Under consideration for publication in J. Fluid Mech. 1

Transient growth on boundary layer streaks

By JEROME HEPFFNER, LUCA BRANDT,
AND DAN S. HENNINGSON

KTH Mechanics, S-100 44 Stockholm, Sweden

(Received 4 May 2005)

The linear perturbations evolving on streamwise boundary layer streaks which yield maxi-
mum energy growth are computed. The steady and spanwise periodic streaks arising from
the nonlinear saturation of optimally growing streamwise vortices are considered as base
flow. It is shown that significant transient growth may occur for both sinuous antisym-
metric perturbations and for varicose symmetric modes. The energy growth is observed
at amplitudes significantly below the threshold beyond which the streaks become lin-
early unstable and is largest for sinuous perturbations, to which the base flow considered
first become unstable. The optimal initial condition consists of velocity perturbations
localised in the regions of highest shear of the streak base flow, tilted upstream from
the wall. The optimal response is still localised in the areas of largest shear but it is
tilted in the flow direction. The most amplified perturbations closely resemble the un-
stable eigenfunctions obtained for streaks of higher amplitudes. The results suggest the
possibility of a transition scenario characterised by the non-modal growth of primary per-
turbations, the streaks, followed by the secondary transient growth of higher frequency
perturbations. Implication for turbulent flow is also discussed.

1. Introduction

Eigenvalue analysis is traditionally performed to investigate the linear stability of a
given flow configuration. The least stable among the exponentially decaying eigensolu-
tions to the linearised disturbance equations provides information about the flow be-
haviour at large times. However, initial conditions which give transient energy growth
may exist, a possibility related to the non-normality of the governing operator. This
transient energy amplification is also referred to as non-modal since it is not due to the
behaviour of a single eigenmode but it is caused by the superposition of several of them.
In some cases the energy growth can be large enough to trigger nonlinear interactions
and take the flow into a new configuration. The initial disturbance able to induce the
largest perturbation at a given time is called optimal and can be computed applying
optimisation techniques. These were first introduced in this context by Farrell (1988).

Here we apply this analysis to investigate the behaviour of small amplitude perturba-
tions developing on boundary layer streamwise streaks. These elongated structures and
their breakdown are found to be key factors both in transition in boundary layers subject
to high levels of free-stream turbulence (Matsubara & Alfredsson 2001) and in the near
wall region in turbulent flows (e.g. Kim, Kline & Reynolds 1971). The motivation for this
study comes from the observation that the breakdown may occur also for asymptotically
stable streaks. In the case of near-wall turbulence, it was noted by Schoppa & Hussain
(2002) that only 20% of the streaks in the buffer layer exceed the amplitude threshold
for instability. By choosing an initial condition based on streamwise- spanwise-velocity
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Reynolds stress events from fully developed near-wall turbulence, these authors were
able to identify a streak transient growth mechanism, capable of triggering the break-
down. The amplification observed was about tenfold. From the experimental data on
transition induced by free-stream turbulence as well as from the recent simulations by
Brandt, Schlatter & Henningson (2004) it is difficult to assess whether the streaks un-
dergoing breakdown are linearly unstable. However, the possibility of a transient energy
amplification is suggested by the experiments of Lundell (2004). In the present study,
by considering a steady approximation of the transitional streaks, we assess how large
this transient growth can be and present the corresponding optimal flow structures. The
present results are therefore directly applicable to boundary layer transition, albeit with
physical connection with near-wall turbulence via rescaling of the base flows.

Interestingly, the basic flow under consideration is also the result of a non-modal
growth. Owing to the lift-up effect (Landahl 1975), streamwise elongated vortices are
able to mix high- and low-momentum fluid and thus create streaks of high and low
streamwise velocity. It is therefore not surprising that for wall-bounded laminar flows the
initial condition yielding the largest transient energy growth has been found to consist of
streamwise oriented vortices of long streamwise wavelength (see Schmid & Henningson
2001, for a review). In the case of a spatially evolving zero-pressure-gradient boundary
layer, the input at the leading edge leading to maximum output energy far downstream
has been identified by Andersson, Berggren & Henningson (1999) and Luchini (2000). The
output perturbation consists of streamwise streaks whose spanwise periodicity is of the
order of the boundary layer thickness. If the upstream vortex amplitude is high enough,
the disturbance eventually reach an amplitude at which nonlinear effects become relevant.
The basic flow considered here was obtained in Andersson et al. (2001) by computing
the nonlinear streaks forced by these optimal leading edge vortices.

If the amplitude of the streaks grow to a sufficiently high value, instabilities can develop
and provoke breakdown to turbulence. This instability is caused by inflectional profiles
of the base flow velocity and it is of inviscid type. The experiments of Swearingen &
Blackwelder (1987) were the first to document the emergence of streaks with inflectional
profiles, in this case owing to the formation of Gortler vortices in the boundary layer
over a concave wall. This investigation demonstrated that time-dependent fluctuations
appear in the flow either in a spanwise symmetric (varicose) or antisymmetric (sinuous)
pattern with respect to the underlying streak. The varicose perturbations are more closely
related with the wall-normal inflection points while the sinuous oscillations are related
with the spanwise inflectional profile and they were found to be the fastest growing. For
the streaks considered here, it was also found that the most dangerous perturbations are
of sinuous type (Brandt & Henningson 2002) and that the instability is convective in
nature (Brandt et al. 2003).

The inviscid streak instability evolves on the fast convective time scale and is charac-
terised by a large exponential growth. Therefore, we will focus our analysis on streaks of
moderate amplitude, mainly stable to linear perturbations, to investigate the potentiality
of a non-modal growth mechanism to trigger the breakdown of subcritical streaks.

2. Flow configuration and numerical method
2.1. Base flow and physical configuration

We consider the boundary layer over a flat plate and define the local Reynolds number,
Re = (Uxd)/v, by means of the free-stream velocity Us, and the local Blasius boundary
layer displacement thickness J,. In the analysis the streaks resulting from the nonlinear
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evolution of the spatial optimal perturbation in a zero pressure gradient boundary layer
are considered. This base flow was computed in Andersson et al. (2001) by solving the full
Navier—Stokes equations. In that work, the complete velocity field representing the steady
linear optimal perturbation calculated by Andersson et al. (1999) was used as input
close to the leading edge and its downstream nonlinear development was monitored for
different upstream amplitudes of the input disturbance. The flow was assumed periodic
in the spanwise direction and only one spanwise wavelength of the optimal perturbation
considered. To quantify the size of this primary disturbance field at each streamwise
position, an amplitude A was defined in Andersson et al. (2001) as

A(X) = % |:H;8;X (U(.T,y, Z) - UB(w>y)) - 121211 (U(Z‘,y, Z) - UB(xvy)):| ) (21)
where Up(x, y) is the Blasius profile and U(x, y, z) is the total streamwise velocity in the
presence of streaks. The streamwise velocity U is made non dimensional with respect to
the free-stream velocity Us,. The spanwise wavenumber is taken to be § = 0.45, which
corresponds to linearly optimally growing streaks at @ = 1 (cf. the scaling adopted in
Andersson et al. 2001).

We are interested in determining the local properties of the streaks in the parallel
flow approximation. Therefore one wishes to study the local characteristics of a basic
flow which evolves slowly in the streamwise direction, as required in the boundary layer
approximation and to consider a perturbation which evolves faster than the basic flow.
The parallel flow assumption becomes therefore questionable for perturbations of long
streamwise scale or when the behavior at large times is considered.

As in Andersson et al. (2001), the streak profiles under consideration are extracted at
the streamwise station = 2. This station has been chosen because it is associated with
the region where the streak energy attains its maximum value (see figure 5 in Andersson
et al. 2001). The critical amplitude A beyond which unstable streamwise travelling waves
are found is 0.26 for sinuous instability modes and 0.37 for their varicose counterpart.
Note finally that in the present investigation, we restrict our attention to perturbations
which have the same spanwise periodicity as the base flow, i.e. according to Floquet
theory the detuning parameter is taken to be zero (see Nayfeh & Mook 1979). This
reduction to the fundamental mode amounts to considering a total flow (basic flow plus
perturbation) which is spanwise periodic of fundamental wavelength X, and it is justified
by the observation that the perturbations under consideration are localised in the region
of strongest shear. For this reason, weak variations with the Floquet parameter were
found in the eigenvalue analysis in Andersson et al. (2001).

2.2. Governing equations and optimisation procedure

The equations governing the linear evolution of a perturbation velocity u(z,y,z,t) =
(u,v,w), of corresponding pressure p, on the streak profile U(y, z) are obtained by sub-
stituting U + u into the Navier-Stokes equations and neglecting the quadratic terms in
the perturbation. Following a procedure similar to that used in the derivation of the Orr-
Sommerfeld and Squire system, the above equations can be reduced to two equations
in terms of the normal velocity v and the normal vorticity n = u, — w, (Waleffe 1995;
Schmid & Henningson 2001)

Avg + UAv, + U, vp 4 2U, 04, — Uyyvy — 2U, w5y — 2Uyw, = ﬁAAv,

N+ Ung — Uzvy + Uy +Uyv, + U w = ﬁAn. (22)
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In the above, the spanwise velocity w can be eliminated by using the identity
Way + Wz = =Ny — Vyz.
Since the flow is assumed parallel, solution can be sought in the form of normal modes

[v,n] = [0(y, 2,1),7(y, 2, )] € + c.c. (2.3)

where « is the streamwise wavenumber. As the basic flow is symmetric about z = 0,
the modes can be further divided into separate classes according to their odd or even
symmetry with respect to the basic flow.

In particular, fundamental modes with an odd symmetry are called varicose with ref-
erence to their streamline patterns in the (z, z) plane, whereas fundamental modes with
an even symmetry are usually referred to as sinuous.

Being able to describe the dynamics of small perturbations on streamwise streaks, we
aim at finding the initial disturbance that would lead to the largest amplification at a
given time. The search for the initial condition that leads to the maximum energy growth
for a linear system is a well-known procedure, (see e.g. Andersson et al. 1999; Corbett &
Bottaro 2000) and it is therefore only briefly outlined here.

Let us define H, as the linear operator that maps an arbitrary initial condition ¢ to
the subsequent state at time 7. To apply this operator amounts to integrating (2.2) in
time. The maximum energy growth G(7) at time 7 is
G(7) = max [[Hrall = max (Hrq,1rq) £ max (@, "7 Hrq) HjHTq), (2.4)
e |lqll a« (g9 q (¢,9)
where the rightmost identity introduces the definition of H, the adjoint of H, with
respect to the inner product (-,-). It appears from (2.4) that the greatest eigenvalue and
corresponding eigenvector of the operator HIH., are the greatest achievable growth and
the corresponding initial condition.

The direct solution of the problem by eigendecomposition of H}H., is a heavy com-
putational task for a system of large order, since it involves the computation of two
matrix exponentials for the explicit description of H, and H;}. Instead, the mapping H.,
is applied to the state ¢(0) by marching the initial condition in time using the dynamic
operator L, defined by (2.2), and H is applied to ¢(7) by marching the state backward
in time using the adjoint LT of the dynamic operator. The adjoint LT is built as the
discrete adjoint

LT =Q'LHQ, (2.5)
where the matrix Q defines the discrete energy inner product,
(q1,92) = 45 Q qu, (2.6)

and the superscript H stands for the matrix conjugate transpose. Each step of the power
iteration ¢"*t! = HIH, ¢" will magnify the projection of ¢ onto the desired flow state
by a factor G. The iteration will thus converge quickly provided the leading eigenvalue
is well separated from the following ones. In the present case, an absolute accuracy of
1072 could be achieved within about 15 iterations when starting from an arbitrary initial
guess.

The state variable and dynamic operator are discretized in the wall-normal direction
using a Chebyshev collocation method (see e.g. Weideman & Reddy 2000). Both the
forward and the backward time marching are implemented using the second-order Crank-
Nicholson scheme (implicit) and a unit time step is employed in the time integration.
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FicURE 1. Maximum amplification G versus 7 of sinuous perturbations with wavenumber
a = 0.01, 0.1, 0.2...0.6 for streak of increasing amplitude. (a): A = 0.14, (b): A = 0.20, (¢):
A = 0.255, (d): A = 0.288. Note the appearance of the exponential instability for the largest
streak amplitude.
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FIGURE 2. Maximum amplification G versus 7 of varicose perturbations with wavenumber
a = 0.01, 0.1, 0.2...0.6 for streak of increasing amplitude. (a): A = 0.14, (b): A = 0.20, (¢):
A = 0.255, (d): A = 0.288. The dashed line in (a) pertains to o = 0.25 at which a viscous
instability is present.

The results have been validated by computing the evolution of the optimal input with
the numerical code and procedure described in Brandt et al. (2003).

3. Results
3.1. Optimal growth

The maximum energy growth G(7) for different values of the streak amplitude and of
the streamwise wavenumber « is displayed in figure 1 and 2 for the sinuous and varicose
symmetry respectively. The curve given by G(7) represents the maximum possible am-
plification at each instant in time optimised over all possible initial conditions with unity
energy norm. Since the optimal initial conditions are in general different for different
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FIGURE 3. (a) Maximum transient growth versus Reynolds number and (b) instant of
maximum amplification versus the Reynolds number for streaks of increasing amplitude,
A = 0.14, 0.20, 0.229, 0.255, 0.288. Solid lines display sinuous perturbations whereas dashed
lines are used for their varicose counterpart. The selected streamwise wavenumber is o = 0.3.

7, G(7) can be also thought of as the envelope of the energy evolutions of the initial
conditions yielding maximum energy growth at each instant 7. Note that time is made
non-dimensional with respect to 0*/Us.

Results are presented also for low values of the streamwise wavenumber «, at which
the parallel flow approximation becomes questionable, to show that the maximum am-
plification is attained in the limit of « — 0 for asymptotically stable streaks. However,
significant amplification is observed also at larger wave numbers. For sinuous perturba-
tions, an energy growth of the order of a thousand is found at Re = 1000 already for a
streak amplitude of 14%, i.e. well below the threshold for the onset of the inviscid sec-
ondary instability. It can also be seen in figure 1 that the energy growth of perturbations
of larger « increases with increasing streak amplitude more than for disturbance of low
streamwise wavenumber. Figure 1(d) shows the maximum energy growth for a streak
which is slightly unstable to sinuous perturbations, A = 0.288. The initial transient
growth becomes stronger, it is no longer maximum at the lowest streamwise wavenumber
considered and for the unstable v = 0.2, it dominates over the exponential growth for
times 7 < 200. Conversely, for streaks of higher amplitudes (> 30%), the exponential
inviscid instability is seen to become dominant already at small values of 7 (not reported
here).

The results pertaining to varicose perturbations are presented in figure 2. The max-
imum transient energy amplification is lower than for sinuous perturbations and it is
slightly decreasing with increasing streak amplitude. The dashed line in figure 2(a) de-
picts perturbations with @ = 0.25 at which a weak viscous instability is present (see
Cossu & Brandt 2004).

The maximum transient growth and the instant at which the maximum occurs are
displayed in figure 3 versus the Reynolds number for sinuous and varicose perturbations
with a = 0.3. Both these quantities increase with Re but a simple scaling law could not
be found. Note that in the simulations by Brandt et al. (2004) of a boundary layer subject
to free-stream turbulence of relatively high intensity, Tu = 4.7%, transition is found to
occur, in average, at Re ~ 730, whereas in the experiment by Matsubara & Alfredsson
(2001), where Tu ~ 2%, the breakdown to turbulence is observed at Re ~ 1500.

3.2. Flow visualisation

The velocity field pertaining to the initial conditions yielding maximum growth and the
flow configuration at the time of maximum energy are displayed in figure 4 and 5 for
sinuous and varicose disturbances, respectively. In the case of antisymmetric perturba-
tions, the streamwise and wall-normal velocity components of the optimal disturbance
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FIGURE 4. (a) Streamwise, wall-normal and spanwise velocity fields of the input initial condi-
tion yielding maximum output energy at 7 = 123 for sinuous perturbations with o = 0.3 at
Re = 1000. (b) Velocity field at the instant of maximum growth. The isosurfaces represent the
areas where the value of the velocity is 0.2 of the maxima, which are u = 0.386, v = 0.658 and
w=1.893 at t =0; u = 63.499, v = 6.13 and w = 15.662 at t = T.

are concentrated in the region of strongest spanwise shear of the basic flow, i.e. on the
flanks of the low-speed streak located in the middle of the box in the figures presented
here, whereas the spanwise velocity is larger in the region of strong wall-normal shear
on the top of the high-speed streak. Both three velocity components are tilted upstream
from the wall. The optimal response velocity field (fig. 4b) resembles the unstable modes
leading to the streak breakdown (see Brandt & Henningson 2002). As a consequence, it
would be difficult to assess from experimental results whether the streak breakdown is
triggered by an exponential instability or by a non-modal mechanism. The streamwise ve-
locity component is the most amplified and the perturbation is still located in the region
of strongest shear but the flow structures are now inclined in the downstream direction.
This indicates that the disturbance has extracted energy from the mean shear by trans-
porting momentum down the mean velocity gradient, similarly to what is observed for the
Orr mechanism (Orr 1907; Butler & Farrell 1992). This non-modal growth mechanism is
the only present in the case of spanwise independent perturbations in a shear flow and
describes short term inviscid instabilities due to the tilting of initial disturbances into the
direction of the mean shear. However, the maximum of the perturbation is not attained
when the disturbance is aligned in the wall-normal direction (cf. Butler & Farrell 1992)
and indeed the analysis presented below confirms that other mechanisms are active as
well.

In the case of varicose perturbations (figure 5), the rotation of the perturbation from
upstream to downstream tilting is also observed. The perturbations are still located at
the locations of maximum shear of the underlying streak and the streamwise velocity
component is the most amplified.

To try to better understand the mechanisms responsible for the observed growth, the
evolution of the perturbation kinetic energy K integrated over one streamwise wavelength
is considered

Ki= [(cunl, cuwl, ~w- w/Re)dydda. (3.1)
= x5
T, = D

where w is the perturbation vorticity vector. This balance equation is derived in a
straightforward manner from the Navier—Stokes equations linearised around the base
flow U(y, z). The first production term of density 7, = —uv U, represents the work of
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FIGURE 5. (a) Streamwise, wall-normal and spanwise velocity fields of the input initial condition
yielding maximum output energy at 7 = 80 for varicose perturbations with o = 0.3 at Re = 1000.
(b) Velocity field at the instant of maximum growth. The isosurfaces represent the areas where
the value of the velocity is 0.2 of the maxima, which are u = 0.462, v = 0.867 and w = 1.494 at
t=0; u=27.691, v = 3.538 and w = 8.560 at t = 7.
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FIGURE 6. Time evolution of the volume integral of the terms appearing in the perturbation
kinetic energy equation. Ty = —wUy, — — —: T, = —uwlU,, - — -—: viscous dissipation
and o: K;. (a) Sinuous perturbation at Re = 1000, a = 0.3, 7 = 123. (b) Varicose perturbation
at Re = 1000, a = 0.3, 7 = 80.

the Reynolds stress —uv on the wall-normal basic shear Uy, while the second production
term of density T, = —uw U, is associated with the work of the Reynolds stress —uw on
the spanwise basic shear U,. The last term represents viscous dissipation.

The time evolution of the terms appearing in equation (3.1) is displayed in figure 6 both
for a sinuous and a varicose perturbation. The production associated to the wall-normal
shear of the perturbation T, is positive at early times and then becomes negative as for
two-dimensional perturbations experiencing a growth due to the Orr mechanism. However
its amplitude is lower than that of the production related to the spanwise shear T, which is
therefore responsible for the large growth observed both for the sinuous and the varicose
disturbance. It is remarkable to note that initially both production terms are positive and
that the spanwise shear is also responsible for the growth of varicose perturbations. This
is unexpected considering that exponentially growing varicose perturbations are driven
by the action of the wall-normal shear. Two growth mechanisms seem therefore to be
active, similarly to what observed in constant-shear flows by Farrell & Ioannou (1993).
Tilting of the mean flow vorticity, as in the streak generation process in two-dimensional
flows, and the Orr mechanism. The former is stronger for « — 0, while the latter is
present at finite a.
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4. Conclusions

The behaviour of linear perturbations developing on boundary layer streamwise streaks
is investigated for streak amplitudes below or right at the onset of the inflectional sec-
ondary instability. The input velocity fields leading to an output flow of maximum possi-
ble energy at a given time are computed for the first time for a parallel basic flow periodic
in the spanwise direction.

It is found that large energy amplification can be achieved both by sinuous and by
varicose disturbances. The transient energy growth is larger for sinuous modes, it in-
creases with the Reynolds number and it is already relevant at amplitudes well below
the threshold for the onset of secondary instabilities. The results indicate the possibility,
first suggested by Grossmann (2000), of a transition scenario in which energy is extracted
from the laminar state by a series of linear non-modal mechanisms. In particular, first
the lift-up effect responsible for the streak growth and then the non-modal amplification
of the streamwise dependent perturbations presented here.

The present results have also implications on the dynamics of near-wall turbulent
flows, where the streak breakdown is one of the key elements of the underlying self-
sustaining process. The regeneration of vortices following the streak breakdown can be
related to non-modal growth mechanisms and therefore occur at lower streak amplitudes
(cf. Schoppa & Hussain 2002) and for both sinuous and varicose perturbations.

The input and output velocity fields are also presented. The optimal initial condition
consists of velocity perturbations localised in the regions of highest shear of the streak
base flow, tilted upstream from the wall. The optimal response is still localised in the areas
of largest shear but it is tilted in the flow direction. The most amplified perturbations
closely resemble the unstable eigenfunctions obtained for streaks of higher amplitudes and
it appears therefore difficult to distinguish between the two from experimental /numerical
data. Similar flow structures at the streak breakdown are in fact observed for the unstable
streaks in Brandt & Henningson (2002) and the transient growth scenario in Schoppa &
Hussain (2002). Varicose modes are also shown to have significant amplifications and they
are indeed observed in the simulations in Brandt et al. (2004). Comparable growth rates
for varicose and sinuous modes are found in the analysis of the corrugated vortex sheet
instability in Kawahara et al. (2003). Analysis of the equation governing the evolution of
the perturbation kinetic energy reveals that the work of the Reynolds stress uw against
the spanwise shear of the underlying streak is responsible for the transient growth of
both sinuous and varicose disturbances. In both cases, the largest velocity component
of the optimal disturbance is the spanwise whereas the optimal response is strongest in
its streamwise velocity component. This also explains why the initial condition proposed
by Schoppa & Hussain (2002) is able to trigger some transient amplification and lead to
the streak breakdown. Future investigations will aim at a better understanding of the
physical mechanism responsible for the observed transient growth and to quantify the
realizability of this growth process in noisy situations in which streaks continuously form.

REFERENCES

ANDERSSON, P., BERGGREN, M. & HENNINGSON, D. S. 1999 Optimal disturbances and bypass
transition in boundary layers. Phys. Fluids 11, 134-150.

ANDERSSON, P., BRANDT, L., BOTTARO, A. & HENNINGSON, D. S. 2001 On the breakdown of
boundary layers streaks. J. Fluid Mech. 428, 29-60.

BranDT, L., Cossu, C., CHOMAZ, J.-M., HUERRE, P. & HENNINGSON, D. S. 2003 On the
convectively unstable nature of optimal streaks in boundary layers. J. Fluid Mech. 485,
221-242.



10 J. Hepffner, L. Brandt and D. S. Henningson

BRrRANDT, L. & HENNINGSON, D. S. 2002 Transition of streamwise streaks in zero-pressure-
gradient boundary layers. J. Fluid Mech. 472, 229-262.

BRANDT, L., SCHLATTER, P. & HENNINGSON, D. S. 2004 Transition in boundary layers subject
to free-stream turbulence. J. Fluid Mech. 517, 167-198.

BUTLER, K. M. & FARRELL, B. F. 1992 Three-dimensional optimal perturbations in viscous
shear flow. Phys. Fluids A 4, 1637-1650.

CORBETT, P. & BoOTTARO, A. 2000 Optimal perturbations for boundary layers subject to
stream-wise pressure gradient 12 (1), 120-130.

Cossu, C. & BrANDT, L. 2004 On Tollmien-Schlichting-like waves in streaky boundary layers.
Eur. J. Mech./B Fluids 23, 815-833.

FARRELL, B. F. 1988 Optimal excitation of perturbations in viscous shear flow. Phys. Fluids
31, 2093-2102.

FARRELL, B. F. & ToaNNoU, P. J. 1993 Optimal excitation of three-dimensional perturbations
in viscous constant shear flow. Phys. Fluids A 5, 1390-1400.

GROSSMANN, S. 2000 The onset of shear flow turbulence. Reviews of Modern Physics 72 (2),
603-618.

KAWAHARA, G., JIMENEZ, J., UHLMANN, M. & PINELLI, A. 2003 Linear instability of a corru-
gated vortex sheet — a model for streak instability. J. Fluid Mech. 483, 315—-342.

Kimv, H. T., Kung, S. J. & REyNowps, W. C. 1971 The production of turbulence near a
smooth wall in a turbulent boundary layer. J. Fluid Mech. 50, 133-160.

LANDAHL, M. T. 1975 Wave breakdown and turbulence. STAM J. Appl. Maths 28, 735-756.

LucHini, P. 2000 Reynolds-number independent instability of the boundary layer over a flat
surface. Part 2: Optimal perturbations. J. Fluid Mech. 404, 289-309.

LunDELL, F. 2004 Streak oscillations of finite length: Disturbance evolution and growth. Phys.
of Fluids 16 (8), 3227-3230.

MATSUBARA, M. & ALFREDSSON, P. H. 2001 Disturbance growth in boundary layers subjected
to free stream turbulence. J. Fluid. Mech. 430, 149-168.

NAYFEH, A. H. & Mook, D. T. 1979 Nonlinear oscillations. Wiley-Interscience.

ORR, W. M. F. 1907 The stability or instability of the steady motions of a perfect liquid and
of a viscous liquid. Part I: A perfect liquid. Part II: A viscous liquid. Proc. R. Irish Acad.
A 27, 9-138.

ScHMID, P. J. & HENNINGSON, D. S. 2001 Stability and Transition in Shear Flows. New York:
Springer.

ScaoprpA, W. & HussaIN, F. 2002 Coherent structure generation in near-wall turbulence. J.
Fluid Mech. 453, 57-108.

SWEARINGEN, J. D. & BLACKWELDER, R. F. 1987 The growth and breakdown of streamwise
vortices in the presence of a wall. J. Fluid Mech. 182, 255-290.

WALEFFE, F. 1995 Hydrodynamic stability and turbulence: Beyond transients to a self-
sustaining process. Stud. Appl. Math. 95, 319-343.

WEIDEMAN, J. A. C. & REDDY, S. C. 2000 A MATLAB differentiation matrix suite. ACM
Transaction of Mathematical Software 26 (4), 465-519.



