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Flow and jamming of a two-dimensional granular bed:
Toward a nonlocal rheology?
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In order to test the rheology of granular flows, we performed series of numerical simulations of
nearly monodisperse stationary chute flows from rapid to slow and very slow flow regime, namely,
close to the jamming transition. We check how existing rheological models (i.e., Bagnold’s model
and the I-model) capture the behavior of the numerical flows, and perform an acute characterization
of the structure of the flow in terms of grains velocity fluctuations close to the jamming transition.
The simulations show that both Bagnold’s and the /-model fail to describe the data points in the slow
regime, namely, when /=2X 1072, Turning to the analysis of grains velocity fluctuations, we
compute the associated correlation length A and show its dependence on the inertial number:
N/ dox 17032 The amplitude of the grains velocity fluctuations, namely, the granular temperature,
exhibits a power-law dependence on the shear rate and allows for an efficient prediction of the shape
of the velocity profiles. The main result consists of a scaling merging all data points for all flow
regimes onto the same master curve, and relating granular temperature, shear rate, and the variation
of stress between the considered depth and the bottom wall. This scaling can be written as a relation
between local stress, local shear rate, and local temperature, provided the introduction of a
characteristic length scale é=d+/(H—z)/z where both the distance to the surface and the distance to
the bottom wall are involved. This scaling strongly suggests a nonlocal behavior, valid in the flow
regime and extending close to the jamming transition, and hints at granular temperature as the
variable at the origin of the nonlocality. © 2010 American Institute of Physics.
[doi:10.1063/1.3499353]

I. INTRODUCTION collisional flows phenomenology, emerges from dimensional
analysis considering that there are no characteristic length
and time scales in a granular flow other than the grain diam-
eter and the inverse of the shear rate. In this framework, the
effective viscosity of the flow is proportional to the shear
rate, and diverges when the volume fraction reaches close to
the critical value for which jamming occurs. Drawing an
analogy with the Prandtl mixing length in turbulent flow, the
divergence of the viscosity can be interpreted as the emer-
gence of a coherence length in the system related to the
existence of clusters (or “eddies”) of correlated grains.11 This
was supported by experimental and numerical observation of
correlated motion of grains in granular chute flows.®12714
However, the divergence of the viscosity and the evolution of
the correlation length are poorly characterized.

Lately, the inertial number / has opened a new path by

In spite of their huge importance in natural processes
(catastrophic flows, erosion, and transport) and in human ac-
tivity (industrial handling and geotechnics), granular flows
escape in a large extent understanding and thus theoretical
modeling. Oddly enough, systems as simple as stationary
monodisperse flows on rough inclines still present many un-
explained features: the relation between flow depth and angle
of avalanche, the nature of the relation between the corre-
lated motion of grains and the macroscopic properties, the
hysteretic behavior around the flow and arrest transition, the
influence of the nature of the substrate, etc.'® The underly-
ing question, indeed, is the actual rheology of the flow and
its robustness regarding boundary conditions.

Among the various models proposed for modeling
granular flows, a recurrent issue is the definition of a vari-

able, or of an order parameter, that would allow for the dis-
crimination between the static (“solidlike”) and flowing
(“fluidlike™) species of grains, and their respective contribu-
tion to the total stress state.” '’ While volume fraction stands
as the most relevant variable for the description of dense
flow regimes, for which kinetic theory is no longer appli-
cable, the definition of a univocal relation between rheologi-
cal properties such as friction or viscosity and volume frac-
tion remains a challenge.

The Bagnold rheology, beyond Bagnold’s analysis of
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merging along a single phenomenological law many experi-
mental data as well as numerical works, even in highly tran-
sient and inhomogeneous situations.'”™" Defined as the ratio
of the typical time of macroscopic deformation to the typical
time of local rearrangements,15 A61819 1 oan be seen as the
long-sought order parameter allowing for the unambiguous
characterization of the state of the packing. Eventually, the /
rheology has emerged as the only framework so far reconcil-
ing flow data and experimental settings which before seemed
manyfold and quite disparate:.20

However, in spite of this progress, the transition toward
slow flow regime and ultimately jamming remains problem-
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atic. For instance, the origin of the relation between flow
depth and the angle of avalanche is a well-known difficulty
left unsolved by the various propositions for a rheology.1
Sharp localization, or on the contrary creep motion under
avalanches at the surface of a heap, cannot be captured in the
framework of the I rheology.

Behind these unexplained features, a more fundamental
issue is raised: does the assumption of a local rheology allow
for a comprehensive description of granular media?*'™> The
existence of an intermediate “mesoscopic” scale related to
force transmission led to the suggestion that force chains
might be at the origin of nonlocal behavior.”? In the same
way, the existence of correlated motion of grains and the role
of these “granular eddies” in the macroscopic behavior could
be reconsidered from this point of view &1 Recently, a
proposition of nonlocal rheology has been proven successful
in giving account of experimental features so far escaping
modeling,23 and strongly suggests that the assumption of a
local rheology is too simplistic. The question is now, which
mechanisms, linked to which variables, are likely to result in
nonlocality?

In this contribution, we try to bring new insights in these
issues by carefully analyzing two-dimensional (2D) simula-
tions of chute flows, from relatively rapid to slow and very
slow flow regimes. Computing velocity field and stress state
locally, we try out Bagnold model and the /-model, and find
that the frameworks they provide fail to capture the behavior
of the simulations in the limit of slow flow regimes. Turning
to a Prandtl-like approach, we study grains velocity fluctua-
tions, and characterize the emergence of a correlation length
and its divergence as a function of the inertial number 1. We
then focus on granular temperature and its profiles; we show
its relation to velocity gradients and derive an expression for
velocity profiles matching the data. Looking for a relation
between effective viscosity and temperature, we find that the
only scaling merging all simulation points on a single curve
relates the stress, the shear rate, and the granular temperature
while implying the existence of a length scale involving the
flow depth and the distance to the bottom. This observation
strongly suggests a nonlocal behavior and hints at granular
temperature as the variable at the origin of the nonlocality.

Il. NUMERICAL GRANULAR STATIONARY
FLOWS

A. Algorithm and setup

The numerical method applied is the nonsmooth contact
dynamics.m’25 Each grain obeys the equations of dynamics
for translational and rotational velocities, taking into account
external forces (in our case gravity) and the forces applied by
neighboring grains through contacts. Contact forces are
solved implicitly on the basis of two nonsmooth contacts
laws, namely, Coulombic friction and a strict condition of
nonoverlap. The friction law prescribes the maximum value
of the tangential force 7, given by the Coulomb threshold
N, where N is the normal force at contact, and u,. is the
microscopic coefficient of friction at contact. Once this
threshold is attained, slip motion can occur and energy thus
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FIG. 1. Example of a 2D granular bed simulated by contact dynamics. The
direction of the flow is denoted x, the direction normal to the flow is denoted
z and is counted positively in the upward direction, H is its thickness, L its
lateral extension, and 6 the slope.

be dissipated. The microscopic coefficient of friction . sets
the value of the Coulomb threshold and the efficiency of
dissipation due to slip motion.

An additional source of energy dissipation is the inelas-
tic restitution of energy during collisions; the coefficient of
restitution e sets the efficiency of the dissipation. This algo-
rithm has proven reliable in both quasistatic and dynamical
situations, for which experimental findings are recovered
with good agreernents.6’26

The setup simply consists of 2D granular beds made of
circular beads with slightly different diameters (i.e., such that
dpax! dmin=1.5), the mean diameter being denoted d. The
beds are created by random deposition of grains in the grav-
ity field. The bottom is made of glued grains of diameter d,
showing the same properties . and e as the free grains. The
simulation cell is periodic in the x direction, allowing for
stationary flow regimes; their lateral extension is L=100d.
The direction normal to the flow is z and the height of the
beds is denoted H (see Fig. 1). The beds are tilted of an angle
6 for which stationary flow develops after a transient regime.
To reach very small values of inertial number I (where
I=d(dv,/dz)/ \r’m, see Sec. III), the slope 6 was decreased
gradually until no stationary flow was any longer possible.

Three sets of simulations were carried out. The first set,
referred to as set A in the following, consists of beds count-
ing 4000 grains (H=238d, L=100d) with a microscopic co-
efficient of friction u.=0.1 and a coefficient of restitution
¢=0.9. These values coincide with low dissipation and favor
flowing even for small 6, thus permitting to explore small
values of I for which the flow reaches regimes very close to
arrest. Close to flow arrest, the reproducibility is expected to
be low, so that four independent simulations were performed
for each value of 6. The latter was varied in the interval
[14°,16°].

The second set of simulations, referred to as set B, con-
sists of beds counting 3200 grains (H=31d, L=100d) with a
coefficient of restitution e=0.5 and a microscopic coefficient
of friction w.=0.3. These values coincide with highly dissi-
pative properties, thus preventing the bed to reach low value
of I. The slope interval covered is [16°,26°]. The third set of
simulation, referred to as set C, shows the same geometry as
set B. The coefficient of restitution is e=0.5 and the micro-
scopic coefficient of friction is chosen very low u.=0.01,
which allows for low values of the inertial number /. The
slope interval covered is [10.5°,19°].

Downloaded 07 Dec 2010 to 134.157.34.241. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



113303-3 Flow and jamming of a two-dimensional granular bed

10-1' ...0... |

3 () E
; o ]
[ o® ]
107F e
E [ ) setA:uC=0‘lO,e=0.9 E
[ (] @ setB:p =030,e=05|
3' ' setC:p =001,e=05| |
10°F [ E
| | | | | | | |
8§ 10 12 14 16 18 20 22 24 26
(deg)

FIG. 2. (Color online) Mean inertial number / as a function of the slope 6
for all simulations from sets A, B, and C. Each point coincides with one
simulation.

A tial of 90 runs were carried out, of a duration
T=70Vd/g, with d=0.05 m, namely, 5000 time steps of
107 s. In the following, all quantities computed are aver-
aged over the simulations duration.

For the three sets of simulations, the global value of the
inertia number / is plotted as a function of the slope 8 in Fig.
2: the simulations cover two orders of magnitude for / and
reach close to jamming. The aim in testing different grains
properties is not to carry a parametric study, but rather to
assess the robustness of the results discussed hereafter re-
garding “microscopic” details. In the following, all graphs
show the simulation points from sets A, B, and C; although
visually differentiated, they will not be systematically dis-
cussed separately. A summary of the simulations performed
and the corresponding parameters is given in Table I.

B. Analysis of the simulations
1. Volume fraction

The volume fraction ¢ is defined as the ratio of the vol-
ume of the grains to the volume of the packing

¢ _ Vgrains

Vpacking

When computing the mean volume fraction over the whole
flow, the free surface is an obvious source of uncertainty: its
uneven shape results in error in the evaluation of the volume
of the packing. For this reason, the mean volume fraction
was always computed in the bulk excluding the three first
layers of grains under the free surface. For our simulations,
the mean volume fraction varies between 0.715 and 0.795.
For all simulations of sets A, B, and C, we compute the
volume fraction profiles ¢(z) by dividing the beds in layers

TABLE I. Table of simulations performed.
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FIG. 3. (Color online) Normalized profiles of the volume fraction ¢(z)/(¢)
for all simulations from sets A, B, and C, where (¢) is the mean volume
fraction over the flow volume.

of thickness d. These profiles are reported in Fig. 3 normal-
ized by the mean value of the volume fraction (¢). The case
z=1d corresponds to the first layer immediately after the
bottom. We observe that the volume fraction shows only
slight variations throughout the bulk, but that a systematic
dip occurs close to the bottom: the rigid bottom locally in-
duces agitation and thereby a decompaction of the packing.
Although this effect is enhanced by high values of the coef-
ficient of restitution (set A of simulations), it is as well vis-
ible for lower values (sets B and C). Similar behavior is
observed for vertically shaken granular layers, and was iden-
tified as an analogous of the Leidenfrost effect.”’ It is inter-
esting that this effect endures in the case of slow to very slow
chute flows.

2. Stress tensor

The stress tensor o is defined as the sum of two contri-
butions: the static stress tensor o related to the contact
forces, and the Reynolds tensor ¢” related to the grains ve-
locity fluctuations.

These contributions are defined as follows:

1 N
O'Cz‘—/gfa®7a,

where f and 7 are, respectively, the force transmitted at con-
tact & and the vector joining the two centers of mass of the
grains involved in the contact, and where V is the volume
over which the summation is made;

Simulations N grains L H e Range of 6 Range of / N runs
Set A 4000 100d 38d 09 [14°, 16°] [8X107*,1.5%x107'] 52
Set B 3200 100d 31d 05 [16°, 26°] [2.5%1072,2.8 X 107'] 20
Set C 3200 100d 31d 05 [10°, 19°] [4.6%1073,107"] 18
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FIG. 4. (Color online) Normalized stress component o-. tan 6/pgd as a
function of the normalized stress component o, /pgd computed at each
depth z for all simulations from sets A, B, and C. The solid line has slope 1.

1
o= ‘_/E mi5lji & 5171‘,

where oU; is the velocity fluctuation of the grain i. In the
simulations discussed in the paper, the contribution of the
static stress tensor is dominating.

Computing the stress profile for all simulations o,.(z)
and o..(z), we check that everywhere in the flow, we
recover the relation o,/ o, =tan(6) expected from the force
balance (Fig. 4); therefore in the following, we will
mainly consider the o, component, even for the computation
of the effective viscosity. Moreover, we also check that
0.,=P=pg(H-z)cos 6. In this flow configuration, the stress
tensor is found parallel to the flow, namely, to the strain
tensor.

lll. THE BAGNOLD RHEOLOGY

The Bagnold scaling is the rheology most widely ac-
cepted for granular flows on inclines, and the only one
emerging from dimensional analysis considering that there
are no other intrinsic length and time scale beside those pre-
scribed by the grains diameter and the shear rate. In this
framework, the divergence of the effective viscosity is re-
lated to the divergence of a “viscosity function” K through
the relation

o = pd’K($)|#l. (1)

where 7 is the strain rate and where K diverges when ¢ tends
toward the critical value ¢,,. In this section, we investigate
how the simulations fit in the Bagnold rheology.

A. Divergence of the viscosity

Transposed to our flow configuration, the Bagnold scal-
ing reads

2
0..= pde((ﬁ)(%) (2)
Z

and n=pd’k(¢p) dv,/ dz is the viscosity. Close to flow arrest,
the volume fraction ¢ increases toward a maximum, or criti-
cal value ¢,, for which the system jams, and relative motion
of grains is no longer possible. This coincides with an infi-
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(Color
=0../ pd*(d,/dz)%, computed at each depth z and plotted as a function of the
volume fraction ¢(z) for all simulations from sets A, B, and C. Top graph:
viscosity function « as a function of ¢y—¢(z); the full line shows
k=0.056(¢hy,— ).

online) Viscosity function «, defined as &

nite value of the effective viscosity, that is, with the diver-
gence of the viscosity function k when ¢— ¢,,. In the fol-
lowing, we try to specify the shape of ().

Computing o,, and the shear rate dv,/dz locally at
all depths z for all simulations, we evaluate «
=0../ pd*(dv,/ dz)>. We plot k as a function of the local vol-
ume fraction ¢(z) in Fig. 5. As expected we observe a
function rapidly diverging when ¢ tends toward its maxi-
mum value ¢,,. The value of ¢,, appears to be dependent on
the contact friction w. We search for a fit of the form
k=(¢y— P)P. For sets B and C, we are able to determine the
value of ¢, which allows for the better data collapse
(namely, respectively, ¢,,=0.815 and ¢,,=0.825). Fitting all
simulation points together, the best fit approximation gives
B£=2.73+0.07 (with a correlation coefficient of 0.88). How-
ever, the value of S is very sensitive to the choice of ¢,,, and
varies between 2.6 and 3 for ¢,, varied of =0.003, with the
correlation coefficient not degrading under 0.85. Thus,
[B=2.73 remains a rough estimate. This value is compatible
with what was observed numerically by Ref. 15. While im-
portant scattering occurs for ¢— ¢,,, the points from simu-
lation set A can hardly be fitted at all by a power-law.

Eventually, we find it impossible to characterize the
shape of viscosity function close to the jamming transition.
In this range, the volume fraction ¢ does not seem a suffi-
cient variable to describe the divergence of the viscosity.

B. Volume fraction and inertial number

Alternatively to the volume fraction ¢, the inertial num-
ber I has emerged as a powerful description of the state of
granular flows, capturing the behavior of frictional properties
as well as the evolution of the packing Compaction.ls’m’20 In
our flow configuration, the inertial number / is defined as
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FIG. 6. (Color online) Reduced volume fraction ¢*(z) (see text) as a func-
tion of the inertial number /(z) computed locally at different depth z for all
simulations from sets A, B, and C, in linear and log-log scales; the full line
shows ¢*=1.

d(dv,/97)
I =
\VP/p

s

where p is the mass density of the grains, d their mean di-
ameter, and P the pressure.16 In relation to the volume frac-
tion, it was suggested that'?

¢: ¢M + (¢m - d)M)I,

where ¢,, and ¢, are material dependent parameters: ¢, is
the value of the volume fraction at rest, while ¢,, represents
the limit value of the volume fraction for a highly dynamic
situation. On the basis of these findings, we search for a
linear dependence between the local volume fraction ¢(z)
and the inertial number /(z)

d(2) = by + (b — du)I(2), (3)
where
1) = d((?’vx/ﬂz)(z) _ @
VP(2)/p

The best fit approximation gives ¢,,=0.494 and ¢;,=0.661
for set B (with a correlation coefficient of 0.88) and
¢,,=0.582 and ¢,,=0.810 for set C (with a correlation coef-
ficient of 0.84). For simulation set A, a linear fit is hardly
possible at all, but would give ¢,=0.292 and ¢,;,=0.802
(with a correlation coefficient of 0.3). Using these values, we
plot the reduced volume fraction ¢*(z)=[dy—P(2)]/(Py
—¢,,) as a function of I(z) in a log-log scale (Fig. 6). The
expected linear trend might be acceptable for the largest val-
ues of /, but the large scattering for smaller / makes it im-
possible to derive any clear relation between ¢ and I.

(Note that this is consistent with the behavior of
k(). Indeed, by definition [Eq. (2)], and considering that
P=g,, for the simulated flows (see Sec. II), k=I"2. Hence,
a linear relation between (¢y—¢) and I would lead to
k()% (dpy—#)™2, and contradict the observed scaling

K(@) = (dy—p)>).
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IV. THE / RHEOLOGY

Rather than focusing on the viscosity, whose divergence
makes the characterization of incipient jamming difficult, we
now consider the evolution of frictional properties. In this
section, we study the effective coefficient of friction of the
flows, and investigate its relation to the inertial number I,
following earlier works and the proposition of the
“I rheology.”m’zo’28 More specifically, we explore the limit
I1—0.

A. The frictional properties

At all depths in the flow, we compute the local value of
the coefficient of friction wu(z) as the ratio of the tangential
component to the normal component of the stress tensor:

w(z) = 0,,(2)/0,(2). (5)

As expected we observe u(z)=tan(6) (see Fig. 4), where 6
is the slope of the flow, and wu(z) is constant all through the
bulk.

We search for a relation between friction and inertial
number of the form:>®

My — Mo

I/I(z) +1° ©

w(2) =, +

where w,,, wy, and I, are material-dependent parameters to
be determined; w,, gives the value of the friction for a bed at
rest, while u,, set the value of the friction for larger I, to-
gether with 1 and w,,. The best fit approximation gives u,,
=0.256, u,;=0.496, and 1,=0.134 for set A (again with a
very poor correlation coefficient), u,,=0.256, u,,=0.680,
and 1,=0.24 for set B (with a correlation coefficient of 0.88),
and w,,=0.171, wu,,=0.615, and [,=0.237 for set C (with a
correlation coefficient of 0.87).

In the following, rather then considering u, we form the
reduced coefficient of friction u*

o @) =

- p@) @)

Satisfying relation (6) implies u*=1I/1,. As can be seen in
Fig. 7 where p* is plotted as a function of 1/, this is mostly
the case. However, if the linear dependence holds for the
larger values of the inertial number, the large scattering ob-
served for the smaller values (I<<2 X 107%) makes any rela-
tion between effective friction and inertial number very un-
certain in this range.

Note that similar conclusions were drawn in Ref. 21;
however this was the result of the finite value of the stiffness
of the grains; in the present case, grains are infinitely rigid
(which is an intrinsic feature of the nonsmooth contact dy-
namic method).
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FIG. 7. (Color online) Reduced coefficient of friction u* [see Eq. (7)] as a
function of the inertial number /(z) computed locally at different depth z for
all simulations from sets A, B, and C, in log-log and linear scales; the full
line shows w*=1/1.

B. Implication for the velocity profiles

As detailed above, relation (6) can be rewritten

1(z) =Iop™,

duy _ Ioﬂ*[P(z)]”z
dz ~ d p ’

where P=0,,= pg(H-z)cos 0. Integrating this gives

’ g2
v.(z) —v,(0)= glo,uf cos 07[H3/2 - (H-2)*"7] (8)

consistently with Bagnold rheological model and the corre-
sponding prediction for the velocity profiles. We test the pre-
diction (8) for three example flows from sets A, B, and C,
respectively, taking pu=tan(6) and adjusting the values of p,,
My and I (see Fig. 8). The agreement is good, although the
examples correspond to rather low values of 1.

1.2
1.0 B
0.8 B
T sl |
T0.6
041 + SetA,1=7.3.107| |
X _ -2
ool SetB, 1=2.6.10” |
Set C, 1=7.8.10
0 | | | |
0 1 2 1/23 4 5
/(gd)

FIG. 8. (Color online) Examples of velocity profiles from sets A, B, and C,
and the corresponding predictions following Eq. (8), with u,,=0.239,
uy=0.470, and 1,=0.133 for set A, u,,=0.240, u,,=0.650, and /,=0.240
for set B, and u,,=0.168, w,,=0.610, and 1,=0.237 for set C.
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V. THE PRANDTL MIXING LENGTH APPROACH

In an approach similar to the Bagnold rheology, the
Prandt]l mixing length approach postulates the existence of a
coherence length scale € such that

2
Uzz=p€2(%> . ©)

Beyond the analogy with turbulent layers, the physical origin
of this coherence length has to be specified; it is commonly
identified with the typical length of grains velocity fluctua-
tions correlations, namely, the typical size of granular eddies
or clusters.'"? Considering both Egs. (9) and (2), consis-
tency with the Bagnold rheology implies that

0ld=k(p)"?=1". (10)

Experimental evidence of the existence of correlated motion
of grains at the surface of chute flows was given by Ref. 13;
the typical correlation length associated was found to be
of few grain diameters (up to eight), and its behavior regard-
ing the flow dynamics was consistent with the Ay,
phenomenology.1 Numerical evidence of correlated motion
in the bulk was later produced.ﬁ’lo’12 In the following,
we focus on the existence of correlated motion close to
jamming. Spatial correlations of grains velocity fluctuations
are therefore closely analyzed.

A. Correlation of velocity fluctuations

Each grain in the flow is characterized by its velocity
fluctuations v’ =|v’~(v,)|. Since the amplitude of velocity
fluctuations varies in depth,6 spatial correlations associated
to velocity fluctuations are computed at a specified depth
z*xd/2. At this given depth, correlation are quantified by a
pair correlation function

E,-,j(SUib‘v{CH(xij - r)
Ei’jH(xl'j—r) ’

Fxx(r) =

where x;; is the distance between the grains i and j, and
II(x;;—r) is a step function taking the value 1 where |x;;—r|
<d/2, and 0 otherwise. Considering three different depth in
the flow z=10d, 20d, and 30d for set A, and z=7d, 15d, and
20d for sets B and C, the pair correlation functions are com-
puted for all simulations, and time-averaged over their dura-
tion. They show an exponential form F,.(r)=exp(-r/\),
where from we directly evaluate the correlation length \ as-
sociated to velocity fluctuations (Fig. 9, inset graph). The
correlation length A is plotted as a function of the inertial
number / in Fig. 9. We find, in agreement with previous
works,6’10’12’13 that smaller values of the inertial number co-
incide with rapidly increasing correlation lengths, namely,
that grains have an increasingly correlated motion when
reaching close to jamming, forming granular eddies as de-
fined by Ref. 11.
We find:

Nd = 1.381_0'32i0'008. (11)

We do not observe N/dxI~!' as expected consistently with
the Bagnold model [Eq. (10)]. Interestingly, the scaling (11)
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FIG. 9. (Color online) Correlation length \ of grains velocity fluctuations as
a function of the inertial number / (computed at z=10d, 20d, and 30d for set
A, and z=7d, 15d, and 20d for sets B and C); the full line shows
N=1.381"032, Inset graph: examples of the shape of the pair correlation
function F,(r) for sets A, B, and C.

matches recent experimental observation by Ref. 30 in
granular heap flows, where the typical size of “dynamical

heterogeneities” close to jamming is found to diverge like
7033

B. The granular temperature

We define the granular temperature as the square of the
mean grains velocity fluctuations:

T(z) ={(60)?) = (V2)(2) - (V) (2). (12)

In most cases, the temperature is maximum at the bottom,
which coincides with the fact that the bottom, due to its
rigidity, dissipates the energy of the above layer of flowing
grains less efficiently then elsewhere in the flow where col-
liding grains are free to move, unconstrained, in any direc-
tion. This is also consistent with the systematic decrease of
the volume fraction near the bottom (see Fig. 3). We plot all
normalized temperature profiles 7(z)/{T) in Fig. 10, where
(T) is the mean temperature averaged over the flow volume,
for set A and B and C. We observe that an exponential decay
is a possible approximation:

Tz)/<T>

FIG. 10. (Color online) Normalized profiles of the granular temperature
T(z)/{T) for all simulations from sets A, B and C, where (7T) is the mean
temperature over the volume of the flow.
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FIG. 11. (Color online) Local value of the normalized velocity gradient
(d/g)"*(dv,/3z)(z) for all simulations as a function of the local normalized
temperature 7(z)/(gd). The straight line shows the power-law trend
(d/g)'"* (.1 9z)(z)=0.99[T(z)/ gd]* 7.

T(z) =T, exp(— ai). (13)
The best fit approximation gives a=0.066 for set A,
a=0.079 for set B, and a=0.056 for set C. The typical
length over which temperature decreases, namely, 15d, 13d,
and 18d, respectively, is smaller compared to the depth H of
the flow (H=40d for set A and H=32d for sets B and C), yet
of the same order. It is not clear whether the higher tempera-
ture at the bottom is the signature of a boundary layer, or
whether it would expand in the bulk of the flow in the case of
much thicker bed (large H). This would need to be estab-
lished in further work.

C. Implications for the velocity profile

Figure 11 shows the shear rate dv,/dz plotted as a func-
tion of the temperature 7 for all simulations of sets A, B and
C, for all depth z. The relatively good collapse of the data
over several orders of magnitude is compatible with a power-
law; the best fit gives

v,
Jz

o T8, (14)

with $=0.723 £0.002. This scaling is consistent with obser-
vation of grains dynamics in annular shear configurations, as
well as in simulated plan shear flows.*"#

Since temperature profiles are compatible with an expo-
nential decrease [see scaling (13)], the scaling (14) implies
that velocity profiles should obey the same trend. Integrating
Eq. (14) using relation (13) leads directly to

v(z) = 0(0) = L‘”“’;[l - exp(— yﬁﬂ (15)
e

where y=af3 is the only one parameter to be adjusted. Con-
sidering the same velocity profiles from sets A, B, and C
displayed in Fig. 8, we test this new prediction and find a
good agreement, with y=0.045 for set A and set B and
v=0.032 for set C (Fig. 12).
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FIG. 12. (Color online) Examples of velocity profiles from sets A, B, and C,
and the corresponding prediction using Eq. (15).

VI. TOWARD A NONLOCAL RHEOLOGY?

In the previous section, we have characterized the exis-
tence of a length scale related to grains velocity fluctuations
whose dependence on the inertial number suggests the emer-
gence of large scales in the flow close to jamming. Consid-
ering the temperature profiles and their correlation with ve-
locity gradients, we were able to predict the shape of the
velocity profiles outside the framework of Bagnold’s model.
At this stage, we can question the role of the granular tem-
perature in the rheology, and more specifically how it links to
the effective viscosity, far from the framework of kinetic
theory.

A. Viscosity, granular eddies, and temperature

For each simulation, the correlation length A was com-
puted at three different depths (z=10d, 20d, and 30d for set
A, and z=7d, 15d, and 20d for sets B and C). The effective
viscosity v=o0./(dv,/ dz), computed for the same values of z,
is plotted as a function of A in Fig. 13. A clear trend comes
out, giving (with a correlation coefficient of 0.89)

g

10

Ald

FIG. 13. (Color online) Normalized viscosity v/(pg"?d*?), where
v=0,/(dv,/dz) as a function of the correlation length of velocity fluctua-
tions N\/d. The full line shows v/(pg'?d*?)=2.11(\/d)>%.
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FIG. 14. (Color online) Viscosity function « defined as «

=0../pd*(d,/ dz)%, computed for all depths z, and plotted as a function of
the normalized granular temperature 7(z)/ gd for all simulations from sets A,
Bs and C.

2.69+0.078
vl(pg'?d*?) = 2.11<2>

and relating viscosity and the size of “granular eddies.”

Remaining in the framework of a Bagnold-like expres-
sion for the stress/shear-rate [Eq. (2)], we search for a vis-
cosity function « which, rather than of the volume fraction
¢, would be a function of the granular temperature 7:

2
O'zz=pd2K(T)<%> ) (16)
dz

The plot of the viscosity function « against 7 is dis-
played in Fig. 14: the points do not collapse and spread over
one order of magnitude; yet, we observe a well-defined de-
creasing trend, where lower temperature values coincide with
higher viscosity.

B. A nonlocal behavior

However, it is possible to make all simulation points
merge following a single curve if, instead of considering the
local stress o-.,(z) only, we consider the stress variation with
regard to the bottom o,(0)—0..(z) (where o..(0) is com-
puted from the first layer of grains at the bottom). In this
case, the collapse of the points, displayed in Fig. 15, gives
(with a correlation coefficient of 0.98)

T )-1.7+0,007

K' = 1.65(—

od ; (17)

where k' is defined as
K" =[0,,(0) - 0. (V[ pd*(9v,)/ 321" (18)

Interestingly, this collapse extends over several orders of
magnitude and does not degrade close to jamming, when
T—0. Since for chute flows, 0,.(0) = pgH cos 6 and o0.(2)
= pg(H-z)cos 6, the scaling observed can be rewritten

2
0..(0)—0.(2) = pde’(T)(%> ’
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which leads directly to

H-z . \?
a-zz(z) = sz K,(T)(_> s (19)
z 174
where
K'(T) = 1.65(—) .
gd

This correlation suggests the existence of a relation between
stress and shear rate involving the distance to the bottom and
the distance to the free surface through the length scale
&=d\(H-z7)/z. If z=H, the stress is zero, as expected at the
free surface. If z—0, & diverges, which could only be bal-
anced by the fact that the temperature becomes infinite at the
bottom. The relation thus breaks down at the bottom. How-
ever, it is still valid for z as small as one grain diameter d,
and the scaling (19) actually holds at all depths in our simu-
lations, as can be seen in Fig. 15.

The fact that the stress at the bottom appears in the cor-
relation observed in Fig. 15 stresses the role played by the
substrate in chute flow dynamics, and suggests that this role
extends to the whole bulk. Everywhere in the bulk, the scal-
ing (19) strongly hints at a nonlocal rheology: local stress
does not only depend on the local shear rate but also on the
distance to the surface and to the bottom. In our simulations,
granular temperature, namely, velocity fluctuations, appears
to be at the origin of the nonlocality. Close to jamming, and
very far from the framework of kinetic theory where it is
given a thermodynamically meaningful interpretation, granu-
lar temperature seems to play a fundamental role in the flow
behavior.

Phys. Fluids 22, 113303 (2010)

Vil. SUMMARY AND DISCUSSION

In order to test the rheology of granular flows, we have
performed series of numerical simulations (90 in total) of
nearly monodisperse stationary chute flows from rapid
(I=107") to slow and very slow (I=107%) flow regime,
namely, close to the jamming transition. Computing locally
quantities such as the stress tensor, the strain rate, the veloc-
ity, and the volume fraction allows for a detailed analysis of
flows state. The aim was twofold: (i) checking how existing
rheological models (the Bagnold’s model and the /-model)
capture the behavior of the numerical flows at the verge of
the transition to jamming, and (ii) performing an acute char-
acterization of the structure of the flow in terms of grains
velocity fluctuations at this transition.

Our results show that neither Bagnold’s model nor the
I-model capture the behavior of the numerical points in the
slow regime, namely, when /=2 X 1072 in this regime, the
huge scattering of the data prevents concluding on the valid-
ity of the models. Turning to the analysis of grains velocity
fluctuations, we compute the associated correlation length A
and show its dependence on the inertial number: N/d
o932 The amplitude of the grains velocity fluctuations,
namely, the granular temperature, exhibits a power-law de-
pendence on the shear rate and allows for a prediction of the
shape of the velocity profiles. The main result consists of a
scaling merging all data points for all flow regimes onto the
same master curve, and relating granular temperature, shear
rate, and the variation of stress between the considered depth
and the bottom wall. This scaling can be written as a relation
among local stress, local shear rate, and local temperature,
provided the introduction of a characteristic length scale
&=d\(H-z)/z where both the distance to the surface and the
distance to the bottom wall are involved. This scaling
strongly hints at a nonlocal behavior, valid in the flow regime
and extending close to the jamming transition.

While the hypothesis of a nonlocal rheology has long
been put forward, and applied recently with success, > it is
often assumed that the mode of stress transmission and the
important stress fluctuations observed in granular media are
responsible for the nonlocality. However, our results point at
the velocity fluctuations as the agent allowing for nonlocal
effects. Although weak in amplitude, and far from the frame-
work of kinetic theory, granular temperature could still be an
efficient variable to describe granular flow behavior in dense
regime.

Our result are limited to the study of model 2D chute
flows and the generalization to other flow configurations is
far from straightforward. However, the observation of a scal-
ing demonstrating the influence of the bottom wall to the
whole bulk of the flow suggests that walls in general might
play a more fundamental role in the granular dynamics than
simply boundary conditions. This could lay a new basis to
understand the puzzling influence walls sometimes exert in
granular systems.28’33

An obvious continuation of this work will be the study
of the influence of the flow depth H on the phenomenology
observed, the repercussion on granular temperature, and on
the existence of nonlocal effects.>* Eventually, this would
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most likely open new prospects in the understanding of the
hgop pPhenomenology, which is a long discussed token of
granular nonlocal rheology.
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