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We study the non-continuous correction in the dynamics of drop impact on a solid
substrate. Close to impact, a thin film of gas is formed beneath the drop so that the local
Knudsen number is of order one. We consider the first correction to the dynamics which
consists of allowing slip of the gas along the substrate and the interface. We focus on
the singular dynamics of entrapment that can be seen when surface tension and liquid
viscosity can be neglected. There we show that different dynamical regimes are present
that tend to lower the singularity strength. We finally suggest how these effects might be
connected to the influence of the gas pressure in the impact dynamics observed in recent
experiments.

© 2012 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

Drop impact is crucial in many multiphase flows ranging from raindrops to combustion chambers or ink-jet printing
and it has become an emblematic problem of surface flows [1,2]. Depending on the impact parameters (drop diameter,
velocity), fluid properties (viscosity, density, surface tension) and impacted surface (liquid deep or thin film, solid substrate),
it can lead to many different outcomes: spreading, rebound, prompt splash, crown splash, cavity and jet formation to cite
the most famous ones [3]. Often, the influence of the surrounding gas is neglected in the analysis because of the high
density and viscosity ratios between the gas and drop liquid. Indeed, beside the entrapment of a gas bubble at impact due
to lubrication effect underneath the drop [4,5] and some aerodynamic corrections to the corolla dynamics, no significant
effects of the gas were noticed so far. However, the situation has suddenly changed recently in a striking experiments on
drop impacts on a smooth solid substrate [6]: there, by changing only the operating pressure, they observe that splashes
were suppressed as the pressure was lower below a critical level, emphasizing thus the crucial role played by the gas in
the splashing dynamics. Although different scenarios has been proposed to explain such an effect, involving in particular gas
compressibility [6], singular bubble entrapment dynamics [7,8], thin film skating [9] and film wetting dynamics [10,11], the
surrounding gas influence remains yet a vibrant question of scientific debates.

Of particular interest is the coupled dynamics between the drop and the gas underneath it just before the impact. In
this case, it can be shown that the thin film air dynamics can be considered within the lubrication approximation while the
liquid viscosity can be neglected as far as thin liquid jets are not formed [7,9,12]. Then neglecting the surface tension one
can see that a finite time singularity arises as a gas bubble is entrapped by the dynamics. This singularity behavior has to be
regularized physically at least by the surface tension and the liquid viscosity but it has been argued that the resulting violent
dynamics might be relevant in the splashing dynamics. Within the lubrication approximation for the gas film, a liquid jet
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Fig. 1. Sketch of the impacting drop and successive profiles for We = ρl DU 2/γ = 95 and St = 1.35 × 10−3.

is then formed that skates on the very thin (but non-zero) gas layer. Eventually it has been shown experimentally that the
liquid wets the solid substrate [10,11], something that cannot be explained within such lubrication approximation when
surface tension is present. In fact, different effects can be proposed to explain the liquid contact with the substrate when
the gas layer is very thin: notably surface (Van der Waals for instance) interaction between the liquid interface and the
substrate, interface fluctuations and/or surface roughness, and finite size (or rarefied gas) effect in the gas layer. In this
paper, we focus on this latter case, that is when the gas layer thickness becomes of the order of the mean free path of the
gas, leading firstly to a corrected lubrication equation for the thin film. In the next section, we recall the general scaling
argument obtained for drop impact on a solid substrate using the classical lubrication equation for incompressible fluids.
Then in Section 3 we introduce the correction when the gas thickness is of the order of the mean free path. Finally we
discuss in Section 5 the properties of the singularity in this case, in the absence of surface tension and we draw some
perspectives for this work.

2. Scaling analysis

We consider the impact of a liquid drop of diameter D with a vertical velocity U on a smooth solid substrate (cf. Fig. 1).
The liquid and surrounding gas densities are noted ρl and ρg , their dynamical viscosity μl and μg respectively, the surface
tension γ . Considering the high Reynolds and Froude numbers of the drop for typical experimental conditions:

Re = ρlU D

μl
, Bo = U√

g D

we assume that we can neglect the liquid viscosity and the gravity in the dynamics that is driven by the cushioning of the
air film beneath the drop at impact.

Therefore, considering incompressible fluids we obtain the following set of equations describing the evolution of the
drop surface h(r, t) in axisymmetric geometry when it is approaching the substrate:

(∂Ω) ∂tϕ + 1

2
∇ϕ2 + p

ρl
+ γ

ρl
κ = C(t) (1)

(∂Ω) ∂th = 1

12rμg
∂r

(
rh3∂r p

)
(2)

(∂Ω) ∂th = ∂zϕ − ∂rϕ∂rh (3)

(Ω) �ϕ = 0 (4)

where ϕ is the liquid velocity potential (the velocity in the liquid is u = ∇ϕ), and Ω is the drop volume, ∂Ω is its interface.
The first equation (1) is the Bernoulli equation valid in the liquid and written at the interface, while the last one (4) is
the incompressible condition for such potential flow. The interface motion is described by the advection equation (3) while
the lubrication equation (2) allows the determination of the pressure p(r, t) in the gas film. The 1/12 numerical prefactor
in this equation was obtained by considering no-slip condition for the gas velocity both on the solid substrate and on the
fluid interface. This system of equations can be solved numerically using a boundary integral method and we resort with
numerical simulation on the interface only [9]. Notice that lubrication is only valid where the slope of the interface is small
enough and additional terms should be considered otherwise.

As the drop is approaching the solid substrate, cushioning of the gas leads to high pressure gradient beneath the drop.
The high pressure created at the bottom of the drop deforms its shape so that a gas pocket is entrapped around the impact
center. Simple scaling arguments can help to estimate the typical sizes of this entrapped gas bubble. Indeed, considering
the time t = 0 as the time of impact in the absence of air, one can estimate the typical vertical H and horizontal R scales of
the drop deformation as H(t) ∼ Ut and R(t) ∼ √

D H thanks to a geometrical argument based on the intersection between
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the falling drop and the substrate. Introducing these scalings in the lubrication equation yields the following scaling for the
lubrication pressure in the gas layer:

Pl ∼ μg R2U

H3

On the other hand, considering the impact pressure in the liquid needed to deviate horizontally a volume of liquid of typical
size R (this argument was first given in [13]), one obtains:

Pi ∼ 1

R2

d

dt

(
ρl R

3U
) ∼ ρlU

2 D

R

Thus, the lubrication pressure Pl is strong enough to deviate the liquid until a critical height H∗ where the liquid somehow
has to touch the solid substrate, that is when Pi = Pl , yielding:

H∗ ∼ D

(
μg

ρlU D

)2/3

= DSt2/3

introducing the Stokes number as the inverse of a Reynolds number balancing the liquid inertia with the gas viscous effects:

St = μg

ρlU D

Therefore, one expects the liquid to contact the substrate for t∗ ∼ St2/3 D/U entrapping a gas bubble of height H∗ and radius
R∗ ∼ DSt1/3. Notice that in practical (experimental) situations, the Stokes number is very small: for instance for a 2 mm
diameter droplet of water impacting at a velocity of 1 meter per second, we obtain St ∼ 10−8, so that the entrapped bubble
radius is only a few thousands of the drop diameter.

However, it has been observed in numerical simulations of the set of Eqs. (1)–(4) that this contact would arise as a finite
time singularity in the absence of surface tension (taking γ = 0 in Eq. (1)) [12,7,9]. Such a singularity exhibits a divergence
of the pressure following P ∼ h−1/2

min and of the interface curvature κ ∼ h−2
min which can be explained following [9]. Writing

the set of governing equations in the frame moving radially with the geometrical intersection between the falling sphere
and the substrate and using the dimensionless variables defined by

x̃ = r − R(t)

D
, z̃ = z

D
, t̃ = Ut

D
, h̃(x̃, t̃) = h(r, t)

D
, p̃ = p

ρlU 2
and ϕ̃ = ϕ

U D

the following system of equations is obtained:

∂t̃ ϕ̃ − ˙̃R∂x̃ϕ̃ + 1

2
∇̃ϕ̃2 + p̃ = C(t) (5)

∂t̃ h̃ − ˙̃R∂x̃h̃ = 1

12St(x̃ + St1/3)
∂x̃

((
x̃ + St1/3)h̃3∂x̃ p̃

)
(6)

∂t̃ h̃ − ˙̃R∂x̃h̃ = ∂zϕ − ∂rϕ∂rh (7)

�̃ϕ̃ = 0 (8)

The dimensionless radius R̃ = √
H/D gives for the singularity a dimensionless radial velocity ˙̃R ∼ √

D/H .
Thus we develop the former set of equations near the singularity where Ṙ ∼ St−1/3 (we drop the ˜ thereafter for the sake

of simplicity) and assume that the time derivatives are subdominant compared with the Ṙ∂x terms, in good agreement with
the numerics [9]. Then seeking for a self-similar structure for the interface near the singularity in the form:

h(x, t) = hmin f

(
x

l(t)

)
, p(x, t) = P0(t)g

(
x

l(t)

)
and ϕ(x, t) = ϕ0(t)Φ

(
x

l(t)
,

z

l(t)

)

we obtain the following system of equations at the interface at the dominant order in the self-similar variable ξ = x/l(t)
and χ = z/l(t):

−St−1/3 ϕ0(t)

l(t)
∂ξΦ + ϕ0(t)2

2l(t)2
(∇Φ)2 + P0(t)g = C(t) (9)

−St−1/3 hmin(t)

l(t)
f ′ = 1

12St

hmin(t)3 P0(t)

l(t)2

(
f 3 g′)′

(10)

−St−1/3 hmin(t)

l(t)
f ′ = ϕ0(t)

l(t)

(
∂χΦ − hmin(t)

l(t)
∂ξΦ f ′

)
(11)
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where the prime stands for the derivative of the function to the variable ξ . The lubrication equation (10) gives the following
relation:

P0(t) ∼ St2/3 l(t)

hmin(t)2

and from the interface dynamics equation (11) one can see that two situations have to be considered:

• hmin(t) � l(t) leading to the observed numerical scalings since ϕ0(t) ∼ St−1/3hmin(t) that gives P0(t) ∼ St−2/3hmin(t)/l(t)
and thus:

l(t) ∼ St−2/3hmin(t)3/2, P0(t) ∼ hmin(t)−1/2 and κ ∼ St4/3hmin(t)−2

and this regime is found to be valid for thick films, hmin � St4/3.
• hmin(t) � l(t), which gives ϕ0(t) ∼ St−1/3l(t) and yielding:

P0(t) ∼ St−2/3, l(t) ∼ St−4/3hmin(t)2 and κ ∼ St8/3hmin(t)−3

Similarly, this regime is valid for thin films, hmin � St4/3. Finally, notice that this second regime has never been reached
numerically so far because of the small values of the Stokes number considered.

3. Influence on the mean free path

It is interesting to observe that under typical experimental conditions the Stokes number is very small so that the system
of equations used has to be questioned. In particular, when the typical air layer becomes of the order of the mean free path
λ one has to consider rarefied gas correction to the gas dynamics. This can be quantified by the Knudsen number Kn defined
as the ratio between the mean free path and the typical air layer thickness which gives for the entrapped bubble described
above:

Kn = λ

DSt2/3

and one expects rarefied gas effects to enter into account for Kn � 0.01. From kinetic theory, we have that the mean free
path is related to the gas pressure P g through

λ = kB T√
2πd2 P g

where T is the temperature, kB is the Boltzmann constant and d is the typical size of the atoms of the gas. For ambient
temperature T = 300 K and ambient pressure P g0 = 105 Pa the typical mean free path in the air is λ0 = 70 nm and one
can write the simple relation:

λ

λ0
= P g0

P g

In the situation of incompressible fluids (gas and liquid) considered here, λ is a constant that is only a function of the
ambient pressure and it does not formally depend on the dynamical pressure used in the equations. In fact, such an ap-
proximation is valid as long as one can neglect the gas compressibility which should be accounted for otherwise. The effect
of the gas compressibility has been studied in details in [7,8,14] using a low Mach number lubrication approximation but
no crystal clear mechanism involving directly the gas compressibility could be identified in the drop splashing, beside some
complicated dependence of the dynamics. Therefore, in order to disentangle the influence of the rarefied gas correction from
the compressible influence, we keep the incompressible limit in the dynamical equation, considering only the influence of
the Knudsen number in the boundary conditions as explained below. Finally, as the rarefied gas situation is intrinsically for
compressible fluids, an extension of this work might have to consider compressible effects.

Since λ, and thus Kn, increases as the gas pressure decreases, one can expect that the correction due to the mean free
path of the gas has to be considered when the gas pressure is lowered. Indeed, taking the experimental conditions of [6]
where the striking influence of the air pressure was first illustrated, one finds for atmospheric pressure Kn = 0.66 so that
correction due to the rarefied gas configuration has to be investigated.

For such relatively high Knudsen numbers, a simple way to account for the correction due to the rarefied gas context is
to introduce a slipping velocity for the gas so that the no-slip boundary condition at a solid interface transforms into the
Navier-slip condition:

ut = λ
∂ut

∂n

where n is the normal direction at the interface and ut is the tangential velocity. This condition comes from the fact that
at the level of the mean free path the no-slip condition is meaningless and cannot be imposed. Solving the Stokes equation
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between the solid substrate and the drop interface located at z = h(r, t) and assuming that the Navier-slip condition applies
on both sides we obtain the following relation for the radial velocity u in the gas layer, under the thin film approximation
where the interface slope is supposed to be small:

u(z, t) = − 1

2μg
∂r p

(
hz − z2 + λh

)
(12)

so that the lubrication equation (2) becomes:

∂th = 1

12rμg

(
∂r

(
rh3∂r p

) + 6λ∂r
(
rh2∂r p

))
(13)

Therefore, for film thickness h � λ one expects that the second term in the lubrication dominates so that the singularity
features should be changed.

4. Scaling in the rarefied gas limit

The general dynamics of air cushioning during drop impact will thus be governed by Eq. (13) and different dynamical
regimes will dominate depending on the air layer thickness. When the air layer is always much thicker than the mean free
path λ then the former equation (2) will be valid and the scaling obtained in Section 2 will be observed. On the other hand,
when h � λ the lubrication dynamics will be dominated by the new term introduced in (13) so that the following equation
should be investigated:

∂th = λ

2rμg

(
∂r

(
rh2∂r p

))
(14)

where the usual lubrication term is neglected. In between and when the air layer is varying within these limits, one has
to study the general equation (13). Moreover, two different situations can be identified: firstly, Kn � 1 so that the bubble
entrapment still arises around the same radius DSt1/3 than above, although the dynamics of the film cushioning at the
singularity neck will eventually be governed by the slipping equation (14). On the other hand, for Kn > 1, already the
dynamics of the bubble entrapment has to be considered within the rarefied gas limit of Eq. (14) so that the radius of the
bubble itself (and thus the radial velocity of the interface near the singularity) is changed.

4.1. Low Knudsen numbers case

First of all, we thus consider that the gas bubble entrapped has the same features than before. This assumption is
reasonable for small enough Knudsen number and the bubble formation is dominated by the usual lubrication equation.
However, the singularity dynamics itself has to be studied within the rarefied gas limit since the local air layer becomes
much thinner than the mean free path. Then we can write the dynamics in the frame moving with the former singularity
velocity U St−1/3. Using the same dimensionless units and then seeking for similarity solution using the same change of
variables than before, we obtain at the dominant order near the singularity:

−St−1/3 ϕ0(t)

l(t)
∂ξΦ + ϕ0(t)2

2l(t)2
(∇Φ)2 + P0(t)g = C(t) (15)

−St−1/3 hmin(t)

l(t)
f ′ = 1

12St

hmin(t)3 P0(t)

l(t)2

(
f 3 g′ + 6

λ

hmin(t)
f 2 g′

)′
(16)

−St−1/3 hmin(t)

l(t)
f ′ = ϕ0(t)

l(t)

(
∂χΦ − hmin(t)

l(t)
∂ξΦ f ′

)
(17)

Notice that λ is now the mean free path made dimensionless using the drop diameter. Now, two regimes can also be
identified due to the two terms on the right hand side of the lubrication equation (16):

• hmin(t) � λ, the pressure relation due to the dominant term in the lubrication equation remains:

P0(t) ∼ St2/3 l(t)

hmin(t)2

• hmin(t) � λ, the pressure relation is determined by the other term in the lubrication equation, yielding

P0(t) ∼ St2/3 l(t)

λhmin(t)

Finally, we resort with two dynamical scenarios for the singularity dynamics, depending on the ratio between the mean
free path λ and the critical thickness St4/3 separating the two regimes of the singularity without slip condition, namely:
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• λ � St4/3, two dynamical regimes follow. First, when hmin � λ, then the “usual” scaling is valid:

l(t) ∼ St−2/3hmin(t)3/2, P0(t) ∼ hmin(t)−1/2 and κ ∼ St4/3hmin(t)−2

then it is followed by another regime as hmin decreases. When hmin � λ, the following scaling is obtained:

l(t) ∼ √
λhmin(t)St−2/3, P0(t) ∼ 1√

λ
and κ ∼ St4/3

λhmin(t)

and we remain thereafter within the configuration where hmin(t)/l(t) ∼ St2/3/
√

λ � 1. In this case, the regime where
hmin(t) � l(t) is not present.

• λ � St4/3, then for hmin � St4/3 � λ the “usual” scaling holds:

l(t) ∼ St−2/3hmin(t)3/2, P0(t) ∼ hmin(t)−1/2 and κ ∼ St4/3hmin(t)−2

It is followed by a regime where St4/3 � hmin � λ which gives the second scaling obtained in the beginning:

P0(t) ∼ St−2/3, l(t) ∼ St−4/3hmin(t)2 and κ ∼ St8/3hmin(t)−3

Such a regime is also followed by a new regime when St4/3 � λ � hmin yielding:

l(t) ∼ λhmin(t)St−4/3, P0(t) ∼ St−2/3 and κ ∼ St8/3

λ2hmin(t)

4.2. Full rarefied gas limit

In the experiments described in [6], the Knudsen number based on the typical bubble thickness obtained with the
usual lubrication equation is of order one and it increases when the pressure is lowered. Therefore, the rarefied gas effect
has to be accounted for in the dynamics of the bubble entrapment and the above scalings fail already for the size of the
entrapped bubble. In this regime, we have λ � DSt2/3 � h(r, t) everywhere and the second term in the lubrication equation
– proportional to λ – is dominant. Therefore, the scaling for the lubrication pressure reads:

Pl ∼ μg R2U

λH2

Balancing the impact pressure with this lubrication pressure, one obtains for the typical bubble height:

H∗ ∼ D
St2 D2

λ2

It needs to be emphasized that we obtain here a bubble height H∗ and radius

R∗ = √
D H ∼ DSt

D

λ

that depend on the external gas pressure through λ! Notably, the bubble radius is proportional to the external pressure and
therefore decreases when this ambient pressure is lowered. Considering again that the singularity follows the geometrical
radial scale R ∼ √

DUt , we obtain that the radial velocity of the singularity yields:

Ṙ∗ ∼ U
λ

DSt

Again, we can assume that the time derivatives are subdominant compared to the Ṙ∂x terms. Then, after writing the dy-
namical equation in dimensionless form and seeking for self-similar solutions, we obtain the following system of equations
at the interface at the dominant order in the self-similar variable ξ = x/l(t) and χ = z/l(t):

− λ

St

ϕ0(t)

l(t)
∂ξΦ + ϕ0(t)2

2l(t)2
(∇Φ)2 + P0(t)g = C(t) (18)

− λ

St

hmin(t)

l(t)
f ′ = 1

2St

hmin(t)2λP0(t)

l(t)2

(
f 2 g′)′

(19)

− λ

St

hmin(t)

l(t)
f ′ = ϕ0(t)

l(t)

(
∂χΦ − hmin(t)

l(t)
∂ξΦ f ′

)
(20)

where we have assumed that λ � h is true everywhere in the bubble region so that only the slipping term in Eq. (19) is
present.

Therefore, balancing the two terms in the lubrication equation, we obtain for the pressure:

P0(t) ∼ l(t)

hmin(t)

Then, we get again a priori two different regimes, depending on the value of hmin compared to the value of l(t):
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• hmin(t) � l(t), leading to ϕ0(t) ∼ λhmin(t)/St that gives:

l(t) ∼ λhmin(t)St−1, P0(t) ∼ λSt−1 and κ ∼ St2λ−2hmin(t)−1

and this regime is found to be valid when λ � St, which is always the case since this regime was found to be valid for
λ � St2/3 � St (since St � 1 in the experiments).

• hmin(t) � l(t), would give ϕ0(t) ∼ λl(t)/St and yields:

l(t) ∼ λ2hmin(t)St−2, P0(t) ∼ λ2St−2 and κ ∼ St4λ−4hmin(t)−1

As explained above, this regime cannot be observed in realistic experiments, since it implies λ � St, and therefore that
the bubble height is much bigger that the radius of the drop.

5. Discussion

We have obtained the correction due to the account of the rarefied gas limit in the singularity dynamics leading to
a bubble entrapment during drop impact. In particular, we have shown that the pertinent regime for the experiments,
where the splashing properties are influenced by the gas pressure, corresponds to a situation where the bubble size reduces
with the gas pressure. The question of vibrant scientific debates is whether and how one can relate this singularity to the
splashing dynamics of drop impact on solid substrate. Indeed, it has been often argued that such a violent singular behavior
is at the heart of the onset of splashing so that the regularization of the singularity would be crucial to determine the
splashing properties [7–9,14]. In particular, surface tension on one side and liquid viscosity on the other side will both
regularize the singularity, leading to a rapid jet propagating along the solid wall [9]. However, such effects could not explain
the experimental results of [6] if only the usual (without the rarefied gas correction) incompressible lubrication dynamics
was considered for the air layer. This is why compressible effects have been often investigated, in the framework of the low
Mach number compressible lubrication equation [7,8]. Finally, while within the lubrication approximation, the jet skates on
the thin gas layer, it has to be noticed that experimentally the liquid eventually wets the solid substrate [10,11] through
a dynamical rupture of the gas layer that still needs to be elucidated. Here we would like to emphasize that the rarefied
gas effects accounted in the incompressible limit offer an alternative physical mechanism to explain the air pressure effect
in the drop impact, as suggested also in the compressible model [14]. In particular, we have demonstrated here that the
entrapped bubble size depends strongly on the external gas pressure, a result that has to be investigated in future works
since it changes the jet features and consequently the air drainage dynamics.

Acknowledgements

It is our pleasure to thank Paul Clavin for stimulating discussions on this subject initiated in a workshop organized
by him in Peyresq in 2009. Notably, we previously tackled a singularity in self-similar variables using boundary integral
methods (in 2D then) in our first collaboration with Paul on the Rayleigh–Taylor non-linear asymptotic dynamics!

Finally, we would like to thank Cédric Croizet and Yves Pomeau for interesting discussions on the rarefied gas dynamics.
C.J. wants to acknowledge the support of the Agence nationale de la recherche through its Grant “DEFORMATION” ANR-09-
JCJC-0022-01 and of the Programme Émergence(s) of the Ville de Paris.

References

[1] H.E. Edgerton, J.R. Killian, Flash, Branford, Boston, 1954.
[2] M. Rein, Phenomena of liquid drop impact on solid and liquid surfaces, Fluid Dyn. Res. 12 (1993) 61.
[3] R. Rioboo, M. Marengo, C. Tropea, Outcomes from a drop impact on solid surfaces, At. Sprays 11 (2001) 155–166.
[4] S.T. Thoroddsen, T.G. Etoh, K. Takehara, Air entrapment under an impacting drop, J. Fluid Mech. 478 (2003) 125–134.
[5] S.T. Thoroddsen, T.G. Etoh, K. Takehara, N. Ootsuka, A. Hatsuki, The air bubble entrapped under a drop impacting on a solid surface, J. Fluid Mech. 545

(2005) 203–212.
[6] L. Xu, W.W. Zhang, S.R. Nagel, Drop splashing on a dry smooth surface, Phys. Rev. Lett. 94 (2005) 184505.
[7] S. Mandre, M. Mani, M.P. Brenner, Precursors to splashing of liquid droplets on a solid surface, Phys. Rev. Lett. 102 (2009) 134502.
[8] M. Mani, S. Mandre, M.P. Brenner, Events before droplet splashing on a solid surface, J. Fluid Mech. 647 (2010) 163–185.
[9] L. Duchemin, C. Josserand, Curvature singularity and film-skating during drop impact, Phys. Fluids 23 (2011) 091701.

[10] J.M. Kolinski, S.M. Rubinstein, S. Mandre, M.P. Brenner, D.A. Weitz, L. Mahadevan, Skating on a film of air: drops impacting on a surface, Phys. Rev.
Lett. 108 (2012) 074503.

[11] M.M. Driscoll, S.R. Nagel, Ultrafast interference imaging of air in splashing dynamics, Phys. Rev. Lett. 107 (2011) 154502.
[12] A.A. Korobkin, A.S. Ellis, F.T. Smith, Trapping of air in impact between a body and shallow water, J. Fluid Mech. 611 (2008) 365–394.
[13] C. Josserand, S. Zaleski, Droplet splashing on a thin liquid film, Phys. Fluids 15 (2003) 1650.
[14] S. Mandre, M.P. Brenner, The mechanism of a splash on a dry solid surface, J. Fluid Mech. 690 (2012) 148–172.


