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A new method, enabling the computation of steady solutions of the Navier-Stokes equations in
globally unstable configurations, is presented. We show that it is possible to reach a steady state by
damping the unstable !temporal" frequencies. This is achieved by adding a dissipative relaxation
term proportional to the high-frequency content of the velocity fluctuations. Results are presented
for cavity-driven boundary-layer separation and a separation bubble induced by an external pressure
gradient. © 2006 American Institute of Physics. #DOI: 10.1063/1.2211705$

The knowledge of a steady base-flow solution of the
governing Navier-Stokes equations is fundamental to insta-
bility studies and flow control. In the former case it allows
for both linear modal and nonmodal analyses and weakly
nonlinear approaches, whereas in the latter case the stabili-
zation of such a base flow can be adopted as a design target.
Recent developments, for example, as reviewed in Ref. 1
have allowed the research community to examine the stabil-
ity of flows in increasingly complex configurations and to
compute two- and three-dimensional eigenmodes, the so-
called global modes.2 Unfortunately, when the flow under
consideration is globally unstable, it is virtually impossible
to numerically compute a steady-state solution of the Navier-
Stokes equations by time-marching methods, in particular for
high-order schemes with inherently low numerical dissipa-
tion. In some limited cases solutions can be obtained by, e.g.,
artificially setting the velocity component in certain direc-
tions to zero or enforcing symmetries in the system, the most
studied example for the latter case being the two-
dimensional flow around a circular cylinder. For other cases,
the only remaining possibility is the class of Newton itera-
tion methods, which require heavy computational resources
for large systems. In this article, we propose a simple nu-
merical approach to compute steady solutions of the Navier-
Stokes equations in unstable configurations. We show that it
is possible to reach a steady state by damping the most dan-
gerous frequencies and thus quenching the corresponding in-
stability. The method is adapted from large-eddy simulation
!LES" techniques, in particular the work of Pruett et al.3,4

Problem formulation: Consider the nonlinear system
q̇= f!q", with appropriate initial and boundary conditions for
the vector quantity q under the operator f!q". !A dot is used
here to denote the derivative with respect to time." For a flow
problem, the above system is the Navier-Stokes equation. A
steady state qs is then given by q̇s= f!qs"=0. If f is unstable,
any q"qs will quickly depart from qs. In order to stabilize
the above system we propose applying regularization tech-
niques common in control theory, in this case in the form of
proportional !P" feedback control. This amounts to adding to

the right-hand side a linear term forcing towards a target
solution w,

− !!q − w" , !1"

where ! is the control coefficient. The theoretical target so-
lution for the control is of course the steady-state solution qs,
which is however not available a priori. Therefore, the actual
target solution is a modification of q with reduced temporal
fluctuations, i.e., a temporally low-pass filtered solution
w=T!q, defined as the convolution of q with the temporal
filter kernel T. For the method to converge asymptotically in
time to an exact solution of the steady equation, the filter
cutoff frequency should be lower than that of the flow insta-
bilities. Therefore, in the following, the unstable frequency
will be referred to as high frequency. With these definitions,
the modified system is written as

q̇ = f!q" − !!I − T" ! q , !2"

where I is the identity operator. As q is approaching qs, the
filtered solution w=T!q will in turn approach q, therefore
reducing the control influence. If q is the actual steady solu-
tion, the time-filtered value w will be identical to q=qs,
yielding a vanishing forcing. Hence the steady solution qs of
the controlled system !2" is also a steady solution of the
original problem. Note that there is no generation of new
artificial steady states.

A related technique is also used in large-eddy simulation
!LES" for the temporal approximate deconvolution model
!TADM".4 Working with spatial filters, a similar relaxation
term has been successfully applied in the spectrally vanish-
ing viscosity !SVV" concept5 and in the !spatially filtered"
approximate deconvolution model !ADM" !Ref. 6" and the
ADM-RT model.7 Following these modeling ideas, a differ-
ent interpretation of the method can be given as follows. To
attenuate unstable high-frequency temporal oscillations and
thus reach a steady state we include in the momentum equa-
tions an additional linear regularization term, expression !1".
This term is effectively damping the high-frequency content
of q. Two parameters have to be chosen in the stabilization
procedure, the filter shape T and the control gain !. Time-
domain filters are discussed first.a"Electronic mail: pschlatt@mech.kth.se
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Time-domain filter: For a continuous function q!t", a
causal low-pass time filter is defined as

q̄!t" = %
−"

t

T!# − t;$"q!#"d# , !3"

where q̄ is the temporally filtered quantity, T is the param-
eterized filter kernel, and $ is its associated filter width.3 To
be admissible, the kernel T must be positive and properly
normalized. Additionally, in the limit of vanishing filter
width the filter !3" must approach the Dirac delta function.
Probably the simplest example of such a filter is the expo-
nential kernel,

T!# − t;$" =
1
$

exp& # − t

$
' , !4"

with the corresponding transfer function in the Fourier-
Laplace space

H!%;$" = %
−"

0

T!#;$"exp!i%#"d# =
1

1 + i%$
, !5"

where % is the circular frequency and i=(−1. The cutoff
frequency of the filter is defined as R!H!%c ;$""=1/2 and is
given by %c=1/$. The transfer function of the filter is rep-
resented in Fig. 1 for a fixed filter width $. Note that the
transfer function has a considerable imaginary part, which
leads to a phase lag in the filtered signal relative to the origi-
nal signal. For real applications, the integral formulation of
the filter !3" is impractical, since it requires the storage of the
complete time history of the signal q. Therefore, the equiva-
lent differential form is adopted,

q̇̄ =
q − q̄

$
, !6"

which can be advanced in time using any integration scheme.
The order of the filter is defined as the index of the first

nonvanishing derivative of R!H!%"" with respect to % at
%=0, i.e., the filter !5" is of second order. Based on the
exponential filter, also higher-order low-pass filters can be
constructed by repeated application of the primary low-pass
filter H.4 The use of higher-order filters allows a better con-
trol over the separation between damped and undamped fre-

quencies. For specific cases, i.e., if the separation between
instability mode and relevant flow phenomena is small, such
a filter can be beneficial, e.g., in terms of convergence rate.
Figure 1 displays the transfer function of the tenth-order fil-
ter !degree N=4, i.e. four applications of the exponential
filter" with adapted filter width. This is one particular case of
the general formulation where the shape of the filter transfer
function can be tailored for specific demands.8

Stabilization of unstable steady solution: Analysis of the
dynamics of the augmented system is presented in order to
elucidate the stabilization procedure and quantify the effect
of the control parameters. Considering system !2" with the
exponential filter !6", i.e., w= q̄, the system becomes

)q̇ = f!q" − !!q − q̄"

q̇̄ = !q − q̄"/$
* . !7"

The effect of the regularization can be illustrated by consid-
ering the eigenvalues of system !7" linearized about the
steady state. Introducing the Jacobian A of f at the steady
state qs, the linearized system is

&q̇

q̇̄
' = &A − !I !I

I/$ − I/$
'&q

q̄
' . !8"

Assume &=&r+i&i is a complex eigenvalue of A !i.e.
−i&'=A'" with corresponding eigenvector '. Observation
of the structure of system !8" suggests that the eigenvectors
of the new system will be #' ,('$T, where ( is a complex
number to be determined, and the corresponding eigenvalue
will be )=)!& ,( ,!". Introducing this ansatz in !8", ( and )
are obtained as

(± =
− F ± (F2 + 4$!

2$!
, with F ª $!− i& − !" + 1,

!9"
)± = & − i!!1 − (±" .

The two solutions (+ and (− give two eigenvalues )+ and )−

for the modified system, originating from the same eigen-
value & of the original system. The eigenvalue )+ can be
seen as the damped original eigenmode, whereas )− is
roughly associated with the filtering and corresponds to the
1/$ term in !8". The mapping &→)± in the complex plane
is illustrated in Fig. 2 for parameters !=0.02 and $=15. Two
lines are represented !indicating possible eigenvalues & of
the original system", with imaginary parts 0.01 and −0.03,
respectively. !These regions approximately correspond to the
eigenvalues we are interested to damp in the cavity flow
presented below." Each line is mapped into two curves, the
dashed one corresponding to )+, and the dashed-dotted line
to )−. The arrows indicate how two points of the original
solid lines are mapped into the new eigenvalues. It can be
seen that points with large real part !corresponding to large
circular frequency" are simply damped, i.e., shifted down-
wards, by a constant value !, with virtually no shift along the
real axis. Points of small real part are moved towards the
origin exhibiting both a decrease in frequency and change in
growth rate !imaginary part". The width of the hump forming
at low frequencies is related to the filter cutoff frequency,

FIG. 1. Real and imaginary part of the transfer function H of the exponen-
tial filter for degree N=0 and N=4, filter width $=1. Hr

0 !thick solid"; Hr
4

!thin solid"; Hi
0 !thick dashed"; Hi

4 !thin dashed"; spectral !ideal" cutoff filter
!dotted".
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i.e., 1 /$. It should be noted that a stable eigenvalue & with
low frequency will never be mapped into the unstable region.

In summary, the filter cutoff %c is related to the fre-
quency of the relevant instabilities and should be smaller
than those frequencies at which perturbation growth is ex-
pected. The gain ! is related to the growth rates of the insta-
bilities and should be large enough to move the instability
modes to the lower half plane. However, choosing a large !
will render the system evolution slow, since the low-
frequency eigenvalues associated with the filter, )−, move
towards the origin of the complex plane. The system will
eventually converge to a steady state, but very slowly owing
to the low damping rates. In order to have )+ as the least
damped eigenvalue, ! needs to satisfy &i*!*&i+1/$.
Similarly, when choosing a large $, the additional eigenval-
ues, whose imaginary parts cluster around %c=1/$, will
make the subsystem for q̄ very slow. A balance has to be
found for each system at hand to obtain quick convergence
of all the time scales of the system. Testing several parameter
pairs on the linear system !8" can be helpful. In cases where
the Jacobian A cannot be approximated, like for the separa-
tion bubble presented below, the frequency of the instability
can be estimated by considering the resulting unstable flow.
As a guideline, the regularization parameter ! is chosen to be
twice the growth rate of the dominant disturbance. The cutoff
frequency, %c=1/$ is chosen in such a way that the unstable
disturbances are well within the damped region, e.g.,
%c+1/2%dist. If the growth rate is unknown, one can esti-
mate ! to be slightly smaller than &i+1/$+1/$ assuming
small &i.

Results: The selective frequency damping !SFD" method
is applied to compute the steady state of the two-dimensional
flow over a long cavity, and of the separation bubble induced
by an external pressure distribution. Implementation of the
present method into an existing code amounts to increasing
the memory to store the filtered variable q̄, adding the forc-
ing term in the original time-marching scheme and advance
the linear equation !6".

The stream function pertaining to the steady state of the
cavity-driven separated flow is displayed in Fig. 3, where the
streamwise and wall-normal coordinates are made nondi-

mensional with the inflow boundary-layer displacement
thickness +*. The inflow profile is the Blasius profile at Rey-
nolds number Re+* =350. This value has been chosen by
gradually increasing it until a global unstable flow is ob-
tained. The streamwise extent of the computational domain
is Lx=409, with the cavity being confined to an area of
x! #30,150$, whereas the wall-normal height is Ly =80. The
numerical code uses fourth-order central finite differences
and Chebyshev collocation in the streamwise and wall-
normal direction, respectively. The time integration is carried
out by a semi-implicit second-order backward Euler/Adams-
Bashforth scheme.9 Time history of the streamwise velocity
measured just above the cavity is shown in Fig. 4 for two
different simulations. In the first simulation, the SFD is ac-
tive from the beginning of the computation where a zero
initial condition is used, whereas in the second simulation
SFD is switched on at time t=3000. Both simulations even-
tually converge to exactly the same steady state, in one case
smoothly and in the other by damping the existing oscilla-
tions, the saturated unstable global mode.

In the case of the separation bubble, a flow field subject
to a pressure gradient prescribed via the streamwise velocity
at the upper boundary is computed. The equations are solved
in vorticity-velocity formulation, with the relaxation term

FIG. 2. Mapping of two lines !&i=0.01 and &i=−0.03, ——" in the com-
plex plane due to the modified !linear" system !8". Two points originate from
each complex eigenvalue &, one point corresponding to )+ !---" and one
corresponding to )− !-·-". !=0.02, %c=1/$=1/15.

FIG. 3. Contour lines of the steady-state stream function for the cavity case.
Zero stream function is indicated by the thick line, solid lines indicate posi-
tive values with spacing 0.2, dotted lines indicate negative values !spacing
0.025". The recirculation zone inside the cavity and the upward flow motion
at the point of reattachment of the shear layer are clearly visible.

FIG. 4. Time history of streamwise velocity measured just above the cavity
at x=153.4, y=0.8485. !—·—": Simulation started with zero initial condi-
tion. !——": SFD turned on at t=3000. Both cases are converging to iden-
tical steady states.
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−!!,z− ,̄z" being added to the right-hand side of the trans-
port equation for the spanwise vorticity ,z. The code uses
fourth/sixth-order finite differences on a Cartesian grid for
the streamwise and wall-normal discretization together with
an explicit fourth-order Runge-Kutta time integration.10 For
the present case, a Blasius profile is prescribed at the inflow
!Re+* =1000" while at the upper boundary, the streamwise
velocity is quickly decreasing to about 10% of the free-
stream velocity and then increases again. The box size is
Lx-Ly =562-64, and !=0.4, $=0.75. Two different reso-
lutions !801-193 and 1601-385" were used, with the time
step adapted accordingly. The resulting steady state is shown
in Fig. 5. To check convergence towards an exact solution of
the steady equations, the absolute difference between the fil-
tered and the unfiltered vorticity ,z− ,̄z was sampled over
time and its maximum in the domain is plotted in Fig. 6.
Without the SFD, no steady state could be reached. The
damped oscillatory behavior visible in Fig. 6 is not related to
the frequency of the vortex shedding. It is conjectured that
this is an indication of a stable oscillatory movement of the
bubble itself, i.e., so-called flapping of the separation bubble.
Note that the quantity ,z− ,̄z displayed in Fig. 6 is in fact
proportional to both the amplitude of the relaxation term and
the time derivative of the evolution equation of the filtered

solution, ,̄z. The simultaneous vanishing !to order 10−6,
which is sufficiently accurate for most applications" of
$,̄z /$t and the relaxation term as t becomes large implies
that ,z and ,̄z each essentially attain time independence; that
is, a steady state has been achieved. Additionally, both grid
resolutions showed the exact same convergence behavior
which further stresses the point that an actual physical solu-
tion has been found. We also checked that no drifting of the
steady solution is present by considering the evolution of
,z!t+T"−,z!t" over time t with T being large compared to
the dominant shedding frequency. A similar behavior as in
Fig. 6 was found and the diagram is therefore not shown
here. In the case of the laminar separation bubble, the flow
parameters are not incremented to follow a bifurcation but
the pressure distribution is chosen arbitrarily to have an un-
stable flow. We thus show that the method allows attainment
of a steady state without any initial guess. Of course, the
initial condition becomes relevant in cases where multiple
steady states coexist.

Conclusions: A simple numerical approach to compute
steady solutions of the Navier-Stokes equations is presented.
The most attractive advantages of such a strategy can be
summarized as follows: It is easy to implement into an ex-
isting numerical code; it does not require a good initial guess
of the solution; steady states can be computed without spe-
cific knowledge of the critical bifurcation parameters. To our
experience, the SFD method appears to be very robust, and
therefore this procedure provides a viable alternative to the
classic Newton method.
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FIG. 5. Contour lines of the stream function for the separation bubble. Zero
stream function is indicated by the thick line, solid lines indicate positive
values with spacing 0.1, dashed lines indicate negative values !spacing
0.005".

FIG. 6. Convergence towards steady state for the separation-bubble case,
showing the maximum difference between the filtered and unfiltered vortic-
ity field, D=maxx,y,,z− ,̄z,.——, lower resolution; " , higher resolution.
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