAS S”IL FAUT METTRE CELA, PEUT ETRE ON REFERE SEULEMENT DANS L:”INTROD

Sound waves

Let us look at small perturbations around a nondeformed (u = 0) and steady (∇Φ = 0) state of average density
n. The linearized version of (??,??,??) shows that the shear waves are decoupled from the compression and phase
(Bogoliubov-like) waves. The dispersion relation for the coupled compression and phase waves leads to a simple
algebraic equation. In the limit ̺(n) → 0 the crystal structure disappears and the phase mode propagates at the
usual speed of sound found by Bogoliubov c =

√

E ′′(n)/(mn). In the limit ̺(n) → n, that is whenever the supersolid
behaves as a regular solid state, the two propagation speeds are (cK is the longitudinal elastic wave speed [? ])
v1 =

√

c2K + c2 and v2 =
√

c2Kc
2/(c2K + c2)

√

1 − ̺(n)/n meaning that the phase mode disappears at the transition
supersolid-solid.

Nonclassical Rotational of Inertia

As suggested by Leggett [? ] an Andronikashvili kind of experiment could manifest a non classical rotational inertia
(NCRI). Indeed let us supose that the wall of the container of volume Ω rotate with an uniform angular speed ω.
Then for low angular speed the crystal moves rigidly with the container u̇ = ω × r without any elastic deformation.
The densities n and ̺(n) being constant in space, equation (??) simplifies into

∇2Φ = 0 inΩ with ∇Φ · ê = (m/~)(ω × r) · ê on∂Ω. (37)
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This mathematical problem (??) has an unique solution [? ]. The moment of inertia comes directly from the energy
per unit volume of the system: E = Φt

δL
δΦt

+ ut ·
δL
δut

− L. In the rotating case E = 1
2Issω

2 where Iss is the zz
component of the inertia moment :

Iss = m(n− ̺(n))Ipf +m̺(n)Irb

with Ipf =
∫

Ω
(∇Φ)2dr, Φ solution of (??), ω, m and ~ taken to 1. This number depends on the geometry only, Irb

is also a geometrical factor corresponding to rigid body rotational inertia (x&y orthogonal to the axis of rotation)
Irb =

∫

Ω(x2 + y2)dr. The relative change of the moment of inertia whenever the supersolid phase appears is (here
Irb = mnIrb)

(Iss − Irb)/Irb = −(1 − ̺(n)/n)(1 − Ipf/Irb) (38)

Because Ipf < Irb, one has (Iss − Irb)/Irb ≤ 0 as expected and observed experimentally [? ]. The NCRI fraction
(NCRIF) disappears, as well as the phase mode sound speed, when the supersolid phase recovers the ordinary solid
phase (̺(n) → n).

Within the model presented here it is easy to implement a numerical procedure to put in evidence a NCRI in a 2D

system. We shall first minimize H −ωLz for different values of the angular frequency ω, where H = ~
2

2m

∫

|∇ψ|2dr +
1
2

∫

U(r′ − r)|ψ(r, t)|2|ψ(r′, t)|2drdr′ is the Hamiltonian and Lz = i~
2

∫

(ψ∗r × ∇ψ − ψr × ∇ψ∗)dr the angular
momentum. The minimization should constrain a fixed total mass : N =

∫

|ψ|2dr. Starting with ω = 0 one finds the
minimizer and then by increasing ω step by step together with the minimization procedure we follow the evolution of
the local minima. Figure ??-a represents the NCRIF as function of ω, for different values of nU0. We observe a non-
zero NCRIF in particular in the limit ω → 0. Fgure ??-b shows this limit NCRIF0 as a function of the dimensionless

compression Λ = U0
ma2

~2 na
3. Both curves are in qualitative agreement with recent experiments (see Fig. 3-D of [? ]b

and Fig. 4 of [? ]c).

a b

FIG. 3: We implement a relaxation algorithm in Fourier space with 128 × 128 modes to find a local minima in a square cell
of 96 × 96 units, the potential range a = 4.3, for different values of U0n. a) The NCRIF ≡ 1 − L′

z(ω)/ 〈Irb〉 vs. the local
Maximum speed vmax = ωL/

√
2 for different values of the compression parameter nU0 = 0.069, 0.084, 0.099&0.114 Here 〈Irb〉

is the average inertia moment for large ω computed numerically. b) The NCRIF0 as a function of nU0. Note that a) and b)
almost do not depend on the box size.

MATTER FLOW UNDER STRESS

Finally, we study a gravity (or pressure) driven supersolid flow. As early suggested by Andreev et al. [? ] an
experiment of an obstacle pulled by gravity in solid helium could be a proof of supersolidity. Different versions of
this experiment failed to show any motion [? ], therefore a natural question arises: How we can reconcile the NCRI
experiment by Kim and Chan and the absence of pressure or gravity driven flows?

In fact, our supersolid model (and it seems that supersolid helium too) reacts in different ways under a small
external constrain such as stress, bulk force or rotation in order to satisfies the equation of motion and the boundary
conditions. For instance, if gravity (or pressure gradient) is added then the pressure E ′(n) balances the external
“hydrostatic” pressure mgz in equation (??) while the elastic behavior of the solid of equation (??) balances the
external uniform force per unit volume mng. No ∇Φ nor u̇ are needed to satisfy the mechanical equilibria. Moreover,
a flow is possible only if the stresses are large enough to display a plastic flow as it happens in ordinary solids. In [?
] we showed that a flow around an obstacle is possible only if defects are created in the crystal, in this sense we did
observe a plastic flow, however in the same model we observe a “superfluid-like” behaviour under rotation without
defects in the crystal structure. Indeed for a small angular rotation the elastic deformations come to order ω2 while
∇Φ or u̇ are of order ω, the equations of motion together with the boundary conditions leads to a NCRIF different
from zero.

We have realized a numerical simulation to test the possibility of a permanent gravity flow for different values of

the dimensionless gravity G = m2ga3

~2 . Let us consider an U-tube as in Fig.??. The system is prepared for 500 time
units into a good quality (but not perfect) crystalline state. A vertical gravity of magnitude G is switched-on and the
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system evolves for 500 time units more up to a new equilibrium state (see Fig. ??-a). The gravity is then tilted (with
the same magnitude) at a given angle. A mass flow is observed at the begining from one reservoir into the other,
but both vessels do not reach the same level eventually (see Fig. ??-b). There is some dependence of the transferred
mass on G till G ≈ 0.0005 and the mass transfer becomes negligible from fluctuations for G < 0.00025 indicating
the existence of a yield-stress. The flow is allowed by dislocations and grain boundaries and it is a precursor of a
microscopic plastic flow as in ordinary solids (e.g. ice) and as it is probably observed in Ref. [? ]. A microscopic
yield-stress could be defined by the smallest gravity G such that no dislocations, defects nor grain boundaries appear.
In the present model this is for G < 10−4.

a b

FIG. 4: We plot the density modulations |ψ|2 (the dark points means a large mass concentration) of a numerical Simulation of
eqn. (??) with Dirichlet boundary conditions with the shape of an u-tube as in the figure. We use a Crank-Nicholson scheme
that conserves the total energy and mass. The mesh size is dx = 1, the nonlocal interaction parameters are chosen as U0 = 0.01
and a = 8 (physical constants ~ and m are 1), finally the initial condition is an uniform solution ψ = 1 plus small fluctuations.
One gets a crystalline state after 500 units time; then a vertical gravity of magnitude G = 0.01 is switched-on, and the system
evolves for 500 time unites up to a. Then gravity orientation is tilted in 45◦. After 2000 time units the system evolves to a
stationary situation b showing that the mass flow is only a transient.

In conclusion, we have shown a fully explicit model of supersolid that display either solid-like behavior or superflow
depending on the external constrain and on the boundary conditions on the reservoir wall. Our numerical simulations
clearly show that, within the same model a nonclassical rotational inertia is observed as well a regular elastic response
to external stress or forces without any flow of matter as in experiments [? ? ].

G–P SUPERSOLIDS AND REAL SOLIDS

This section is to discuss in some depth the connection between the G–P model of supersolid and real solids. The
G–P model has two obvious differences with usual solids. First it assumes that the interaction between atoms (or
molecules) making the solid is weak, including at short distance to make converge the integral term in the equation.
Then it neglects also the fluctuations in the number of particles everywhere, as a result of the mean-field theory.
Both assumptions make it different of the modeling commonly used in solid state physics. Nevertheless we found It
interesting to speculate on the possibility of adapting this model to more concrete situations.

Actually, there is a limit where our G–P model is not that far from realistic models, namely the one of a dense
solid with a strongly repulsive interaction. In this limit, we expect that the wavefunction of the G–P model will be
periodic in space, but that, because of the strong repulsion, the wavefunction solution of the G–P equation will remain
localized in the potential hole where the repulsion by the other ‘particles’ is minimal. Moreover in this limit, the self
interaction becomes a constant added to the energy, rather independent on the local shape of the wave function. This
looks very much like the ‘real crystal’ ground state, except that in such a real crystal the interaction has a hard core
where it becomes infinitely repulsive, so that the self interaction becomes infinite in the G–P model and induces an
infinitely positive energy. Clearly this self interaction is not there in the true physical system: a given atom does not
interact with itself. To circumvent this difficulty we propose to take inspiration of the behaviour of the G–P model
in the large density limit. In this limit, as already said, the density is mostly concentrated near the minima of the
potential generated by the other atoms in the lattice and - in the same limit - the self interaction can be neglected, at
least up to an overall constant. To be general, let us assume that the atoms in the crystal are located near sites making
a 3D lattice. Label the site with a discrete index i (actually in a 3D lattice i is for a set of three integers, but this is
irrelevant there). Each lattice site is a force center, which means that the atom located at any given site k is in the
field of the other atoms. Its wavefunction should be therefore the solution of the linear Schroedinger equation in the
potential due to the other sites. Let the interatomic potential be U(r− r′). Therefore, given a lattice where particles
are close to sites with positions rj , each one of the particle in the lattice is close to, say, a site rj . Therefore this
particle is in the potential Σj 6=iU(r − rj). This potential has a hole near r = ri, but is strongly repulsive elsewhere.
Therefore, and this is central point here, the atomic wavefunction is very narrowly concentrated near the minimum
of potential energy at the empty site ri. This assumes that the density is large enough to make this mimimum deep
enough. It is easy to check that, with a Lennard-Jones potential this localization in the minimum of the potential
Σj 6=iU(r − rj) becomes stronger and stronger as the density, namely the lattice mesh becomes smaller and smaller
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for a given potential V (r− r′). Indeed this limit does not yield an exact solution of the N-body Shrödinger equation.
Before to consider this question, let us explain how more precisely what is
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ICI C’EST FINI Let therefore the slowly varying part of the phase be the scalar product A · r with A small. This
scalar product is the gradient of the slowly varying part of the phase field, that will be denoted as Φ. The vector A

is the local value of ∇Φ. One has to add to A · r a rapidly varying piece, φ̃ that is also proportional to A. Putting
this expression of φ = Φ + φ̃ ≈ A · r + φ̃ into the equation derived from the variation of

∫

drρ0(r)(∇φ)2 with respect

to φ̃, one finds the Poisson-like equation:

A · ∇ρ0 + ∇ ·
(

ρ0∇φ̃
)

= 0. (39)

This equation is to be solved within the unit cell of the lattice, that is for a function φ̃ that is periodic with the same
period as ρ0. The result is a function of r that is periodic in space and linear in A. It can be written as φ̃ = KiAi

where K is a vector-valued function of r that is periodic. By inserting this expression of φ into the Lagrange function
and by integrating over the unit cell, one obtains an average Lagrangian that includes long-wave fluctuations only
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Putting the result into the Lagrangian, and substituting ∇φ for A one obtains that K(r) satisfies

∇iρ0 + ∇ · (ρ0∇Ki) = 0

and the Lagrangian relevant for the slowly varying part of the phase:

Lph = −
1

2
̺ij

∂Φ

∂ri

∂Φ

∂rj
. (40)

Where we have introduced in this equation the matrix ̺ij that is defined as

̺ij =
1

V

∫

V

ρ0(r)∇Ki · ∇Kj dr. (41)

In the equation above, the integral is carried over the unit cell of the lattice of volume V . Thanks to this integration
the Lagrange function Lph depends on the slow variables only.

One starts from the variational equation, exact for steady solutions:

∇ (ρ0∇φ) = 0.

We expand φ as φ = Φ + φ̃ with Φ = A · r, A constant and φ̃ solution of

∇

(

ρ0∇φ̃
)

+ ∇Φ · ∇φ̃ = 0.

This is a closed equation for φ̃. Because it is linear in ∇Φ = A, it yields an expression of φ̃ that is linear in A as
well. By inserting this expression of φ into the Lagrange function and by integrating over the unit cell, one obtains
an average Lagrangian that includes long-wave fluctuations only (equation (??) above) and that yields ultimately by
variation an equation for A.

The displacement enters into the modulated density that is a function ρ0(r −u(r)|n) (from now on we shall forget
the dependence of ρ0 with respect to n). To this density must be added a small correction ρ̃ that is of the order of
magnitude of the gradients of u but that depends on r on scale of the order of the (small) lattice size. This small
correction ρ̃ plays the same role as φ̃ before. Because of that, the equation for ρ̃ can be solved on this scale of the unit
cell by assuming that the gradient of u is constant and small. This yields a (small) contribution to ρ that is linear with
respect to the gradient of u. There is an added twist compared to the former case where the small gradient of φ do
show up directly in the equation, although here one has to find it by expanding various terms in the Euler-Lagrange
equation, including the integral term.

The closed equation for ρ is written in (??). We know already that a function ρ0(r) is a solution, periodic in
space, the average number density n being linked to the Lagrange multiplier µ. We are looking for solutions close to
this ρ0, but with a slowly varying displacement field u. Putting, as before, the corresponding expression of ρ into
the Lagrangian one obtains contributions that are quadratic in the gradients of the slowly varying quantities (no
contribution linear in the perturbation may appear, because the action is at a minimum when ρ = ρ0). A variation
of this new Lagrangian yields the sought after equations for the long wave perturbations.

Let us write the formal equations found on the way, and we shall detail some of the crucial steps afterwards.
Putting into the equation (??) a solution of the form ρ0(r − u(r)) + ρ̃ and assuming that the gradient of u(r) is

small, one finds a linear equation for ρ̃ of the form:

K[ρ̃] +
∂ui

∂rj
Dij(r) = 0. (42)

In this equation, the argument (r) is written explicitely for functions depending periodically on (r), although the
derivative of the displacement, ∂ui

∂rj
, will be taken now as small and constant. That it is small means that we kept the

terms linear with respect to it only. Furthermore, K[.] is an integrodifferential operator that is periodic with respect
to (r). The explicit form of all the quantities introduced in (??) will be given later.

Solving the auxiliary problem (??) yields:

ρ̃ =
∂ui

∂rj
Eij(r). (43)

The rank two tensor E(r) is a periodic function of (r) and is derived from the solution of equation (??) for the
unknown function ρ̃.
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When one plugs into the Lagrangian (??) ρ = ρ0 + ρ̃ and expands to second order with respect to ρ̃ small, one
obtains the rather cumbersome expression:

L ≈
ρ̃(r

2

∫

dr
′v(r′ − r)ρ̃(r′) +

~
2

2m

[

2ρ̃2

ρ3
0

(∇ρ0)
2 +

1

ρ0
(∇ρ̃)2 −

2

ρ2
0

ρ̃(∇ρ̃ · ∇ρ0)

]

. (44)

Plugging into this expression for the Lagrangian the value of ρ̃ given in equation (??) with ∂ui

∂rj
constant, independent

on r, integrating L over the volume of the unit cell and dividing by this volume, one obtains the Lagrange function
for the slow variations of u:

Lel = Gijkl
∂ui

∂rj

∂uk

∂rl
. (45)

The coefficients Gijkl are given by integrals over the unit cell of functions introduced in equation (??) and (??).
Indeed one recognizes in Gijkl

∂ui

∂rj

∂uk

∂rl
the familiar expression of the elastic energy of a solid following Hooke’s laws of

elasticity (hence the subscript ′el′ in Lel).
Summarizing, the effective Lagrangian for the long wave perturbations of the displacement, of the average density

and of the phase is the sum of the various contributions to this Lagrangian given in equation (??) for the average
density, in (??) for the phase and in (??) for the displacement:

Lslow = L(n) +
1

2
Mij

∂Φ

∂ri

∂Φ

∂rj
+Gijkl

∂ui

∂rj

∂uk

∂rl
. (46)

This expression is remarkable because it is fully explicit for a given ground state of the G–P model. It is obvious
too that it is ‘decoupled’ in the sense that there is no cross term depending on the scalar product of the phase and of
the displacement. This is likely a very general property, although, as we shall see it does not mean that there is no
coupling when time dependent phenomena are considered.

Explicit expression of various quantities

In this subsection, we shall derive, or at least give the final expressions for the elasticity coefficients making the
entries of the rank four tensor Gijkl that enter into the expression (??) for the Lagrangian perturbed to second order
with respect to ρ̃.

The small perturbation ρ̃ is given by the solution of equation (??). In this equation one has introduced various
quantities that need to be defined precisely. The linear operator K[.] is defined as

K[ρ̃] =
~

2

2m

(

2

ρ2
0

∇ρ0 · ∇ρ̃− 2
(∇ρ0)

3

ρ2
0

ρ̃−
∇

2ρ̃

ρ0
+

∇
2ρ0

ρ2
0

ρ̃

)

+

∫

dr
′ v(r − r

′)ρ̃(r′). (47)

This results from elementary substitution of ρ0 + ρ̃ for ρ in equation (??) and from an expansion of the result to first
order for ρ̃ small, given that ρ0 is a solution of the equation at leading order and for u constant.

The next item to compute is the tensor D(r). Part of it is obvious, another one is not, as it results from the integral
term in equation (??)

GALILEAN INVARIANCE AND THE EQUATIONS OF MOTION

The effective Lagrangian

Galilean invariance plays a central role in the derivation of the dynamical equations in the long wave limit. This
is (as it should) an exact property of the ‘microscopic’ G–P equation. G–P is Galilean invariant because, given a

solution ψ(r, t), then the function e
im
~

(v·r− v2t
2

)ψ(r − vt, t) is also a solution, v being an arbitrary constant vector.
It can be checked that the same transformation leaves also invariant the action. In polar variables, this concerns

the part of the Lagragian (??) that reads in polar variables:

~ρ
∂φ

∂t
+

~
2

2m

(

1

ρ
(∇ρ)2 + ρ(∇φ)2

)

(48)
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The Galilean transformation amounts to change the argument of ρ and φ from (r, t) into (r − vt, t), and to change φ

into φ + m
~

(

r · v − v2

2

)

. As one can check this leaves invariant the Lagrangian. Therefore the same should hold for

any transformed Lagrangian, if the transformation is done consistently.
This allows to find the dynamical extension of the Lagrangian valid for long wave-slow perturbations. Actually, the

first contribution to the full Lagrangian, namely the combination ~ρ∂φ
∂t , becomes obviously for slow perturbations the

quantity obtained by substituting the average values of ρ and φ, namely n and Φ, with the result ~n∂Φ
∂t . The other

dynamical terms come from the term proportional to the square gradient of the slow part of the phase, namely the
term 1

2Mij
∂Φ
∂ri

∂Φ
∂rj

in equation (??). To simplify the matter, we shall assume that the lattice is symmetric enough to

make the tensor M diagonal such that Mij = M(n)δij where δij is Kronecker’s delta. In this case, the term quadratic
in the gradient of Φ becomes 1

2M(n)(∇Φ)2. There is no reason for M(n) to be equal to n, except of course if ρ0

is constant, namely if the ground state is not modulated in space. Therefore the Lagrangian has to be modified to
include dynamical terms in such a way that it remains Galilean invariant and reduces to the Lagrangian (??) for time
independent situations.

A first remark is that the Lagrangian derived by adding ~ρ∂φ
∂t and 1

2M(n)(∇Φ)2 is not Galilean invariant, unless

M(n) = n. One notices that, for a crystal state, the Galilean transformation changes Φ into Φ + m
~

(

r · v − v2

2

)

but

also ∂u

∂t into ∂u

∂t − v. Furthermore the Lagrangian is expected to include quantities that are quadratic in the velocity
∂u

∂t and eventually cross products of this velocity and of ∇Φ. Given the assumed symmetry of the lattice, the most
general combination of those two vectors that could figure in the Lagrangian is

α

(

∂u

∂t

)2

+ β (∇Φ)
2

+ γ∇Φ ·
∂u

∂t
.

The coefficients α, β and γ are functions of n to be found. They are actually uniquely determined by the constraint
that, with ∂u

∂t = 0 this quadratic form should reduce to the corresponding contribution in the static Lagragian, namely
~
2

2mM(n)(∇Φ)2 and to nmv2

2 in the case of an uniform speed, that is for ∂u

∂t = ~

m∇Φ = v. A little algebra shows that
the only possible quadratic form with the relevant properties is

Lquad =
~

2

2m

[

n (∇Φ)2 + (M(n) − n)

(

∇Φ −
m

~

Du

Dt

)2
]

. (49)

In the equation (??) we have introduced a new notation for the time derivative, Du

Dt . This is what is called sometime
the ‘material derivative’ that is the derivative including the possibility of changes of a variable by material transport.
In the present case, this derivative is there to ensure the Galilean invariance. This material derivative is defined by:

Du

Dt
=
∂u

∂t
+

~

m
∇Φ · u. (50)

To summarize, the effective Lagrangian for the long-wave, slow perturbations is:

Leff = ~n
∂Φ

∂t
+

~
2

2m

[

n (∇Φ)
2

+ (M(n) − n)

(

∇Φ −
m

~

Du

Dt

)2
]

+ L(n) +Gijkl
∂ui

∂rj

∂uk

∂rl
. (51)

Notice that the time derivative in the first term on the right-hand side, ~n∂Φ
∂t is the usual partial derivative. The

Galilean invariance is ensured by the contribution quadratic with respect to ∇Φ. We conjecture that, because this
Lagrangian satisfies the symmetries imposed by the underlying physics and because it includes a priori all terms with
the right order of magnitude with respect to the derivatives, the general Lagrangian of a supersolid at zero temperature
has the same structure, but with coefficients M(n), L(n) and Gijkl depending on the details of the crystal structure.
In the next section we shall derive the equation of motion by variation of the action with respect to Φ, n and u. A
noticeable feature of the dynamical equation derived from this effective Lagrangian is that they include a coupling
term between the phase of the coherent component and the displacement in the elastic solid, something that seems
to be new. Furthermore, we shall derive as well boundary conditions and consider situations with a non uniform but
slowly varying external potential and with uniform rotation.

The dynamical equations

The dynamical equations are derived by variation of the functional of n, Φ and u obtained by integration of Leff

over space and time. The calculation is fairly standard and the final result is a set of coupled differential equations
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for the three fields. the variation with respect to n yields the Bernoulli-like equation:

~
∂Φ

∂t
+

~
2

2m

[

(∇Φ)
2
+ (

dM(n)

dn
− 1)

(

∇Φ −
m

~

Du

Dt

)2
]

+
dL(n)

dn
+

dGijkl

dn

∂ui

∂rj

∂uk

∂rl
= 0. (52)

Note that, in this expression, the derivatives dL(n)
dn and

dGijkl

dn are straight ordinary derivatives.
The variation with respect to u yields elasticity-like equations for the i-th component of the acceleration:

~

2m

D

Dt

[

(M(n) − n)

(

∂Φ

∂ri
−
m

~

Dui

Dt

)]

+ 2
∂

∂rl

(

Gijkl
∂uj

∂rk

)

= 0. (53)

Lastly the variation with respect to Φ yields the equation of mass conservation:

∂n

∂t
+

~

m
∇ ·

(

M(n)∇Φ − (M(n) − n)
m

~

Du

Dt

)

= 0. (54)

This equation reduces to the familiar equation of mass conservation for potential flows whenever M(n) = n, namely
in the absence of modulation of the ground state. It is interesting to notice the existence of coupling terms between
the elastic equations and the potential superflow. The dominant coupling terms are formally of the same order of
derivation as the lowest possible order in a given equation. Assuming (and this will be checked to be true for the
linearized equations) that the leading coupling term comes from the cross term in the quadratic part of the Lagrangian,
this coupling at leading order comes from the contribution to the Lagrangian that reads

−
~

2

m
(M(n) − n)∇Φ ·

m

~

Du

Dt
.

It vanishes for a superfluid without crystal structure for which M(n) = n. By variation with respect to Φ this
cross term generates a contribution −~∇

(

(n−M(n))du

dt

)

in the equation of mass conservation and a contribution

−~
2

m (M(n) − n)∇Φ · m
~

Du

Dt
in the equation for the lattice dynamics. Somehow this cross term could be seen as the trace in the present model

of the expected effect of variation of the crystal density due to a nonuniform strain, although it does not seem to be
possible to derive it without our Lagrange formalism. Indeed other cross effects come from the dependence of the
various quantities like the elasticity tensor G on the density. However this yields only higher order effects in the limit
of small changes of the perfect crystal. In the coming two subsections we shall analyze the dynamics of perturbation of
small amplitude near the ground state and the boundary conditions to be imposed to the partial differential equations
of motion.


