

Energy growth in the compliant channel

Jérôme Hœpffner Julien Favier, Alessandro Bottaro

Compliant surfaces

Ann. Rev. Fluid Mech, 1988, 20 : 393-420 Copyright © 1988 by Annual Reviews Inc. All rights reserved

COMPLIANT COATINGS

James J. Riley

Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195

Mohamed Gad-el-Hak

Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556

Ralph W. Metcalfe

Department of Mechanical Engineering, University of Houston, Houston, Texas 77004¹

Figure 8. Neutral curves for the Tollmien–Schlichting instability showing the effect of (a) wall compliance and wall curvature for d=0 and (b) wall damping for $\gamma=0.025$. In both cases, we have B=4K.

Looking for "special things" in flows using optimization

Three-dimensional optimal perturbations in viscous shear flow

Kathryn M. Butler and Brian F. Farrell Division of Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (Received 28 May 1991; accepted 6 April 1992)

FIG. 2. Development of the perturbation streamfunction ψ for the best growing 2-D energy optimal in Couette flow with R = 1000, located at $\alpha = 1.21$, $\tau = 8.7$. The streamfunction ψ is defined by $-\partial\psi/\partial y = u$ and $\partial\psi/\partial x = v$.

J. Fluid Mech. (2002), vol. 463, pp. 163-171. © 2002 Cambridge University Press DOI: 10.1017/S002211200200873X Printed in the United Kingdom

On the stability of a falling liquid curtain

163

By PETER J. SCHMID¹[†] AND DAN S. HENNINGSON²

¹Laboratoire d'Hydrodynamique (LadHyX), École Polytechnique, F-91128 Palaiseau, France ²Department of Mechanics, Royal Institute of Technology, S-10044 Stockholm, Sweden

Figure 5. Curtain shape versus time for $\kappa = 5 \times 10^4$ and U = 0.4 starting with the optimal initial condition, i.e. the initial condition that results in the maximum energy amplification near $i = T_{tab}$ in figure 4(a).

43

J. Fluid Mech. (2005), vol. 528, pp. 43–52. © 2005 Cambridge University Press doi:10.1017/S0022112005003307 Printed in the United Kingdom

Transient growth in two-phase mixing layers

Flow and wall dynamics

 $u(1) = 2\eta_{top}, \quad u(-1) = -2\eta_{bot}, \quad v(\pm 1) = \eta_t, \quad w(\pm 1) = 0.$

Energy

Flow energy+wall kinetic and potential energy:

$$E \triangleq \underbrace{\frac{1}{2} \int_{y} \overline{u^{2} + v^{2} + w^{2}} \mathrm{d}y}_{\text{Flow}} + \underbrace{\sum_{\text{bot}}^{\text{top}} \frac{1}{2} \left(m \overline{\eta_{t}^{2}} + \frac{B \Delta_{2D}^{2} + T \Delta_{2D} + K}{Re^{2}} \overline{\eta^{2}} \right)}_{\text{Walls}}_{\text{Walls}}$$

Energy exchange:

$$E_t = -\int_y U_y \overline{uv} dy + \frac{1}{Re} \left[(\overline{u^2 + v^2 + w^2})_y \right]_{\text{bot}}^{\text{top}} - \frac{1}{Re} \int_y \overline{\omega.\omega} dy - \sum_{\text{bot}}^{\text{top}} \frac{d}{Re} \overline{\eta_t^2} .$$
Energy exchange with base flow
Viscous damping

Flow response to random inital conditions

Fluid effect: added mass

sinuous: $m_a^s = (1 - e^{-k})/k$ varicose: $m_a^v = (1 - e^{-k})/k + 1/k^2$

Optimization of the initial conditions

I) Projection on eigenmodes: $\dot{\kappa} = \Lambda \kappa, \quad \mathcal{Q} = U^H Q U = F^H F$

2) Optimality:

$$G(t) = \max_{\kappa_0} \frac{\|\kappa(t)\|_{\mathcal{Q}}}{\|\kappa_0\|_{\mathcal{Q}}} = \max_{\kappa_0} \frac{\|e^{\Lambda t}\kappa_0\|_{\mathcal{Q}}}{\|\kappa_0\|_{\mathcal{Q}}} = \|e^{\Lambda t}\|_{\mathcal{Q}} = \|\underbrace{F^{-1}e^{\Lambda t}F}_{\mathcal{H}}\|_2$$

α =0, stable

Optimization results

Optimization results

Candidate mechanisms

Energy evolution (perturbation to Poiseuille):

$$2E/\epsilon^2 = 2\left(\frac{4}{3} + \frac{K}{Re^2m}\right)\cos(\omega t)^2 + 2\left(\omega^2(m+1)\right)\sin(\omega t)^2$$

Oscillatory energy:

$$G_{k=0}^{s} = 1 + \frac{4}{3} \frac{Re^2}{K}, \quad T_{k=0}^{s} = \frac{\pi Re}{2} \sqrt{\frac{m+1}{K}}$$

Model/computations

$\alpha \neq 0$, instabilities

Modal instability, α/β

With Re=15000

Growth + Modal instability

From the random initial conditions

Fields at time of maximum energy

Extra slides

where we have accounted for the kinetic and potential energy of both walls. The contribution of u' is

$$\int_{y} u'^{2} dy = \int_{y} \left(1 - (y - \eta)^{2}\right)^{2} dy = \frac{16}{15} + \mathcal{O}(\eta^{4})$$

The kinetic energy in u is thus constant in time up to order 4 in the wall displacement. Using $v = \eta_t = \epsilon \omega \sin(\omega t)$ we have

$$2E'(t) = \frac{16}{15} + 2\epsilon^2 \left[\omega^2 (m+1)\sin(\omega t)^2 + \frac{K}{Re^2}\cos(\omega t)^2 \right] + \mathcal{O}(\epsilon^4) \text{ Growth}$$

This total energy should be conserved in time, thus the coefficients of the sinus and the cosinus should be equal. This leads to

$$\omega^2 = \frac{K}{Re^2(m+1)}$$

thus the added mass at infinite wavelength is 1 a discussed in §3. Turning now to the energy in the perturbation to the static Poiseuille profile $U = 1 - y^2$, we have

$$\int_{y} u \mathrm{d}y = \epsilon^{2} \cos(\omega t) \int_{y} (2y)^{2} \mathrm{d}y = \frac{8}{3} \epsilon^{2} \cos(\omega t)$$

The energy evolution of the perturbation is thus

$$2E/\epsilon^2 = 2\left(\frac{4}{3} + \frac{K}{Re^2m}\right)\cos(\omega t)^2 + 2\left(\omega^2(m+1)\right)\sin(\omega t)^2$$

which is the radius of an ellipse at an angle ω from its principal axis. Expressing ω as in (3.1), we obtain the energy growth along one fourth of the rotation period

$$G_{k=0}^{s} = 1 + \frac{4}{3} \frac{Re^2}{K}, \quad T_{k=0}^{s} = \frac{\pi Re}{2} \sqrt{\frac{m+1}{K}}$$