Escencier 1

Le tuyan d'arrosage
$f_{x x r x x}+(1-\xi) f_{x x}+2 \sqrt{\beta} f_{x t}+f_{t t}=0$
$f(x, t)=\hat{f} e^{i \alpha x+1 t}+c \cdot c$.
$\rightarrow A^{2}+A(2 i \alpha \sqrt{\beta})+\alpha^{2}\left(\alpha^{2}-(1-\xi)\right)=0$
donc $A=-i \alpha \sqrt{\beta} \pm \alpha^{2} \sqrt{1-\xi-\beta-\alpha^{2}} \lambda$
ξ conesjand à la tension dy luhe et β correspand à la vilene dup flinide dais le tuyan. Normalement elvide soande teusian ert stabilisatice une piande tensicm ert siabitisatice
el une grade vitene est destalilisatinic.

- c'est la relation de dispersion
ondes statiounaies: pas d'évolution dans le temps $s=0-\alpha^{2}\left(\alpha^{2}-(1-\xi)\right)=0$ ξ

$$
\int_{1-\alpha^{2}}^{1 \rightarrow 2} \operatorname{lipe} d e s \text { ondes stationnaines. }
$$

courbe nentie: At dépend de l'argument de la racine de $A: 1, \xi-\beta-\alpha^{2}$ sic cest néstif, s est ina fincine tun: demen onden porcagatimes neutes. sicest pasitif: une ande stalle et une ande unstable touts les deme de vitiene de phase $c= \pm \sqrt{\beta} \rightarrow$ ondes mon disjesines.
mentre: $1-\xi-\beta-\alpha^{2}<0 \rightarrow \xi>1-\beta-\alpha^{2} \quad$ on firs une valem de $\beta=0,5$:

 zuosques on an pruente la texsia, les giendes lan neen dondo sout les demiers a se stabilisen
yune andy stalle et une gide installe. Vitene de phase $+\sqrt{\beta}$

Ex2

$\mu_{t \in ⿺}+(\mathcal{1} \cdot \Omega) \mu=\mu_{201} \quad \mu(x, t)=\hat{\mu} e^{i \alpha x+1 t}+c \cdot c$

1) $\Delta^{2}+1-\Omega=-\alpha^{2} \rightarrow s^{2}=\Omega \cdot 1-\alpha^{2}$
2) Courhe nentre:
3) ok
4) $\alpha: 1, \Omega=0 \rightarrow s^{2}:-2 \rightarrow \Delta= \pm i \sqrt{2}$
vitene de phase $c=-\frac{A_{i}}{2}: \pm \sqrt{2}$
$\alpha=0, \Omega=2 \rightarrow \lambda^{2}=1 \quad J_{i}=0 \rightarrow c=0$

$\Omega<\alpha^{2}+1$

Exercice 3

$\left.\begin{array}{l}\mu(x, t)=\hat{\mu} e^{i \alpha x}+\Delta t+c . c . \\ \eta(x, t)=\hat{\eta} e^{i \alpha x+\Delta t}+c \cdot c .\end{array}\right), \begin{aligned} & \Delta \hat{\mu}=-g i \alpha \hat{\eta}-b \hat{\mu} \longrightarrow s^{2} \hat{\mu}=-i \alpha g(\Delta \hat{\eta})-s b \hat{\mu} \\ & \Delta \hat{\eta}=-H i \alpha \hat{\mu} \neq A\end{aligned}$

1) $\quad \overrightarrow{\text { la reatation de chisers }}$
sib: $0 \rightarrow s= \pm i \alpha \sqrt{g H}$ douc la vitene de phase: $C= \pm \sqrt{g H}$ mon dispersif.
si $b \neq 0 \rightarrow A=-\frac{b}{2} \pm i \sqrt{\alpha^{2} g t-\left(\frac{b}{2}\right)^{2}}$ en supcsant $\left(\frac{b}{2}\right)^{2}<4 \alpha^{2} g t$: faible attinuation.
patie riells patie ima jinaire
nécatine: ondes ácause de ρ^{\prime} aternation
atenneis \rightarrow a cautene de plase reduite
2) Rapput de phase entre uet n

 phase selan la dinection de papagatia

exencice 4

$U_{t}=\mu U_{x x}+\frac{1}{2} U(1-U) \quad a>0$

1) stationoine et constont: $U_{t}: 0 U_{2}: 0 \rightarrow U(1-U)=0 \rightarrow U_{b}^{1}: 0 \quad U_{b}^{2}=1$
2) linearisation: $U_{:} U_{b}+\mu$

$$
\begin{aligned}
& U_{b}^{1}: \mu_{t}=N \mu_{x x}+\frac{1}{2} \underbrace{\mu(1-j e a b l e}_{\mu_{-\mu_{2}^{2}}^{\mu(1-\mu)}} \rightarrow \mu_{t}: N \mu_{x x}+\frac{\mu}{\sigma} \\
& U_{b}^{2}: \mu_{6}=\mu \mu_{x} x+\frac{1}{6} \underbrace{\underbrace{}_{t}+\mu)(1-1-\mu)}_{-\mu-\mu_{\text {negligeable }}^{2}}, \mu_{t}=\mu \mu_{x x}-\frac{\mu}{2}
\end{aligned}
$$

3) Relation de dispersion

$$
\begin{aligned}
& U_{b}^{1}: A=-\mu \alpha^{2}+\frac{1}{2} \\
& U_{b}^{2}: A=-\mu \alpha^{2}-\frac{1}{2}
\end{aligned}
$$

4) U_{b}^{1} : installe si $s>0 \rightarrow \frac{1}{\sigma}>N \alpha^{2} \rightarrow \sigma<\frac{1}{\mu \alpha^{2}}$
$\begin{aligned} U_{b} \text { ? } & \text { sest tonjous nejutif } \\ & \text { donc la oystens est tonjom stable. }\end{aligned}$

Excracie 5

Saint Venant aver la face de corialis.

 pliniete est unlle à l'equatem et mascimum anc pals. on suppes b:0 $1^{\text {as de disípation, de ples } \beta=0 \rightarrow \text { les vaguer sont selon } x \text { : }}$

$$
\left\{\begin{array}{l}
\mu_{t}-f v_{0}=-g n_{x}-b h_{x} \\
v_{t}+f \mu_{1}=-g r_{y}-b v \\
n_{t}=-H \mu_{x}-H y_{y}
\end{array}\right\} b=0
$$

$\Rightarrow s= \pm i \sqrt{\ell^{2}+\alpha^{2} g H}$ (sif:o on actionve $c= \pm \sqrt{g H}$ de l'escercicu 3)
 des ondes dispessines à cause du

Ex6

1) Ulat reationaine:
a) $1^{\text {as de }}$ variction das l'espace et dans le terpp: $U_{G} \cdot V_{t}: U_{k 2 c}: V_{k>c}=0$

0: $1-(d+1) u_{b}+v_{3}^{2} v_{b}$
O: $\lambda U_{3}-U_{3}{ }^{2} V_{b}^{3}$ solution: $U_{b}: 1, V_{b}=\lambda$
b) inteypitation de d :
concentration relatine à l'èquilibs
2) linianisation

$$
\left\lvert\, \begin{aligned}
& \mu_{t}=(\lambda \cdot 1) \mu+2 \mu_{x<c}+v \\
& v_{t}=-\lambda \mu+v_{x<c}-v
\end{aligned}\right.
$$

$$
\text { excemple: }\left(U^{2} V=\left(U_{b}+\right)^{2}\left(V_{b}+0\right)\right.
$$

$=\left(U_{b}^{2}+2 U_{u} u+u^{2}\right)\left(V_{b}+v\right)$ $=U_{0}^{2} V_{b}\left(U_{b}^{2} v\right)+2 U_{b} V_{b} w+2 v_{b} a^{2}$
3) Dispersion 0 sinjecte la fone en mode nomal dan le syplime limiarise: $\mu: \tilde{m} \operatorname{erp}\left(1 t+i i_{2 c}\right)$

$$
v: \hat{v} \exp (t t+i b x)
$$

$\rightarrow \left\lvert\, \begin{aligned} & \Delta \tilde{\mu}=(\lambda \cdot 1) \tilde{\mu}-2 b^{2} \tilde{\mu}+\tilde{v} \rightarrow \tilde{v} \cdot\left(1+2 b^{2}+\Delta-\lambda\right) \tilde{u} \\ & \Delta \tilde{v}=-\lambda \tilde{u}-\tilde{h}^{2} \tilde{v}-\tilde{v}\end{aligned}\right.$

$$
\Delta \tilde{v}=-\lambda \tilde{u}-\hat{z}^{2} \tilde{v}-\tilde{v}
$$

$$
\rightarrow 0=1^{2}+1\left(2+3 k^{2}-\lambda\right)+1+k^{2}(3-\lambda)+2 k^{4}
$$

4) Etats neuthes

Ames $s: \sigma$ in on supose $\sigma: 0$ et on cherche quelles sont les λ qui
correspondent das la relation de dispersion :

$$
0=-\omega^{2}-i \omega\left(2-\lambda+3 h^{2}\right)+k^{2}\left(3+2 h^{2}-\lambda\right)+1
$$

$\left\{\right.$ partie reele: $\omega^{2}: 1+k^{2}\left(3+2 k^{2}-\lambda\right)$
(1artie imajinaine: $\omega\left(2-\lambda+3 h^{2}\right): 0$
si $\omega=0$ (mode stationnaine), (1) donne: $\lambda: 2 k^{2}+1 / k^{2}+3$
si $\omega \neq 0$ (mode projusib), (2) doune: $\lambda=2+3 k^{2}$
vorici des comber daus le plan (k, d) pom lesquelles il esciste un mode neutre.

5) Zomes de stalilitei

a) On ivalue las ealatiande dispurion pom des paints de claque jove:
A: $\lambda=k=0: s^{2}+2 s+1: 0$

$$
\rightarrow s: \frac{-2 \pm \sqrt{4-4}}{2}=-1 \text { deme modes slables (icistationavies) }
$$

B $\lambda=3, k=0: A^{2}-A+1=0$

$$
A=\frac{1}{2} \pm i \frac{\sqrt{3}}{2} \quad \text { dems modes instables (ici instationanines) }
$$

C $\lambda \cdot 10, h: 1: 1^{2}-S A-4: 0$
un mode stalle, un mode instable (ici stationaines)
b) Ia combe neuthe:

7) Poun k: 0,5 Qangenentis de comportement de statiliti en variant λ :

