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Abstract— A method is proposed to estimate the covariance of
disturbances to a stable linear system when its state covariance
is known and a dynamic model is available. This is an
issue of fundamental interest for estimation and control of
fluid mechanical systems whose dynamics is described by the
linearized Navier–Stokes equations. The problem is formulated
in terms of a matrix norm minimisation with linear matrix
inequality constraint, and solved numerically by means of al-
ternating convex projection. The method is tested on covariance
estimation in a low Reynolds number channel flow.

I. INTRODUCTION

Much interest has been recently devoted to analysis of
fluid mechanical systems using methods from control theory.
Recent reviews can be found in, for instance, [1], [2], and
[3]. Such systems are found to be highly sensitive to signal
and model uncertainty, even in physical parameter ranges
where the systems are asymptotically stable. The strong non-
normality of the underlying dynamic operators is responsible
for this sensitivity (see [4]). Due to this sensitivity, the system
response is critically dependent on external excitations.

The following investigations have studied the response
of fluid flow in the case of stochastic excitation. [5], [6],
[7], and [8] studied in detail the response of the linearized
Navier–Stokes equations to stochastic external disturbances,
using techniques from control theory and robust control. [9]
addressed the problem of modeling second order statistics of
a turbulent channel flow by an appropriate stochastic forcing
to the linearized dynamic operator. A stochastic forcing could
be constructed that reproduced the main features of the state
covariance of the original non-linear system. [10] focused on
the performance of state estimation in a laminar channel flow.
It was shown that a proper covariance model for the flow
disturbances can improve the estimation performance. In
[11], the disturbances to the linearized dynamics, identified
as the forcing due to the nonlinear terms, was computed
by means of a direct numerical simulation (DNS) of the
fully nonlinear system for a turbulent channel flow. This
covariance model was in turn used for construction of plain
and extended Kalman filters. It was found that with the
resulting estimation gains, improved estimation from wall
measurement could be attained in the near wall region, where
most of the turbulence generation process takes place.

In this paper, we address the study initiated in [9]. We
develop a method to estimate the covariance of the stochastic
disturbances in order to approach optimally the given flow
state covariance.

Development of computational methods and computer
power has recently opened wide possibilities of applications
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Fig. 1. We are given the flow state covariance P̄ and an approximate
dynamic model A. We aim to use this information to estimate the flow
disturbance covariance R̄.

of linear matrix inequality (LMI) for control design and
system analysis (see e.g. [12] and [13]). It is shown in [14]
that the LMI:

ΓGΛ + (ΓGΛ)H + Θ < 0 (1)

for G plays a central role in many control design problem,
and intuitive methods based on alternating convex projection
(ACP) are proposed for its numerical solution. It will appear
that our problem involves such an inequality constraint. We
will closely follow the procedure proposed in [14] and [15],
and extend several of the projection results to the case of an
arbitrary weighting for the Frobenius norm.

Consider a linear time invariant (LTI) system, governed
by the stable dynamics Ā and with external sources of
disturbances d̄:

˙̄x = Āx̄ + d̄,

with E[x̄(t)x̄(t)H ] = P̄ ,

E[d̄(t1)d̄(t2)
H ] = R̄δ(t1 − t2),

(2)

where E[·] denote the expectation operator and superscript
H stands for Hermitian (complex conjugate) transpose. P̄ is
the covariance matrix of the state x̄, and R̄ is the covariance
matrix of the disturbances d̄.

The actual external sources of disturbances may be due
to complex physical mechanisms and are thus difficult to
identify. In systems with high dimension, as for instance
systems described by partial differential equation (PDE), it
would be valuable to have a method to estimate the distur-
bances statistics from knowledge of the plant state covariance
(possibly available through experiment). We discuss in this
paper the problem of noise covariance estimation when a
stable approximate model A of the stable system dynamics
Ā is available, and the covariance matrix of the plant P̄ is
known (see figure 1).

The Lyapunov equation can be used to perform this task
since it relates the covariance matrices of the state and the



external disturbances:

AP + PAH + R = 0. (3)

The Lyapunov theorem states that given an arbitrary R ≥ 0
there exist a unique P ≥ 0 that satisfies (3) provided A is
Hurwitz (has all its eigenvalues in the open left half plane).
The primary difficulty is that it is not true that, given an
arbitrary P ≥ 0, there exist R ≥ 0 such that AP + PAH +
R = 0. Given an arbitrary state covariance, there does not
necessarily exist an associated disturbance covariance. In this
paper, we call a P ≥ 0 assignable as a state covariance for
the system with dynamics A if AP +PAH ≤ 0. In particular,
a covariance P̄ obtained from experimental measurements is
not necessarily assignable for the model system A.

Our aim can now be stated in terms of a matrix nearness
problem, with LMI constraint: find the covariance matrix P
closest to the given state covariance matrix P̄ such that P
is assignable for the model A. The resulting R = −(AP +
PAH) will be called the covariance estimate. See [16] for a
review on matrix nearness problems.

In §II, we will formulate the optimisation problem and
discuss the existence and uniqueness of its solution. We then
extend several projection results from [15] to a weighted
Frobenius norm, and show how they can be applied to
our problem. In §IV we present computational results of
estimation of wall-roughness-type disturbances in a channel
flow. In this test case, the modeling error will consist of
an inacurate Reynolds number in the construction of the
dynamic model for estimation. We will then conclude in §V.

II. PRELIMINARIES

A. Mathematical formulation

The problem can be formulated as follows:

Given P̄ ≥ 0, and A a Hurwitz matrix: find P ≥ 0
that minimizes ‖P̄ − P‖ subject to the constraint

AP + PAH ≤ 0. (4)

Plant quantities will be denoted with over-bar ( ·̄ ). We will
consider the weighted Frobenius matrix norm with weighting
matrix Q1. The set of matrices satisfying the assignability
constraint (4) will be denoted C

C ,
{
P ≥ 0 : AP + PAH ≤ 0

}
. (5)

B. Existence and uniqueness of the solution

It can be shown that the condition P ≥ 0 is redundant
if the assignability constraint (4) is imposed. To see this,
multiply (4) on the left and right by the left eigenvectors of
A. It follows that P is then positive semidefinite. We thus
deal only with the constraint (4) in the optimisation.

Since the set C is convex and the objective function is
quadratic, we have a convex optimisation problem. We are
thus guaranteed (see [17]) that the solution to this problem
is unique. Furthermore, C is not empty. Since the matrix A
is Hurwitz, we can infer from the Lyapunov theorem [14]
that for any arbitrary R ≥ 0 there exist a (unique) P ≥ 0
that satisfies the Lyapunov equation (3).

C. Weighted Frobenius norm

The Frobenius matrix inner product and corresponding
norm with weighting Q1 > 0 is defined as

〈X1, X2〉Q1
, Tr(XH

2 Q1X1Q1),

‖X1‖Q1
, 〈X1, X1〉

1/2
Q1

,
(6)

where Tr denote the matrix trace. The weighting Q1 can be
factorized as Q1 = FH

1 F1, where the factor F1, Hermitian
positive definite, is unique. The flexibility in the choice of the
weighting is useful in applications for which there is a natural
metric, as for instance energy related metric in mechanical
systems.

III. SOLUTION PROCEDURE

The simple geometry of this optimisation problem mo-
tivates the use of ACP. The optimal P is the matrix that
minimizes the distance between P̄ and the cone C, i.e. the
orthogonal projection of P̄ onto C. C can be decomposed
into the intersection of two simpler convex sets of higher
dimension, for which analytical projection formulas can be
derived. The iteration toward the optimal solution can be then
done by alternatively projecting onto each one of those sets.
Due to the convexity of the constraint sets, the alternating
projection eventually converges to a point in the intersection
of the two sets. A simple modification of the standard ACP
method ( [18], [19]) provides an algorithm which solves the
optimisation problem.

A. Alternating convex projection

We recall here the alternating projection algorithm for the
optimality problem.

Proposition 3.1 (optimal ACP): Consider the family of
closed, convex sets {C1, C2, . . . , Cm} and a given matrix X0.
The sequence of matrices {Xi}, i = 1, 2, . . . ,∞ computed
as follow:

X1 = PC1
X0, Z1 = X1 − X0

X2 = PC2
X1, Z2 = X2 − X1

...
Xm = PCm

Xm−1, Zm = Xm − Xm−1

Xm+1 = PC1
(Xm − Z1), Zm+1 = Z1 + Xm+1 − Xm

Xm+2 =PC2
(Xm+1 − Z2), Zm+2 =Z2 + Xm+2 − Xm+1

...
X2m=PCm

(X2m−1 − Zm), Z2m = Zm+X2m−X2m−1

X2m+1 =PC1
(X2m−Zm+1), Z2m+1=Zm+1+X2m+1−X2m

...
(7)

converges to the orthogonal projection of X0 on
C1

⋂
C2

⋂
· · ·
⋂

Cm.

B. Decomposition of C into the intersection of two simpler
sets

Now we will decompose the set C in two sets, simpler in
the sense that analytical projection formula can be derived.



Proposition 3.2 (Intersection): Define the two following
sets:

J ,

{

W ∈ H2n :
(
A I

)
W

(
AH

I

)

≤ 0

}

,

T ,

{

W ∈ H2n : W =

(
0 W12

WH
12 0

)

, W12 ∈ Hn

}

,

(8)
where Hn (resp. H2n) denote the sets of hermitian n × n
(resp. 2n× 2n) matrices. Then the two following statements
are equivalent:

(a) X ∈ C,
(b) X = W12 where W ∈ J

⋂
T .

Proof: Let X be in C, we then have

AX + XAH =
(
A I

)
(

0 X
X 0

)(
AH

I

)

≤ 0. (9)

Conversely, if X satisfies (b) then simple calculations reveal
that (9) holds.

We will now find a Frobenius norm weighting for the inner
product in H2n such that the orthogonal projection on J

⋂
T

provides the orthogonal projection of our covariance matrix
on C

Proposition 3.3 (Projection equivalence in Hn and H2n):
For any given X ∈ Hn and a weighting Q1, the two
following statements are equivalent:

(a) X∗ = PQ1

C
X

(b)

(
0 X∗

X∗ 0

)

= PQ2

J
⋂

T

(
0 X
X 0

)

where PQ1

C
denotes the orthogonal projection on the set C

for the Frobenius norm with weighting Q1, and where the
inner product on H2n has the weighting matrix

Q2 =

(
Q1 0
0 Q1

)

=

(
F1 0
0 F1

)H(
F1 0
0 F1

)

︸ ︷︷ ︸

,F H

2
F2

(10)

Proof: By definition of the weighted norm
∥
∥
∥
∥

(
0 X
X 0

)

−

(
0 X∗

X∗ 0

)∥
∥
∥
∥

Q2

=

Tr

(
0 X − X∗

X − X∗ 0

)(
Q1 0
0 Q1

)

×

(
0 X − X∗

X − X∗ 0

)(
Q1 0
0 Q1

)

=

2Tr(X − X∗)Q1(X − X∗)Q1 = 2‖X − X∗‖Q1

(11)

So that the X∗ ∈ C that minimize ‖X − X∗‖ minimizes as
well ∥

∥
∥
∥

(
0 X
X 0

)

−

(
0 X∗

X∗ 0

)∥
∥
∥
∥

Q2

. (12)

This result implies that we can obtain the orthogonal
projection of P̄ on the assignability set by projecting

(
0 P̄
P̄ 0

)

(13)

on the set J
⋂
T , with inner product Q2.

C. Orthogonal projection on J and T

We will now give the formulas for the orthogonal pro-
jections of an arbitrary matrix in H2n on the sets J and
T for the weighting Q2. We will first need the projection
of a Hermitian matrix on the set of negative semidefinite
matrices for the unweighted Frobenius norm. This result and
proof can be found in [20].

Lemma 3.4 (Projection on negativity set): Let X ∈ Hn,
with eigenvalue-eigenvector decomposition X = LΛLH .
The projection X∗ of X onto the set of negative semidefinite
matrices is

X∗ = LΛ−LH , (14)

where Λ− is the diagonal matrix obtained by replacing the
positive eigenvalues of X in Λ by zero.

We can use the previous result to project on the set J :
Proposition 3.5 (Projection on J ): Let W ∈ H2n. Con-

sider the singular value decomposition
(
A I

)
F−1

2 = U
(
Σ 0
)
V H (15)

where U and V are unitary matrices, and define

Y , V HF2WFH
2 V =

(
Y11 Y12

Y H
12 Y22

)

, Y11 ∈ Hn (16)

The projection PQ2

J
W of the matrix W onto the set J is

PQ2

J
W = F−1

2 V

(
Y ∗

11 Y12

Y H
12 Y22

)

V HF−1H
2 (17)

where Y ∗
11 is the projection of Y11 on the set of negative

definite matrices for the unweighted Frobenius norm as in
(14).

Proof: Let

Ŵ =

(
Ŵ11 Ŵ12

ŴH
12 Ŵ22

)

∈ J (18)

be an arbitrary matrix in J . We will show that the inner
product 〈W ∗ −W,W ∗ − Ŵ 〉 is non-positive (see [17]). Let
V be defined from the singular-value decomposition (15),
and F2 from (10), we have

〈W ∗ − W,W ∗ − Ŵ 〉Q1

= 〈F2W
∗FH

2 − F2WFH
2 , F2W

∗FH
2 − F2ŴFH

2 〉I

= 〈Y ∗ − Y, Y ∗ − Ŷ 〉I ,

(19)

with

Y ∗ = V HF2W
∗FH

2 V, Y = V HF2WFH
2 V,

Ŷ = V HF2ŴFH
2 V.

(20)

since V is unitary. Partitioning the matrices as in (18) we
obtain

〈Y ∗ − Y, Y ∗ − Ŷ 〉I

=

〈(
Y ∗

11 − Y11 0
0 0

)

,

(
Y ∗

11 − Ŷ11 Y12 − Ŷ12

Y H
12 − Ŷ H

12 Y22 − Ŷ22

)〉

I

= 〈Y ∗
11 − Y11, Y

∗
11 − Ŷ11〉I

(21)



Now observe that, since Ŵ ∈ J ,we have
(
A I

)
Ŵ

(
AH

I

)

≤ 0, (22)

and by substituting the singular value decomposition

U
(
Σ 0
)
V HF2ŴFH

2 V
︸ ︷︷ ︸

Ŷ

(
ΣH

0

)

UH ≤ 0, (23)

then pre- and post- multiplying by Σ−1UH and (Σ−1UH)H

we obtain
(
I 0
)
Ŷ

(
I
0

)

≤ 0, (24)

that is, Ŷ11 ≤ 0. Note that, from lemma 3.4, the orthogonal
projection of the matrix Y11 on this set is given by (14).
Hence, by construction of Y ∗

11 in (17), we have

〈Y ∗
11 − Y11, Y

∗
11 − Ŷ11〉I ≤ 0, (25)

that is, the inner product (19) is non-positive.
Finally the projection on T :
Proposition 3.6 (Projection on T ): Let W ∈ H2n, the

orthogonal projection PQ2

T
W of the matrix W on the set

T is

PQ2

T
W =

(
0 1

2 (W12 + WH
12)

1
2 (W12 + WH

12) 0

)

. (26)

Proof: We use the same procedure as previously, let

Ŵ =

(
0 X̂

X̂ 0

)

∈ T , W ∗ , PQ2

T
W, (27)

then simple calculations reveal that

〈W ∗ − W,W ∗ − Ŵ 〉Q2

= Tr

(
−W12Q1

1
2 (W12 + WH

12)Q1

− 1
2 (W12 + WH

12)Q1 −W22Q1

)

×

(
0 [ 12 (W12 + WH

12) − X̂]Q1

[ 12 (W12 + WH
12) − X̂]Q1 0

)

= 0.

(28)

Hence W ∗ is the projection of W on T .
Each loop of the iteration requires one eigenvalue de-

composition in (17) of a matrix in Hn. The singular value
decomposition (15) is computed once for all at the start of
the iterations.

IV. NUMERICAL EXAMPLE

We will now exemplify the procedure on a fluid mechani-
cal example where we aim at estimating the disturbances to
a flow system. We will introduce the plant and its model,
originating from equations of fluid dynamics, and introduce
the weighted norm as the flow kinetic energy.

We will test the projection results as follow. First the plant
is constructed, and excited by a stochastic forcing. The state’s
covariance is computed using the Lyapunov equation. We
then build a model from the same physical equations but
with a parameter mismatch as will be described later. The
plant’s state covariance is then projected on the assignability
set C to retrieve a disturbance covariance estimate, again
using the Lyapunov equation.

A. Physical system

We consider the viscous and incompressible fluid flow
between two infinite plane walls and driven by a constant
pressure gradient. This is the classical Poiseuille flow case.
For more detail on the analysis of this flow see [4]. The
pressure gradient is in the streamwise x direction. The flow
motion is governed by the Navier–Stokes equations. The
boundary condition is no-slip, i.e. the flow velocity vanishes
at top and bottom walls. The unique steady solution in
this geometry of the Navier–Stokes equations properly non-
dimentionalized is a parabola

(U, V,W ) = (1 − y2, 0, 0). (29)

The stability of the (29) can be studied by mean of
the linearization of the Navier–Stokes equation. Exploiting
spatial invariance in both horizontal direction (streamwise x
and spanwise z), the linearized operator can be decoupled by
a spatial Fourier transform. In Fourier space, the dynamic
operator has a block diagonal structure, each block corre-
sponding to the dynamics of a wave-like perturbation to the
nominal base flow profile. The resulting equation system is
known as the Orr–Sommerfeld/Squire equations

(
v̇
η̇

)

︸︷︷︸

ẋ

=

(
∆−1LOS 0

LC LSQ

)

︸ ︷︷ ︸

A

(
v
η

)

︸︷︷︸

x

+

(
dv

dη

)

︸ ︷︷ ︸

d

(30)

where v and η are the wall-normal velocity and wall-normal
vorticity, and dv and dη are the external forcing on v and η.
The random processes dv and dη are related to the external
forcing on the original velocity component u, v, and w by

(
dv

dη

)

=

(
∆−1 0

0 I

)(
−ikxD k2 −ikzD
−ikz 0 ikx

)

︸ ︷︷ ︸

B





du

dv

dw



 ,

(31)
where k2 = k2

x+k2
z . The Orr–Sommerfeld LOS , Squire LSQ,

and coupling LC terms assume the form

LOS = −ikxU∆ + ikxD2U + ∆2/Re,

LSQ = −ikxU + ∆/Re, LC = −ikzDU,
(32)

where D denote differentiation in the wall normal direction
y, ∆ = D2 − k2 is the Laplacian operator, and kx and kz

are the wavenumbers in streamwise and spanwise directions.
The Reynolds number Re is the single flow parameter. It
represents the balance between inertial and diffusive effects.

The velocity profile (29) is asymptotically stable to low
amplitude perturbations up to Re = 5772, but is sensitive
to disturbances well below this threshold due to the non-
normality of the underlying dynamic operator (30).

B. External disturbances

We will excite the system with a forcing on the velocity
components u, v, and w, similar to wall roughness at the
lower wall (y = −1). The expression for this forcing d used



in our example is




du(y, t)
dv(y, t)
dw(y, t)



 =





λ1(t)
λ2(t)
λ3(t)



 e−5(y+1) (33)

where λ1(t), λ2(t), and λ3(t) are three uncorrelated white
noise scalar process with unit variance. The disturbance
covariance matrix

R = B E










du

dv

dw









du

dv

dw





H



BH =

(
Rvv Rvη

RH
vη Rηη

)

(34)

has thus rank 3. This low rank will ease the comparison
between R and its model, and is not a limitation of the
method. Note that we aim at estimating the covariance of
(
dv dη

)
and not

(
du dv dw

)
.

C. Plant and model

For the purpose of this paper we will consider the test case
of a mismatch in the Reynolds number R̄e between the plant
dynamics and its model used for estimation, i.e., the model
will as well be constructed from (30) but with a inaccurate
Reynolds number Re. The plant/model mismatch can thus
be parameterised by

µ , |R̄e − Re|/R̄e. (35)

This type of modeling error is a simple test case for the
method developed here. In fluid mechanical applications,
the plant/model mismatch may originate in any inaccu-
racies of the modeling assumption, e.g. finite amplitude
perturbations, geometry imperfections, approximate spatial
invariance. . . The present method can be readily used for this
great variety of applications.

D. The energy norm

The natural metric for the flow state is related to its
kinetic energy (standard L2[−1, 1] norm in (u, v, w)). In the
(v, η) coordinate system and for a given wavenumber pair it
assumes the form ( [4])

E ,

∫ 1

−1

1

8k2

(

k2|v|2 +

∣
∣
∣
∣

∂v

∂y

∣
∣
∣
∣

2

+ |η|2

)

dy

= 〈x, x〉Q1
= xHQ1x.

(36)

The matrix Q1 > 0 is called the energy measure matrix.
It will be used in the following as a weighting in the
Frobenius norm. We can compute its square root factor F1

such that Q1 = FH
1 F1, and inverse F−1

1 , by a singular value
decomposition.

E. Discretization of the PDE system

We need now to discretize in space the set of partial
differential equation (30) into a set of linear ordinary differ-
ential equation. The discrete operators are obtained through
enforcement of the Orr–Sommerfeld/Squire equations at each
points of the Gauss–Lobatto grid, using a Chebyshev collo-
quation scheme ( [21]). The spectral differentiation matrices
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D1, D2, and D4 are combined according to (30) to compute
the matrices Ā, A, and B. The integration weights for the
Chebyshev grid with the Gauss–Lobatto collocation points
are computed using the algorithm from [22]. These weights
provide spectral accuracy in the numerical integration used
to assemble the energy measure matrix Q1.

F. Convergence and results

We ran several computations using the methodology de-
scribed above. We chose R̄e = 50, low enough to allow a
correct description of the PDE dynamics with small matrices
(here 40×40). The model was build using a lower Re, with
the mismatch parameter µ in (35) varying from 0 to 1/2
(Re ∈ [25, 50]).

Ultimately, the convergence criterion of the ACP should
be satisfied when all the eigenvalues of R = −AP − PAH

are non-negative. We relax slightly this condition in our
computations. We assume a converged result whenever this
condition is satisfied, or the ratio of the minimum over
maximum eigenvalues of R is greater than a prescribed
tolerance, here 5 × 10−5. This significantly reduces the
computational time but allows small negative eigenvalues for
R. This is needed because the ACP projects on the surface
of the constraint sets.

The matrices P̄ , R̄, and projections P and R for µ = 1/2
are depicted in figure 2. They are represented fractioned
as in (34), and the axis values from -1 to 1 represent the
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Fig. 4. Iteration convergence criterion versus the number of iterations for
several µ (left) and CPU time versus matrix order (right).

location in the wall normal direction y for v and η. For
the present choice of parameters (Re = 50 and µ = 1/2),
no discrepancies between P̄ and P are visible. For the
disturbances covariance, no major structural difference can
be seen, but the amplitude of R is notably higher. This
is due to the lower sensitivity of the model A to external
disturbances (lower Re).

Figure 3 show for a varying mismatch parameter µ, the
distance ‖P̄ − P‖ (minimised for), as well as ‖R̄−R‖ and
‖Ā − A‖. As µ increases, ‖P̄ − P‖ increases as expected,
the model and the plant being increasingly different, their
assignable state covariances drift away from each other.
Note that for low µ (in [0, 0.05]), P̄ was found inside the
assignability set (‖P̄−P‖ = 0). It is observed that the norms
‖P̄ −P‖, ‖R̄−R‖, and ‖Ā−A‖ have a similar dependence
on µ.

The number of iteration in the ACP of now studied. Figure
4 show how the number of iterations before convergence
depends on µ. The bigger the mismatch, the longer the
computation. We also show in figure 4 the CPU time required
on an “AMD Opteron 144 1.8 GHz” for increasing matrix
order n, from 20 to 60. The computational effort increases
rapidly with the order of the system.

V. CONCLUSIONS AND FUTURE WORK

We presented in this paper a method to estimate the
covariance of the disturbances to a LTI system by use of
an alternating convex projection algorithm. The projection
method used in [15] was extended to weighted Frobenius
norms. We have applied this method to a fluid mechanical
problem, to estimate the covariance of wall-roughness-type
disturbances in a laminar channel flow at low Reynolds
number. The limitation to low Reynolds number originates in
the size limitations of the matrices for practical convergence
time of the present numerical algorithm.

Several additional issues can be addressed for this prob-
lem. A numerical method for computation of the optimisation
problem should be set up, that allow matrices with higher
order. Preliminary tests indicate that a significant speedup is
possible using a directional ACP ( [23]) with a constraint on
‖P̄ − P‖. It would be interesting to treat the problem with
partially known state covariance P̄ , as for example in cases
where only the variance of the state was measured (as in [9]).

One could as well aim to match some possibly available data
on R̄.

This method will be applied in future work on disturbance
covariance estimation for improvement of flow control, in
large scale computation of channel and boundary layer flows.
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