Université Pierre et Marie Curie

Année universitaire 2008-2009

LA-101 Mécanique du vol des avions

TD n°1 Analyse dimensionnelle des forces aérodynamiques

On se propose d'effectuer une analyse dimensionnelle du problème des forces aérodynamiques (force de portance F_p et force de traînée F_t), c'est à dire d'exprimer ces forces en fonction de nombres sans dimension.

- 1. Rappeler la définition des forces de portance F_p et force de traînée F_t exercées par l'air sur une aile d'avion. Les représenter dans un repère lié à l'aile, de directions (x,y,z), où la direction x est celle de l'écoulement d'air non perturbé (vent relatif \vec{V}_{∞} loin de l'aile).
- 2. Faire l'inventaire des paramètres physiques du problème et exprimer les forces aérodynamiques par unité de longueur d'aile (forces linéiques f_p et f_t) en fonction de ces paramètres. On supposera dans un premier temps que la viscosité de l'air n'intervient pas.
- 3. Faire apparaître des coefficients sans dimension, appelés coefficient de portance C_z et coefficient de traînée C_x , qui ne dépendent que de la géométrie de l'aile et de son incidence.
- 4. Reprendre l'analyse précédente en tenant compte de la viscosité du fluide. Montrer que dans ce cas, il apparaît un nombre adimensionnel supplémentaire, appelé nombre de Reynolds, dont on donnera l'expression.
- 5. Conclure sur la détermination expérimentale des coefficients de traînée et de portance (expériences en soufflerie).

Université Pierre et Marie Curie

Année universitaire 2008-2009

LA-101 Mécanique du vol des avions

TD n°2 Vol horizontal stabilisé

I. Représenter l'ensemble des forces s'exerçant sur un avion effectuant un vol horizontal à vitesse constante V_p , suivant une trajectoire rectiligne et horizontale.

En déduire la vitesse propre V_p de l'avion en fonction du coefficient de portance C_z , de masse m de l'avion, de sa surface de voilure S, et de la masse volumique de l'air ρ .

II. On donne ci-dessous les valeurs de coefficients de portance C_z et de traînée C_x d'un avion léger en fonction de l'incidence α .

α (°)	-2	0	2	4	6	8	10	12	14	16	17	18
$C_{\mathbf{x}}$	0.01	0.012	0.015	0.02	0.03	0.04	0.05	0.065	0.085	0.105	0.120	0.140
C_z	0	0.1	0.25	0.4	0.55	0.7	0.8	0.95	1.05	1.10	1.15	1.05

- 1. Tracer la polaire de l'avion (courbe C_z en fonction de C_x).
- 2. Indiquer sur la polaire les points de fonctionnement A, B, C, D et E suivants :

A: portance nulle

B: traînée minimale

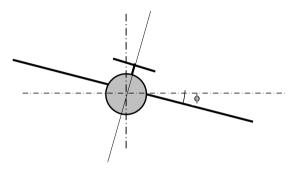

C: finesse maximale

D: décrochage

E: $\frac{C_x}{C_z^{3/2}}$ minimal.

- 3. Calculer la vitesse de décrochage en vol horizontal stabilisé.
- 4. A quelle vitesse propre l'avion doit-il voler pour avoir une finesse maximale?

Données: m = 1 tonne, $S = 20m^2$, $\rho = 1.2 \text{ kg/m}^3$, $g = 10 \text{ ms}^{-2}$.


Université Pierre et Marie Curie

Année universitaire 2008-2009

LA-101 Mécanique du vol des avions

TD n°3 Vol en virage

- 1. Représenter, dans un plan transversal, les forces s'exerçant sur un avion effectuant un virage stabilisé en s'inclinant d'un angle ϕ par rapport à l'horizontale.
- 2. Etablir l'expression du facteur de charge n en fonction de ϕ .

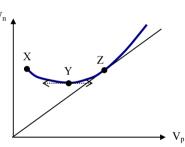
- 3. Donner l'expression de la vitesse de décrochage et discuter sa variation en fonction de n.
- 4. On note R le rayon du virage et ω la vitesse angulaire. Donner l'expression de R , puis celle de ω , en fonction de la vitesse linéaire V_p , de tan ϕ , et g.
- 5. Calculer le rayon des virages dans le cas d'un avion de tourisme volant à 216km/h et s'inclinant de 30, 45 et 60° .

Université Pierre et Marie Curie

Année universitaire 2008-2009

LA-101 Mécanique du vol des avions

TD n°4 Puissance nécessaire au vol – Performances de vol


I. Performances de vol en Vol Horizontal Stabilisé

1. On définit la puissance nécessaire au vol $\,W_n$ comme le produit $\,W_n=F_t\,.\,V_p\,$. Etablir les expressions suivantes :

(1)
$$W_n = mg. \frac{C_x}{C_z}.V_p$$

(2)
$$W_n = (mg)^{3/2} \cdot \left(\frac{2}{\rho S}\right)^{1/2} \cdot \left(\frac{C_x}{C_z^{3/2}}\right)$$

- 2. On donne ci-contre l'allure de la courbe W_n en fonction de la vitesse propre V_p . Montrer que les trois points X, Y et Z correspondent à trois points particuliers de la polaire de l'avion.
- 3. Définir les régimes de vol et les régimes d'équilibre possibles.

- 4. Où faut-il se placer sur la courbe W_n fonction de V_p pour avoir :
- l'autonomie maximale en carburant
- le rayon d'action maximal.

II. Performances de vol en montée

- 1. Définir la puissance utile W_u lors d'une montée rectiligne uniforme suivant une droite inclinée d'un angle θ avec l'horizontale. Donner l'expression de W_u en fonction de W_n , m, g, θ et V_p . En déduire la vitesse ascensionnelle $\frac{dh}{dt}$ (on note h l'altitude). Donner une interprétation du résultat en termes d'énergie. Construire la courbe $\frac{dh}{dt}$ en fonction de V_p .
- 2. Où faut-il se placer sur cette courbe pour avoir : $\frac{dh}{dt}$ maximum , $\frac{dh}{dt}$ nul , un angle θ de montée maximal.
- 3. Que se passe-t-il en cas de panne de moteur ?