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The shell equations involve a small pa-
rameter e: the relative shell thickness,
l.e. the ratio between the actual thick-
ness of the shell and 3 Characteristic
length of the structure. In the Kirchhoff-
Love framework as well as in the Mindlin
one, the system of equations is ellip-
tic for e > 0 and the solution enjoys
the classical smoothness properties pre-
dicted by the regularity theory. But the
limit system obtained as ¢ tends to 0 is
elliptic only if the middle surface is itself
elliptic,_ i.e. if the principal curvatures
have equal signs at any point.
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3. INHIBITED SHELLS. BOUNDARY LAYERS
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In any case, the limit solution as & tends to zero is

not very smooth. whereas u° with >0 is smooth.
Then, boundary layer phenomena appear, as we
pointed out at the end of the previous section.

Our present knowledge of boundary layers (also
called "edge effects” [13], [1]) is very incomplete,
but we are giving here some indication which should
be very useful for a good understanding of
numerical computations. The boundary (or internal)
layers are regions with thickness tending to zero as

¢ tends to zero where the solution u® (or certain

derivatives of u®) have gradients tending to infinity
as ¢ tends to zero.

The order of thickness of layers (up to our present
knowkledge) is
a) 9-0(?)
characteristics,
b) 7=0(£") along curves which are simple
characteristics (hyperbolic case),

c) n=0(£") along curves which are double
characteristics (parabolic case).

along curves which are not

These boundary layers appear in the following
situations (non-exhaustive list) :

1. along the boundaries of the surface S,
2. along the discontinuities of the loading f,
3. along the curves where either the curvature or the

tangent plane of the surface are not continuous, — T / C{

4. along the characteristics issued from corner points
of the boundary,

). along the characteristics which are somewhere
angent to one of the previous curves.

-et us illustrate this by a few examples. In figure 2

Figure 2




The elliptic sensitive case

u’(y',»%) = sin(y' / ¢(€))exp(ye(¢))

Coming back to the case of an elliptic
middle surface fixed (or Clamped) by a
part of its boundary and free by the rest,
above called " sensitive” strictly speak-
ing it is geometrically rigid, but the cor-
responding "limit problem” is not well
posed, as very small and even SmMooth
loadings may generate very large solu-
tions. In fact the mathematical struc-
ture of that problem keeps some rela-
tion with the Cauchy problem for elliptic
systems.
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We consider examples which are elliptic for € > 0 and
parabolic at the limit e= ()
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F1G. 9 - Three dimensional plot of U, for uniform unit square loading (Adapted mesh)

N\
t R
L LA ]

(=]
—+
UI<
]
o
ol
g‘
wl
n
(ﬂ(
v

I
-1+
1 f
24 \ IJ
i /
! V]
3+ \]{
I
O

Fi1G. 10 - Graph of U, along the cross section x=37/4




# A model problem.

All the essential features of the above problems are present in the
following model problem. Moreover, there are only two unknowns
and only one system of characteristics (X, = Const ).

—Au‘f -+ (92?1,5 . f1
—0ruf + u§ + €° (Au§ — Aug + us) = fo
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F1G. 3 - Adapted mesh for internal lavers
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FIG. 11 - Three dimensional plot of U, for internal layer with propagation (Adapted mesh)
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Iterations for the model problem with &
F E are P, and Zienkiewicz for u; and u, respectively.



b)
Asymptotic behaviour for rigid S (inhibited case)

The scaling is

b=ty

=éef  (f independent of &)
= du

<

Roughly speaking, the limit behaviour is given by the membrane state. In fact,
the problem involves a singular perturbation, as the order of differentiation is

lower in the limit problem. There appear boundary layers (both membrane and
flexion terms are significant in the layers)

u® — u (= solution of the membrane problem)
in "very poor topologies" as u is "somewhat non - smooth".
The limit problem is (twice) of the type of the surface (elliptic, parabolic,

hyperbolic).

1

-DT" -D,T? = f
_DITIZ _D2T22 =f2 _
-b,T"-2b,T"* -b,,T? =

Y11 () = Dyuy —bu; = CnaﬁTaﬂ
Y2 ()= D,u, —byu, = C22aﬁTaﬁ

1 2
712 (1) EE(DQW +D,)=b,u, = C12axT /

Each of the subsystems is of the type of the surface
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figure 3.1 : domain ) in the first case of loading (3.2)
&', 6" indicate the type of singularity of ug
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figure 3.2 : domain (2 in the second case of loading (3.26)
¢’ indicates the type of singularity along the characteristics
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Graph of u_3h
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figure 4.1 : first example of loading, sect. 3.1 Plot of us for y' =05
exhibiting a propagated §" - like singularity at 32 = 1.
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Graph of U_3h
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figure 4.2 : first example of loading, sect. 3.1 . Plot of u3 for y' = 1.5
exhibiting a non - propagated singularity at y? = 1.
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figure 4.3 : first example of loading, sect. 3.1. Plot of u; for y? = 0.5
exhibiting a propagated ¢ - like singularity at ' = 1 and y! = 2.
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figure 4.4 : second example of loading, sect. 3.2. Plot of ug for y* = 0.5

exhibiting a propagated ¢’ - like singularity at y% = 2
and a propagated boundary layer at 4% = 0.
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Graph of U _3h
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figure 4.5 : second example of loading, sect. 3.2, Plot of uz for y* = 0.5
exhibiting two propagated ¢ - like singularities at y? = 2

and a propagated-boundary layer at ° zq.
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‘Clamped hyperbolic shell
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We consider L = 50 and ¢ = 250. The
material is isotropic and homogeneous,
with Young modulus £ = 28500 MPa
and Poisson ratio v = 0.4. The val-
ues of the relative thickness ¢ are taken
between 10~3 and 10~>. The shell is
clamped along the whole boundary. The
coordinates curves y! = const., y? =
const. are the asymptotic curves (char-
acteristics) so that the coefficients b,z
of the second fundamental form are b1 =
bpo = 0,b12 # 0. It should be noticed
that the considered portion of surface

IS limited by asymptotic curves.

The loading is a uniform normal pres-
sure on the regions A, B, C (the three
cases shown in fig. which is taken to
vary proportionally to the thickness.
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Layer C1 - Singularities for the limit problem

Loading A Loading B
u = Uy (y?)Y (~y!) + ... up = Uy (y2)y'Y () + .
ud = U2(y?)6(—y!) + ... ud = Ua(y*)Y (—y!) + ...
-u.g = U;;(y2)5"(—y1) + ... ug = C,-"’3(y2)(5(—y1_) + ...
Loading C

Ui = U, () (=y")2Y (—y) 4 ..
up = a6 F(~9") "2y (—y1) 1
ug = Us(y™) 3 (—y1) =32y (—y1) 4 .|

Where Yy, §, ¢ denote the Heaviside func-
tion, the Dirac mass and its derivatives,

respectively, and U;(y2) are Smooth func-
tions. It is understood that the terms

denoted by dots are less singular than

the previous ones 3t yl = 0.

Computations are carried out for vari-
ous uniform .and adapted meshes. The
figure displays the meshes of a adapta-
tion process with 5 iterations for ¢ =
10~% for the case of loading B.

The process starts with a coarse mesh
and the adaptating code InCreases the
number of nodes until 18091 nodes (49830
degrees of freedom). After the third it-

eration the adaptation process starts to 20



lengthen the finite elements in the lay-
ers (the limits of the loading, the prop-
agation lines y1 = 0 and y2 = 0 and
the boundary of the domain). The as-
pect ratio of the elements is the para-
meter used to measure this stretching.
It gradually increases until the fifth iter-
ation where the aspect ratio attains to

27.6.
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Cases of loading A, B and C -

- Plot of u§ for y2 =0

-"éxhibiting propagated singularities

B it is apparent that
the solutions clearly

converge to the § and ¢’ foreseen singu-
larities for the limit problem. In case C
we have an intermediate situation, ac-
cording to the theory. Clearly, for mod-
erately small values of €, the limit is not
apparent: it only appears as a tendency.
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Sketch to see that the singularity of f3

in y = 0 amounts to 3 jump of the first
order derivative, of value §(32)

= Loading A - u5 = 0(-2/3)
= Loading B - u§ = 0(c-1/3)
= Loading C - u§ = O(c-1/2)

fug{max
5 & 8 B 83 g s
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Order of magnitude of the boundary layer thickness'

50

| |
| .

= Layer C1 on the asymptotic line ] P |
=> m=0(/3) 7 ] |

« caleul - caleul
- theory _ Sie

Layer C3 on the non-characteristic line
s = O(e'/?) ?

M3 ’ s

accuracy.
= The method allows_ to detect the areas Where refinements and
anisotropic meshes are required.
=> The advantage of the adaptation is much more relevant for small
values of ¢, ‘

= Good estimation of the orders of magnitude of the boundary layer
thickness.
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PARABOLIC CASE (example: CYLINDER)

Y
free
+CL / \\L
‘!— Ill \\\ _I/
f & i NS
fixed . OF 7 7 )7
/ J :
-C Qr y ——"
1 I -—alT“ 6527“2 0
(2)..coe.... ~ alr”— ~ 62T22 =0
() I b, T? = f°

| 1

B 6) R —2-(6'2ul+'61u2) =24,,T"

(6)0,u, "b'zzus =y, T + Auzz_T” .
“With (boundary conditions for us
does not make sense; boundary layer):

T 0,y,)=T2(,,) =0
ull(psyz) =-u1(z=y2) =0

The system is uniquely solvable in the order 1 to 6.

(Note that boundary conditions on y, = +C and -c are
not used, and in general not satisfied: boundary layers)
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A very curious kind of solutions

Let £ =38(y)F(y;) ; then,

T =68(y,)8* ()
" =8"'(y,)S"(y,)
" =8"(y,)8"(»)

U :5"(y2)U1(y1)+5(y2)V1(y1)
U, :5'”(5’2)(]2()71)+§'(y2)Vz(y1)

uy =8 (1)U (1) + 8" (0, W3 (31) + (v, )W, (3,)

Where all the functions are well determinated.
For that loading, the membrane problem has a unique (distribution)
solution. It is supported by the segment y,=0 (but the problem is two-

dimensional, involving 8, ).

Intuitive picture (for small thickness n):

* T
” om)

| - 0(77)

Cg('ﬁ) J

0(77%)

L4
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Obviously, the previous solution of the membrane problem
does not make physical sense.

When considering the (small !) flexion terms, i. . we take
into account € > 0, (e << 1), u* has a boundary layer with
thickness 0(c""*), which tends (in the distribution sense) to
the membrane solution. It is exponentially decreasing out
of the layer.

A "computational solution" for ¢ = 107 :

0.02 r
0.015 &

0.01 B
0.005

-0.005
-0.01
-0.015
-0.02

Plot of u§ in the whole domain.
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Analytic functionals and complexification

Distributions constitute a generalization of functions. They admit
singularities of growing order, for instance:

o(z),d'(x), 8" (x),. ..

But they are “of finite order”

derivatives of finite order of ¢
the form

(1. e. on each bounded domain they are
ontinuous functions) . An expression of

+co

i) = chc?(k)(:):)

k=1

Is not a distribution, but an analytic functional (i. e. the test —

functions are analytic, and in particular, localization properties are
lost: analytic functionals have no support).

The corresponding Fourier Transforms have increasing growing at
infinity:

153 Z.é-: (7’&-)27 :

Certain analytic functionals have Fourier Transforms which are
distributions (and even functions) but with exponential growing at
infinity (they are not “tempered distributions”). For instance,

+o0 5219
cosh({f):Z(Qk), £ER
k=0 '

Is the Fourier transform of the expression

+00

_ 1 \ 2k ¢(2k)

u(z) = E m(“z) 0" ()
k=0

Which, as we know. is not a distrib

ution. In fact, Fourier transform is
a tool to deal with infinite order sin

gularities,

28



Before going on with our singular perturbation problem, let us see an
example of a sequence of (classical) functions converging to an
analytical functional . _
Let us consider approximation by truncation of the Fourier transform

to the frequencies & <A, and let Atendsto infinity. For instance:

X +o00 1 .
f(€) = cosh ¢ = Z T
_ 0"(z) | d%(z)
f@)=d@) - 2 )
and the approximant functions are
1 +A
) = 5 cosh(€) cos(€éz)d¢
LY 8

2 (xi ) 1€ [eos(A2) + zsin(Az)] — ™ [cos(Az) — sin( Az
T
As we are interested in \ /" +00, we shall discard

the term iIl e )\, SO tha,t
A eA A
T) 8 — o 2
f ( ) 271_?,1) ( )

P (z) = z : (cos(Az) + zsin(Az))
x4+ 1 .
We then observe that the inverse Fourier transforms involve fwo
scales, x and Ax. This is a complexification phenomenon which does
not appear when approaching fourier transforms with algebraic
growing (i.e. tempered distributions, the inverse Fourier transform of

which is a distribution):

29
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In fact, the solution of the limit problem is exponentially growing for
£ tending to infinity, but with fixed (small) ¢, the solution 4§ decays
algebraically with a factor . This implies the emergence of a new
(moderately large) parameter log(e") describing the characteristic
frequency of the transition region, which is responsible for the lea didg

part of the solution for small €.

e'€|(1+m2)

transition region

Figure 5. 'Ef(&,xg). for fixed € > 0

z1



CONVERGENCE OF THE FOURIER TRANSFORMS

N
-Pl(?t of U, (&,1). They converge as & —>0 in the
'CIITtrlbutIOH sense to a function with exponential growing for
é: — 0:

limit eps0.0 —
1400 L eps%s.O‘I —————— T
eps0.003 -
eps0.001 —-
1200 | 1
1000 -
800
600 -
400 +
200 +
N - -
o 10 15 20
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Exemple of an elliptic paraboloid

o
B /// 1 " yﬁ/(y',yz)=(.)fi,y2»(yl)z+(y2)2)

1
0.

e Loading /= -10¢ applied in the loading domain (hatched square)

e Boundary conditions :
= Clamped on AB, BC and AD

« Free or clamped on CD

2 r

1k

5 |

00
(XL X X
( L LR
et e
&e
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Well-inhibited case :
clamped

the edge CD is

-

u, (1) (for y?=0 and e=10°)

as predicted by the

|
|
- singularites as f3
[
[ theory

(X X ]
(X X X ]
(X XX N
L X X K
(X N
[ B R
LN

i
1
!
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Logarithmic point singularity

Ze-005
1]
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000014 b
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oG 0.2

uzona % of the domain for e=10-

310604 |

5.0E-05
0.0E+00 |
025 i

e
-5.0E-05 "

-1.5E-04
\f
-20E-04 | \

-25E-04 ——— e

u; on the line y/=y?

Existence of a logarithmic point singularity
e If the loading domain has a corner

e |[f the principal curvatures are diffrent at this point

(F. Béchet, E. Sanchez-Palencia, O. Millet : Computing singular perturbations for

linear elliptic shells, fo appear in Computational Mechanics, 2007)
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Adaptive anisotropic mesh 3

Isotropic mesh around
the corner

Zoom of

the mesh

-

s

’ s

{ Necessity of an

| adaptive _
mesh procedure |

. 046 048 05 05 054

Anisotropic mesh in
the layer
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Sensitive case
the edge CD is free

Deformed shape for e=10+#

e The Shapiro-Lopatinskii
condition is not satisfied

e Large oscillations along the

free edge

cobod coooo
BB8588.58838

Displacement u, for /=1 and e=10-*
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Sensitive case

y=-1E-05a5453
R’ = 0.9986 v

Yy

A ¥
] ee¢

e I
| [ X B X
//// | o®@®
i 7 / | L2 J
e - . &

) Oscillations exponential decreasing

towards the interior of the domain

e Comparison with the well-inhibited case

u; on the line y?=0

The singularities presented in the well-
inhibited case are still present

They are hidden by the large instability
appearing near the free edge

Loss of rigidity of the shell as soon as |
a part of the boundary if free
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Evolution of the oscillations on the free edge
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Number of oscillations vs In(1/)

- = The number of oscillations varies like /n(1/e)
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Membrane and bending energy
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