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Pumping or drag reduction?
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Two types of wall actuation in channel flow are considered: traveling waves of wall defor-
mation (peristalsis) and traveling waves of blowing and suction. The flow response and its
mechanisms are analyzed using nonlinear and weakly nonlinear computations. We show
that both actuations induce a flux in the channel in absence of imposed pressure gradi-
ent and can thus be characterized as pumping. In the context of flow control, pumping
and drag reduction are strongly connected, and we seek to define them properly based
on these two actuation examples. Movies showing the flow motion for the two types of
actuations are available with the online version of this paper.

1. Introduction

Aero- and hydrodynamic drag are the main resistances to vehicle’s motion: airplanes,
ships, trains, cars, bicycles . . . thus responsible for a large part of the spent power. This
drag usually consist of pressure drag, for instance dramatically increased by flow recircu-
lation, and skin friction drag, dramatically increased by transition to turbulence. Higher
speed for lower power can be obtained when the vehicle is designed such as to take ad-
vantages of the flow dynamics. Skin friction drag reduction has received much attention:
prevention of the transition to turbulence by stabilization of the boundary layer (see, e.g.,
Joslin 1998; Kim & Bewley 2007) or reduction of the skin friction in the turbulent regime
(e.g., Choi, Moin & Kim 1994; Kasagi, Suzuki & Fukagata 2009). The plane channel flow
is a simple configuration exhibiting the central elements of skin friction drag: exponential
and algebraic instabilities, transition to turbulence, sustained turbulent regime, and was
thus used as a test case and a source of inspiration for research in this field.

In view of flow control for drag reduction, it is useful to search for fundamental perfor-
mance limitations. In Bewley (2001), the following conjecture was proposed (’Bewley’s
conjecture’): ’The lowest sustainable drag of an incompressible constant mass flux chan-
nel flow, when controlled via a distribution of zero-net mass-flux blowing/suction over
the no-slip channel walls, is exactly that of the laminar flow’. A momentum balance in
the channel shows that the work of the shear at the walls—acting against the flow—is
directly balanced by the work of the pressure at inflow and outflow. As emphasized by
Marusic, Joseph & Mahesh (2007), the formulation of the conjecture where the flux is
fixed and the pressure gradient is allowed to change, is equivalent to a formulation where
the pressure gradient is fixed and the flux is allowed to change. In this case of a fixed
pressure gradient, the conjecture tells that the actuation cannot induce a flux in excess
of the laminar value. In other words whatever the actuation power, the flux cannot be
increased.

In Min, Kang, Speyer & Kim (2006), a blowing and suction boundary condition was
applied at the channel walls in the form of a traveling wave in numerical simulations of
laminar and turbulent flows; the flux was kept constant by adjusting the pressure gradient
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for the different actuation parameters: amplitude, wavespeed and wavelength. They show
that when the wave is made to travel upstream, the fixed flux can be maintained with a
lesser pressure gradient than the laminar value, thus achieving sustained sublaminar drag.
Their setting complies with the requirement of the conjecture above: constant mass flux,
no-slip walls, zero-net mass-flux actuation and sustained drag effect. They thus provide
a counter example to Bewley’s conjecture.

This result has attracted the attention of Luchini (2006), where a link is drawn be-
tween the unexpected sublaminar drag and acoustic streaming. Streaming consists in the
generation of a mean drift by an oscillating flow, see Lighthill (1978) for an inspiring
lecture and Riley (2001) for a recent review. In his paper, Luchini comes to state ’not
drag but thrust’, commenting indeed that ’the effect of a zero-mean blowing-and-suction
at the wall is not a (multiplicative) influence on the drag-producing mechanism driven by
the pressure gradient, but an (additive) pumping that pushes the fluid in one direction
or the other independent of any mean pressure gradient applied.’ According to Luchini,
a traveling wave of blowing and suction at the wall is not drag reduction, it is pumping.
Luchini has numerically validated this interpretation by showing in his article that a
consistent flow rate could be sustained while turning off the pressure gradient.

We can now turn to the purpose of the present paper. A wide range of phenomena
can be categorized as to belonging to the family of streaming, without need of precise
considerations on the chain of events leading to the mean drift. We will see through our
analysis that subtle effects are at play in the response to the traveling wave actuation.
Min et al. (2006) close their paper with ’the current control scheme, consisting of surface
blowing and suction in the form of traveling waves, is mathematically simple [...], yet it
may not be straightforward to implement in real flows. [...]. However, a moving surface
with wavy motion would produce a similar effect, since wavy walls with small amplitudes
can be approximated by surface blowing and suction.’ On the contrary, we will see that
the responses to the two types of actuation—traveling wave of blowing and suction and
traveling wave of wall deformation—are very different.

In figure 1 we have represented the velocity fields of the response to the two traveling
wave actuations in a plane channel. In both cases, the wave is traveling from left to right.
A first intriguing observation is that for the traveling wave of wall deformation, a mean
flux is generated to the right—that is, in the same direction as the wave—whereas for
the traveling wave of blowing and suction, a mean flux is induced to the left—that is,
opposite to the direction of the wave. We will analyze this phenomenon, and distinguish
the mechanisms at play.

2. The physics of the traveling wave actuations

2.1. Traveling wave of wall deformation

The walls of our channel can now be deformed in the shape of a traveling wave with phase
speed c. We can consider the case of sinusoidal waves about the wall original position, or
choose a different waveform to emphasize the mechanisms at play. In this first analysis,
we consider a channel without imposed mean pressure gradient, i.e., no Poiseuille profile.
Impact of the mean pressure gradient will be estimated in the appendix. The system
quantities are made dimensionless with respect to the channel half height h, fluid density
ρ, viscosity µ and wavespeed c. The Reynolds number relevant for this analysis is then
defined as Rew = ρch/µ. We parametrize the wall wave amplitude with φ, the maximum
displacement of the walls from y = ±1. That is, φ = 0 means a straight channel and
φ = 1 implies a deformation such that the channel is occluded. Hereafter, the direction
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Figure 1. Velocity and pressure fields in the peristalsis and blowing/suction cases, the Reynolds
number is 300, wave amplitude is φ = 0.5, and the wavelength is L = 6. The pressure field is
indicated by gray shading: lowest pressure is black. The flow motion is best viewed from the
movies available with the online version of this paper.

of the wave propagation and its opposite will be termed respectively the forward and
backward directions. Note that particles at the wall only move in the vertical direction,
while the wave of deformation propagates in the horizontal direction, that is, no forward
motion is imposed at the wall.

When traveling in the frame of the wave, the flow has steady boundary conditions and
a fixed domain. It can thus be computed as a stationary solution of the Navier–Stokes
equations in the domain deformed with the waveform. The Navier–Stokes equations are
discretized in space using the fourth order finite differences, with no-slip boundary condi-
tions at the displaced walls and periodicity in the horizontal direction. The steady state
flow is computed using the Newton method.

The pumping mechanism has a viscous origin. Propagation of the deformation induces
a flow from regions being constricted to regions being expanded. Without viscosity, this
flow would be equally distributed to the forward and backward directions: no pumping.
The backward flow takes place in a constricted channel, whereas the forward flow takes
place in an expanded channel. For a viscous fluid, the larger friction in the constricted
region induces an asymmetry in favor to the forward flow, thus a mean flux in the
direction of the propagation of the wave: this is the pumping mechanism. The flux will
be small when the wall deformation is small, and reach a maximum when the channel is
occluded, at φ = 1. In this limit, the trapped flow is forced forward at the speed of the
wave; the flux is unity.

For low Reynolds numbers, long wavelength and sinusoidal wall deformation, a closed
form expression for the flux can be derived from the Stokes equation: Qsin = 3φ2/(2+φ2)
(Jaffrin & Shapiro 1971). For the purpose of illustrating the mechanism at play, we wish
to derive an equivalent expression directly from the above description of the mechanism.
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A good qualitative match with the computed data will thus be a confirmation of the
understanding of the mechanism. With this aim, we take the freedom to change the flow
geometry so that the key effects clearly appear. The pumping results from different head
losses in the forward and backward flows. A waveform which emphasizes this mechanism
consists of short constrictions and expansions, that connect long sections of straight
channel, as shown in figure 2. The wave of wall deformation propagates from left to
right, thus, region (1) is a zone where the channel is being constricted, whereas region
(2) is a zone where the channel is being expanded. This effect is clearly visible on the
movies. The pressure at the constriction region (1) and expansion region (2) are denoted
P1 and P2. There is no externally imposed mean pressure gradient, thus the pressure P ′

1

in the region 1′ is equal to P1.
The flow motion originates from the displacement of the wall deformation. Conserva-

tion of mass in a fixed control volume enclosing a region being expanded (2) accounts for
this effect: the ingoing flux F1 on the left of (2) plus the ingoing flux −F2 on the right
equals the rate of increase of volume of the region. This change of volume is 2φ, because
of an height expansion of 2φ at unit speed. This gives

F1 − F2 = 2φ. (2.1)

To obtain a second relation for F1 and F2 we impose that the total pressure rise must be
zero over one wavelength; this condition imposes that the skin friction in the constricted
channel be equal in amplitude and opposite in sign to the skin friction in the expanded
channel

∂u1

∂y
|wall +

∂u2

∂y
|wall = 0. (2.2)

We assume Poiseuille profiles in both channel sections

u1 = U1[1 − y2/(1 + φ)2], u2 = U2[1 − y2/(1 − φ)2],

where we have accounted for the different half height 1 + φ and 1 − φ in the expanded
and constricted channels. From these expression, we can obtain the expression of the skin
friction in each channel, which with (2.2) leads to

(1 − φ)2U1 + (1 + φ)2U2 = 0. (2.3)

The flux is the integral of the velocity profile over the channel

F1 = 2U1(1 + φ)/3, F2 = 2U2(1 − φ)/3. (2.4)

The total flux of the pumping is

Q =
1

L

∫ L

x=0

F (x)dx =
1

L
(
L

2
F1 +

L

2
F2) = (F1 + F2)/2, (2.5)

where L is the wavelength. Combining (2.1), (2.3), (2.4), and (2.5), we finally obtain the
expression for Q as a function of φ

Q = φ
(1 + φ)3 − (1 − φ)3

(1 + φ)3 + (1 − φ)3
. (2.6)

It vanishes for straight channel (φ = 0), grows quadratically at low φ, and tends to unity
for occlusion (φ = 1). The computed velocity profiles are shown in figure 2. The computed
flux is compared to that obtained from (2.6), which shows excellent agreement. The
pressure along the channel centerline is also represented for several Reynolds numbers.

It is remarkable that the flux does not depend on the Reynolds number. Viscosity
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Figure 2. Configuration of the peristaltic pumping model (2.6). a) Velocity profiles for
φ = 0.5, wavelength L = 30 and Rew = 1 (black) and Rew = 1000 (light gray). For
Rew = 0.1, 1, 10, 100, 1000: b) the flux Q as a function of the constriction φ, and c) the centerline
pressure along one wavelength, normalized to the amplitude range [−1, 1].

is essential for this pumping mechanism: the competition of viscous resistance in the
constricted and expanded channels. But this competition appears as a ratio of the con-
tribution of each section, thus the Reynolds number disappear. We will see in §4 on the
other hand that the energy spent does depend on the Reynolds number.

The details of the flow about the constriction and expansion regions have little effect at
long wavelengths, thus their exact shape is immaterial to the pumping. At low Reynolds
numbers, the centerline pressure has a typical Poiseuille shape, with a constant slope
opposed to the flow direction. For larger Reynolds numbers, large pressure gradients are
concentrated in the short regions of flow acceleration and deceleration, which is a typical
inviscid limit behavior.

In figure 3, we have represented the trajectories of five particles during six period of
the traveling waves. Flow particles follow a circular motion with a mean drift to the right.

2.2. Traveling wave of blowing and suction

We now let the channel walls rest at y = ±1, but blowing and suction is imposed as the
boundary condition on the vertical velocity. For the horizontal velocity, no-slip condition
applies. Once again, the flow is steady in the frame traveling with the wave, and can be
computed with the same tools as for §2.1 using finite differences and the Newton method.

Instantaneous streamlines in the frame at rest are shown in figure 4a while increasing
the Reynolds number; the upper half of the channel is represented. At low Reynolds
numbers, the flow is structured in two cells of equal length, each one corresponding to
the inflow/outflow of fluid particles at the walls due to the boundary condition. One cell
corresponds to particles flowing forward, the other cell corresponds to particles flowing
backward. When the Reynolds number is raised—which can be thought as progressively
increasing the wavespeed—the forward cell shrinks to the advantage of the backward cell.

Changes in the relative sizes of the forward and backward cells is a kinematic conse-
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Figure 3. Trajectories of five particles at Rew = 100, L = 10 for 6 periods. Stars locate the
particles’ initial position. The motion of flow particles is shown in the movies available with the
online version of this paper.

quence of the dynamic effects at play in the pumping mechanism. The total flux Q is the
average over one wavelength of the local flux F (x)

Q =
1

L

∫ x=L

x=0

F (x)dx (2.7)

Since the flux between two streamlines is a constant, the streamline pattern connects the
flux in the domain to the flux at the boundaries, which is imposed and known. Equal
lengths of the two cells implies that half of the flux injected at the wall is directed forward
and half of the flux injected at the wall is directed backward: zero pumping. When on the
other hand, the forward cell shrinks, more of the flow injected at the walls is gathered to
the backward direction: negative pumping.

For large Reynolds number, the forward cell vanishes. At the Reynolds number where
the forward cell just disappears, assuming that all streamlines start or end at the walls,
the total flux can be quantified as

Q0 =
1

L

∫ L

x=0

∫ x

ξ=0

−η(ξ)dξ

︸ ︷︷ ︸

F (ξ)

dx =
1

L

∫ L

0

xη(x)dx,

where η is the waveform. For a sinusoidal η, the integration gives Q0 = −φL/2π. This
result is a gross evaluation of the maximum flux; it conveys the physics of the structuring
of the streamline pattern into two cells and the disappearing of the forward cell.

The mean flux computed while varying the wave amplitude and the Reynolds number
is shown in figure 4b, normalized by Q0. The flux is negative (backward), and increases
in amplitude with Reynolds number until reaching a constant value. We observe that the
maximum flux is larger than Q0; indeed, streamlines that are not connected to the wall
inflow/outflow are present. These corresponds to particles in the centre region, entrained
by the near-wall flow motion.

It remains now to penetrate the dynamic processes at play. To this end, it is helpful
to switch to a Lagrangian flow description. For a stationary wave (c = 0), particles
follow trajectories from inflow regions to outflow regions. In this cell structure, up/down
and forward/backward displacements are synchronized into a convection structure, as
seen in figure 4a. Here, since the wavespeed is zero, trajectories are superposed on the
streamlines; all particles emanate from the wall and are eventually sucked back.

When the wave is set to travel, the streamline convection structure is maintained.
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Figure 4. Traveling wave of blowing and suction. a) Instantaneous streamlines and averaged
streamwise profile in the upper half of the channel for φ = 1 at Reynolds corresponding to the
black dots of b). b) Mean flux normalized by |Q0| as a function of the Reynolds number for 5
different φ.

Some particles still enter and exit through the walls, but there will also be particles that
remain in the channel. They are advected up and down as suction and blowing zones travel
nearby at the wall, and they are also advected forward and backward in a synchronized
manner. The motion can be imagined by translating rightward the streamline patterns
of figure 4, letting the particles velocity be tangent to the instantaneous streamlines. Let
us now follow one such particle, initially at distance y0 from the wall. It is convected
close to the wall and back to y0 through the forward part of its motion, then away
from the wall and back to y0 in the backward part of its motion. In the absence of fluid
viscosity, this sequence would form a closed loop: after one period, the particle returns to
its initial position. For a viscous fluid on the other hand, particle motion being hindered
close to the wall due to the no-slip condition, an asymmetry results in favor to backward
motion: after one period of the traveling wave, our particle returns to y0 but has moved a
finite distance in the backward direction. The synchronization of vertical and horizontal
displacements is best viewed on the movies available with the online version of this paper.

Particle trajectories in the frame at rest are shown in figure 5 for three wave amplitudes.
For the lowest amplitude, the circular trajectories have small radius. A zoom shows a
slight backward drift. For the larger wave amplitudes, the particles show clearly the trend
described above, with a damped forward motion, leading to a rapid drift.

Variation of the Reynolds number introduces an additional phenomenon. For low
Reynolds numbers, slow-down of particles due to the no-slip walls influences the com-
plete domain, thus both forward and backward motions are affected though with slightly
different magnitude: low pumping. At large Reynolds numbers, bulk inertia of particles
in the center of the channel dominates and the no-slip boundary condition is felt only
in a thin viscous layer close to the wall. The particles that will contribute most to the
pumping are those that oscillate about the edge of this viscous layer: flowing freely when
outside (backward), and nearly stopped when penetrating (forward).

2.3. Pumping efficiency

We will now consider the spent power for peristalsis and blowing and suction. The energy
budget is composed on one hand of viscous dissipation, and on the other hand, of the
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Figure 5. Trajectories of five particles at Rew = 100, L = 10 for 6 periods, with three wave
amplitudes φ = 0.01, 0.05, 0.1. Stars locate the particles initial position. The motion of flow
particles is shown in the movies available with the online version of this paper.

work of the actuation. At steady state, the total energy is constant in time. For blowing
and suction, energy is injected through the work of the pressure at the wall

Blowing and suction: Wact = −v(p + v2/2)|y=1

energy is transferred from the actuation to the fluid if the top wall pressure has its sign
opposite to the sign of the velocity v. Note that here, as for the definition of the flux,
we consider only the top half of the channel. For peristalsis, wall deformation induces a
contribution of viscous forces

Peristalsis: Wact = −vn(p + EK)|wall +
1

Rew

∂EK

∂n
|wall

where vn is the velocity normal to the wall, and ∂EK/∂n is the normal derivative of the
kinetic energy, with EK = (u2 + v2)/2. In this expression, the overline · denote average
along the top wall. For more details on these expressions, see for instance Mito & Kasagi
(1998). If an external pressure gradient Px is present, there is an other source for energy

Pressure gradient: Wpg = − 1

L

∫

xy

uPx dxdy = −QPx.

Energy is injected to the flow if P decreases in the direction of the flux.
We now seek to define a pumping efficiency. Let us suppose that a given flow actuation

induces a flux Q in absence of an external pressure gradient. This actuation can be said
efficient if the needed energy is close to the energy needed to drive the same flux with only
an external pressure gradient (laminar Poiseuille flow). The pressure gradient needed to
drive a Poiseuille flow of flux Q is P ref

x = −3Q/Rew, thus the reference power is

Reference: Wref = −QP ref
x = 3Q2/Rew

The efficiency can then be defined as the reference power divided by the power total
injected power; this leads to

Efficiency =
Wref

Wact + Wpg
=

3Q2

Rew

1

Wact + Wpg

.

Note that this efficiency must be unity whenever Wact = 0. In figure 6, we show how the
efficiency depends on the Reynolds number and actuation amplitude φ. Here, Wpg = 0.

We observe that the efficiency is always less than one, namely, it always costs more
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energy to drive a given flux with the traveling wave actuation than with a pressure
gradient. The most notable information here is that for blowing and suction, efficiency
increases with Rew, whereas for peristalsis, efficiency is best at lowest Reynolds number.
For the computations presented here, the overall best efficiency is found for peristalsis:
about 0.73 at lowest Reynolds number (Rew = 1) and at highest actuation amplitude
(φ = 0.8).

3. Flow control

The drag reduction problem was formulated in Bewley (2001) as finding the lowest
power for a given flux Q in the channel. It was conjectured that whatever the actuation
power Wact, it is impossible to use a pressure gradient power less than the laminar value
3Q2/Re. Min et al. (2006) gave a counter example.

Clearly, the actuation power must be accounted for when searching for a performance
limitation in flow control. In Fukagata, Sugiyama & Kasagi (2009), a lower bound is
demonstrated for the power spent by the work of the pressure gradient plus the power
spent by the actuation. This total power injected into the flow must balance the only
cause of damping: viscous dissipation in the flow domain (Bewley 2009, see also). The
flow motion which for a given set of boundary conditions, experiences the least viscous
damping is that satisfying the Stokes equation. It is interesting that precisely the flow
where viscosity dominates is the one which dissipates least. The channel is a parallel
geometry such that inertial effects do not affect its steady state in the laminar regime;
the parabolic profile is solution to the Stokes equation, it is therefore the ideal drag
reduction target.

We have represented in figure 7 the different zones of interest. This is the ’power plane’.
At zero actuation power, there are two possible sustained regimes: laminar (square) or
turbulent (circle). Powers are normalized with that needed to drive the laminar Poiseuille
flow. Here, the power required to drive the turbulent flow is slightly more than twice that
of the laminar case. This corresponds to the turbulent simulations in Min et al. (2006)
at Reynolds number 2000. The oblique paths in this graph correspond to constant total
driving power. Two regions are highlighted: the shaded strip is the domain forbidden
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by Bewley’s conjecture: whatever the actuation energy, one cannot drive a given flux
with less pressure power than that of the laminar flow. The dark triangle is the domain
forbidden by Fukagata et al. (2009): one cannot drive a given flux with less total power

than that of the laminar flow.
Presented as here, figure 7 emphasizes for the pressure power, in the spirit of Bewley’s

conjecture. Now that it is clear that the total power must be considered, it is more
relevant to orient the axis such that horizontal lines correspond to total power. We have
performed this change in figure 8. Here the axes of the previous figure are rotated 45
degrees and scaled accordingly. We have, here again, highlighted the forbidden zone where
the power is less than laminar.

We would like now to place the traveling wave actuation on this diagram. In this
section, we are interested in large Reynolds numbers, that is, in a parameter range
where the peristaltic pumping is inefficient. We thus only consider the traveling wave
of blowing and suction. We are now interested in the case of a fixed flux Q = 2/3. This
flux corresponds to a centerline velocity Uc = 1, thus here Rew = Rec = 2000. We keep
a wavelength of L = 2π with a wavespeed of unity c = ±1. We vary the wave amplitude
and adjust the pressure gradient accordingly in order to maintain Q = 2/3. We can then
compute the pressure and actuation power, and report it on the diagram. The results are
shown in figure 8.

We observe as expected that the total power is always larger than that of the laminar
Poiseuille. We have also considered the case of negative pressure power, that is when the
actuation power is too large, and must be compensated by an adverse pressure gradient
to maintain the desired flux. The case where actuation power is negative has also been
considered: the wave is made to travel downstream and pumps against the flux, which is
compensated with a large pressure power is favor of downstream flux.

We now examine the case of the traveling waves in Min et al. (2006) for the turbulent
regime. The pressure gradient and actuation powers for waves of amplitudes 0.1 and 0.25
are shown by the two stars of figure 8. The mechanism at play in this turbulent case are
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Figure 8. An alternative representation of the ”power plane”. Here the axes are rotated such
that horizontal lines correspond to constant total power Wact +Wpg. The dotted line represents
the power balance for blowing and suction for a fixed flux Q, at Rew = Rec = 2000. The two
stars are the turbulent control results of Min et al. (2006) with wave amplitude 0.1 and 0.25.

of great interest. Indeed, the total power is reduced as compared to the turbulent flow
without actuation. We have in the preceding sections analyzed the physics of the pumping
effect in the laminar case, and care must be taken when extrapolating our observation
to a regime of a great complexity. We can nevertheless state a safe comment: there is
drag reduction in the turbulent regime; power is not simply transferred from pressure
gradient pumping to actuation pumping. To explain this effect, Luchini (2006) suggests
that suction regions absorb turbulent flow whereas blowing regions inject laminar flow,
resulting in a global decrease of the turbulence intensity, wall normal mixing, and thus
drag. A turbulent channel with constant suction at one wall and constant blowing at
the other wall should have this effect. This test was performed in Fukagata, Iwamoto &
Kasagi (2002), but in fact it results in an increased drag, thus discarding this mechanism
as a potential explanation of Min’s results.

We can now build on the observations of the present paper to suggest a mechanism
that interestingly links drag reduction to pumping. It is here a temptative mechanism,
which we only could assess if supported by critical scrutiny of turbulent flow data. At
first, the upstream traveling wave of wall actuation induces a flux in the downstream
direction. In the context of a channel with constant flux, this effect results in a lower
pressure gradient: this is the pumping effect. Fukagata et al. (2002) have analyzed the
drag reduction effects in turbulent channels, and have shown the central role played by
the Reynolds stress. They show that the pressure gradient is proportional to the spatial
average of yu′v′—that is, the Reynolds shear stress weighted with the distance from
the centerline. Naturally, the decrease of the Reynolds shear stress due to the lowered
pressure gradient in turn leads to a decrease of the turbulence production. At last, there
is a decrease of turbulent mixing caused by the decrease of the turbulent production: this
is the drag reduction effect.
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4. Conclusion

Traveling waves of wall deformation induce pumping in the forward direction. On the
other hand, traveling waves of blowing and suction induce pumping in the backward
direction. In both cases, fluid particles are entrained into a circular motion by the wall
actuation; in both cases the pumping direction originates from a different viscous damp-
ing during the backward and forward motion of fluid particles along its circular trajectory.
For peristalsis, the particles’ backward motion takes place in the constricted section of
the channel, where viscosity slows down the flow. For blowing and suction, the particles’
forward motion takes place close to the walls, where viscosity slows down the flow.

A weakly nonlinear analysis, as done in the appendix, provides a different point of
view. The leading order solution in both cases is a zero mean motion of the same order
of amplitude as the wall actuation. The Reynolds shear stress generated by this leading
order solution acts as a forcing to the second order solution, being balanced by viscous
forces. This induces a creeping flow with a net flux, from which a backward pumping
originates, as observed for the blowing and suction case. For peristalsis an additional effect
is present: a nonzero boundary condition on the second order solution due to quadratic
interaction of the leading order solution and the wall deformation. This additional effect
acts opposite to the Reynolds stress effect, inducing forward pumping.

The question of flow control in the channel can be formulated in two equivalent ways:
for a given flux, how can we reduce the required amount of energy? or equivalently
for a given amount of energy, how can we increase the flux? The first formulation is
usually preferred since it is common to define the Reynolds number based on the laminar
centerline velocity or bulk-mean velocity. The two equivalent formulations for the motion
of a vehicle are: for a given speed, how can we reduce the driving power? or, for a given
driving power, how can we increase the reachable speed? As emphasized in Bewley &
Aamo (2004), the performance should be reached, but also sustained.

It is usual to drive a flux in a channel by imposing an external pressure gradient, for
instance with a differential inlet/outlet pressure or a body force. One can also induce a
flux using a localized pump, for instance a powered propeller inserted in the channel. The
flux will be hindered by viscous effects until a balance is found between the skin friction
and the power injected through the propeller. Of course, one would not be tempted to
categorize an externally powered propeller as a drag reduction device, even though the
total flux is increased for a given pressure gradient, or the required pressure gradient for
a given flux is decreased: this propeller is a pumping device.

In a pipe or a channel, pumping is an action that induces a flux in the absence of
any other injected power. Applying a pressure gradient is pumping, inserting a powered
propeller is pumping, applying traveling waves of wall deformation or blowing and suction
is pumping. Now, for a given pumping, drag reduction is an action such that the total
power to drive the same flux is reduced, or equivalently, the flux obtained by a given
total power is increased. For vehicles, pumping becomes thrust and induces a motion in
absence of any other source of energy, whereas drag reduction results in less power for
the same speed or a larger speed for the same power.

It is shown in Fukagata et al. (2009) that the parabolic flow profile in the channel is
that leading to the least viscous damping. Any actuation that disturbs the flow from
this profile shall increase the required power; namely, drag reduction is impossible when
the base flow is the Poiseuille flow. The pumping efficiency—defined as the ratio of the
energy dissipated by the Poiseuille profile over the total injected energy —must be lower
than or equal to one. It is on the other hand possible to achieve drag reduction from
the turbulent regime, since the flow is then not a solution of the Stokes equations. The
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example of turbulent drag reduction of Min et al. (2006) might be understood as a
secondary effect of pumping, as discussed in §3. Based on this discussion, we advocate
the representation of flow control results in the form of the ”power plane” of figure 8.
This graphical representation emphasizes the total input power as a central feature of
the performance.

Appendix. Weakly nonlinear analysis

We can gain yet an alternative point of view on the mechanisms if we assume small
amplitude actuation. We will see that the first order solution does not lead to flux, and
obtain a diffusive equation for the second order solution, whose average in x does not
vanish. This setting will also be useful to study how the presence of a Poiseuille base flow
can lead to specific phenomena.

A.0.1. Boundary conditions

We consider the case of small amplitude wall deformation/blowing and suction, where
we can decompose the response with respect to the different orders of its magnitude. This
analysis can be done in the weakly nonlinear framework. We will see that the leading
order solution will induce an oscillatory motion, particles following circular trajectories
about a fixed point, and that a mean drift will be induced at second order, responsible
for the pumping, in the forward direction for wall displacement, and in the backward
direction for blowing and suction. This framework will also be useful to investigate the
effect of an imposed pressure gradient, a case where a mean Poiseuille flow profile is
present. The Reynolds number is now defined as Rec = ρUch/µ, based on the channel
half height h, channel centerline velocity Uc, fluid density ρ and viscosity µ.

We perform an amplitude expansion of flow quantities

u = U + εu′ + ε2u′′/2 + O(ε3), (A 1)

where ε is a small amplitude parameter. By introducing these amplitude expansions for
u, v and p in the Navier–Stokes equation, we find that U is the parabolic profile induced
by the external pressure gradient, and u′, v′, p′ obey the Navier–Stokes equation linearized
about U . The pumping effect appears from the streamwise average of the second order
amplitude solution u′′, which obey the equation

1

Rec

u′′
yy = v′u′

y, (A 2)

where the subscript y denotes derivative in the vertical direction, and the overline denotes
equivalently average in time over one period, or average in space over one wavelength.

Denoting η the actuation waveform, the boundary conditions of the blowing/suction
case are u = 0, v = εη, of amplitude ε. Therefore, all boundary conditions are zero, except
v′ = η. For peristalsis, the no-slip condition at the displaced walls can be expanded to
y = ±1, since the wall displacement εη is small

u|1+εη
= 0 = u|1 + εη uy |1

+
(εη)2

2
uyy|1

+ O(ε3)

We can now inject our amplitude expansion (A 1) in this expression, here for u at the
top wall:

u|1+η = 0 = [U + εu′ + ε2

2 u′′]|1
+ εη [Uy + εu′

y + ε2

2 u′′
y ]|1

+ (εη)2

2 [Uyy + εu′
yy + ε2

2 u′′
yy]|1 + O(ε3).
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We see from this expression that the double expansion (in amplitude and in space about
y = ±1) induces interactions between the solutions of different orders at the walls. We
now gather like orders of ε. We obtain zero boundary conditions on U ; for the first order
amplitude solution, we have u′ + ηUy = 0, v′ = ηt, thus there is a nonzero boundary
condition on the streamwise velocity—depending on the base shear—and v′ equals the
time derivative of the waveform. At second order, u′′ = ηu′

y: a nonzero boundary condi-
tion (slip velocity) resulting from the quadratic interaction of the leading order solution
and the wall displacement.

If the external pressure gradient is set to zero, we have U = Uy = 0 and the boundary
conditions become

Peristalsis: u′|±1 = 0, v′|±1 = ηt, u′′|±1 = ηu′
y|y=±1,

Blowing/suction: u′|±1 = 0, v′|±1 = η, u′′|±1 = 0.
(A 3)

This set of boundary conditions, together with (A 2), are most representative of the
differences and similarities between the two types of actuation. The first order solution
(u′, v′) obeys in both cases the dynamics of a wave of blowing and suction. Through
(A 2), this first order solution induces a forced creeping flow: a pumping proportional to
the Reynolds number. We found through our computation that this effect was always
favorable to backward pumping: both for peristalsis and blowing/suction. For peristalsis
only, the quadratic interaction of the first order solution and the wall displacement ηu′

y

results in a slip velocity for the second order solution, which we found to be always
favorable to forward pumping, and its effect always dominate the backward pumping
due to the Reynolds stress term.

We now consider a sinusoidal waveform

η = cos[α(x − ct)] = [eiα(x−ct) + e−iα(x−ct)]/2,

with α the wavenumber, and i =
√
−1. With this parametrization, the wavelength is

L = 2π/α. The zeroth order solution U is a Poiseuille profile, constant in x. The first
order solution satisfies the Navier–Stokes equations linearized about U , with boundary
conditions based on η. The first order solution is thus only composed of the fundamental
frequency: it has the same periodicity as η and can thus be written

u′(x, y, t) = [û(y)eiα(x−ct) + û(y)∗e−iα(x−ct)]/2,
v′(x, y, t) = [v̂(y)eiα(x−ct) + v̂(y)∗e−iα(x−ct)]/2;

here, û and v̂ are complex functions of y, whose complex argument represent the y-
dependent horizontal phase shift with respect to the waveform imposed at the wall.
Here, ·∗ denote the complex-conjugate. We can now express the averaging v′u′

y of (A 2)
in terms of the complex amplitude functions

v′u′
y =

1

L

∫ L

0

(v̂ûye2iα(x−ct) + v̂∗û∗
ye

−2iα(x−ct) + v̂û∗
y + v̂∗ûy)/4dx = real(v̂û∗

y)/2.

This result implies that the pumping effect originating from the Reynolds stress term
in (A 2) vanishes whenever v and uy are in phase quadrature (v̂û∗

y is purely imaginary).
Conversely, any departure from phase quadrature induces pumping.

The second pumping effect, which is present only for peristalsis comes from the slip
boundary condition on u′′, at y = 1 for instance

ηu′
y = real(ûy)/2;

this pumping effect disappear whenever if u′
y is in phase quadrature with η (i.e. ûy is

purely imaginary); conversely, departure from quadrature induces pumping.
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Figure 9. a) Phase of ûy (plain) v̂ (broken) and b) departure from quadrature:
phase(ûy)− phase(v̂)−π/2, at Rec = 106 for c = 2 (light gray), and for wavespeeds such
that the critical layers are at ycl = 0.3, 0.6, 0.9 (from gray to black). The position of the critical
layer is shown with the symbols.

A.0.2. Base flow effect: critical layers

We are now interested in the pumping effect if in addition to the wall actuation, there is
an external pressure gradient inducing a Poiseuille flow. The weakly nonlinear framework
is ideal to investigate the interaction between the base flow profile and the actuation. In
Min et al. (2006), a large drag increase is observed if the wall wave is made to travel
downstream. We will see that this effect is due to the presence of critical layers.

When a wave of constant amplitude propagate on a shear, locations of the base flow
at which the velocity equals the wavespeed play a special role. These are critical layers.
In the inviscid limit, a critical layer corresponds to a singular point of the linear dynamic
equations. When viscosity is present, this singularity is smoothed, but its effect is still
felt, increasingly for large Reynolds numbers, see Maslowe (1986). Here, we have two
critical layers whenever c ∈ [0, 1], at y = ±

√
1 − c. They are just at the walls for c = 0

and merge in the center at c = 1. In the low amplitude limit, the streamfunction is
known to go through a phase change of π across the critical layer. This effect is visible in
figure 9, where c was chosen such as to have critical layers at y = ±0.3,±0.6,±0.9. It is
interesting to note that for both peristalsis and blowing/suction, the critical layer effect
(c ∈ [0, 1]) always opposes the Poiseuille flow, thus acting such as to reduce the flux for
a given pressure gradient.

Another location where ûy and v̂ depart from quadrature is close to the walls in two
thin viscous layers. In the absence of critical layers, the pumping effect for the blowing
and suction case is entirely induced by this near-wall viscous effect: a phase lag of ûy

due to the no-slip boundary condition. The impact of the presence of the critical layer
can be seen in figure 10, where the obtained flux is shown while varying the speed c of
the travelling wave actuation. This critical layer effect is clearly opposed to the base flow
(negative Q′′).

We note that Mittra & Prasad (1974) have analyzed the interaction of peristalsis
with Poiseuille flow, but have considered low Reynolds number relevant for biological
applications where the effect of critical layers is small.

The authors are grateful to Dr. Shinnosuke Obi (Keio University) and Dr. Nobuhide
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through Grant-in-Aid for JSPS Fellows (19-07821) as well as Grant-in-Aid for Scientific
Research (A) by Japan Society for the Promotion of Science (JSPS).
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