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Abstract. A procedure is presented which allows to compute in a non-invasive manner, blood viscosity
through flow measurements obtained at a fixed vessel cross-section. The data set is made of measurements
(artery radius and spatially discrete velocity profiles) performed at given time intervals for which the sig-
nal to noise ratio is typical of U.S. Doppler velocimetry in clinical situation. This identification approach
is based on the minimization, through a backpropagation algorithm, of a cost function quantifying the
distance between numerical data obtained through Navier-Stokes simulations and experimental measure-
ments. Since this cost function implicitly depends on the value of viscosity used in numerical simulations,
its minimization determines an effective viscosity which is shown to be robust to measurement errors and
sampling time. Such an approach is shown to work in an in vitro experiment, and seems to be suitable for
in vivo measurements of viscosity by the atraumatic techniques of Doppler echography.

PACS. 02.30.Zz Inverse problems – 83.85.Jn Viscosity measurements – 47.15.-x Laminar flows

1 Introduction

Various haemodynamics parameters do vary with pathol-
ogy which explains their significant clinical interest. Since
the work by Womersley [1], many studies [2–5] have
been devoted to blood flow properties inside physiolog-
ical vessels. Three points appear to be predominant in
haemodynamics: the vessel system topology, the wall me-
chanical properties and the blood rheological behavior.
For instance, the topology of the circle of Willis is central
for the cerebral circulation [6,7]. Similarly wall viscoelas-
ticity, transmural pressure-vessel area relationship play a
major role when considering propagative phenomena for
the arterial system [8,9] or blood filling in the venous sys-
tem, respectively. However one of the most basic charac-
teristics governing haemodynamics in the arterial and ve-
nous systems is blood viscosity since it modifies peripheral
resistance, shape of local velocity profiles and wall shear
stress.

The morphology of the arterial system can be easily
obtained in an atraumatic way by means of various an-
giography methods; the wall arterial elasticity is currently
roughly evaluated in clinical research by measuring the
pulse wave velocity. On the contrary, there is presently
only one clinical method to determine blood viscosity. It
requires taking a blood sample with a needle and there-
after measuring viscosity in vitro using a viscometer. An
efficient real time atraumatic monitoring of viscosity is
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hence highly desirable for clinical applications in particu-
lar for cardiovascular surgery or disease prevention. The
method presented below is robust and requires only in
vivo atraumatic measurements: it is consequently a good
candidate for such a clinical purpose.

All the presently available procedures which are pro-
posed to determine viscosity, are theoretically based on
the dependence with respect to the viscosity value, of un-
steady velocity profiles when both inertial and viscous ef-
fects are present. Some of them [10] cannot be used in
vivo. Various methods have already tried to solve this in-
verse problem: either the inversion of an over-determined
linear system [11] or the comparison of a pre-computed
experimental abacus (for periodic signals) [12,13], or an
integral method based on the knowledge of instantaneous
velocity profiles [14,15]. Except for specific conditions,
such approaches are highly noise sensitive. Other diffi-
culties arise when looking for clinical applications. On
the theoretical side, the model is necessarily simplified
since the true blood flow is an unsteady 3D motion of a
non-homogeneous non-Newtonian fluid confined by time-
dependent boundaries. As far as laboratory experiments
are concerned, the set-up and measurement techniques
must recreate a situation as close as possible to the true
physiological context. The present work proposes a pro-
cedure based on velocity profiles obtained by ultrasonic
Doppler velocimetry which is a standard tool in arterial
haemodynamics investigations and the only atraumatic
one if one excepts the MNR method which have still to be
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improved in this context. Our approach combines direct
numerical flow simulation and an inverse technique based
on an optimization method. As a first step of the general
inverse problem, a fully-developed flow of a Newtonian
fluid is considered in a rigid pipe. Clearly the hypothesis
of Newtonian behavior is well accepted in large arteries.
This is related to the fact that the blood is a red blood
cell (RBC) suspension. Its viscosity is mainly dependent
on the aggregation state of the RBC. At rest the aggre-
gation induces an increase of the viscosity. Conversely the
viscosity decreases when the blood is sheared since the
blood is disaggregated. In that case, it behaves like a New-
tonian fluid. In human large arteries, the blood has been
subjected to high shear rate when passing through the
heart. Taking into account arterial mean blood velocity,
the RBC have not enough time in the main large arter-
ies to aggregate and the blood behaves like a Newtonian
fluid.

Our procedure works for any applied unsteady pressure
gradient and does not assume a priori the shape of velocity
profiles. Theoretically, these latter quantities are only con-
strained to satisfy the Navier-Stokes equation. Experimen-
tally they are only measured at a unique vessel cross sec-
tion. The inverse method which evaluates viscosity from
velocity profiles, is derived from the optimization of a cost
function quantifying the difference between experimental
data and equivalent quantities obtained through Navier-
Stokes numerical simulations. It is based on an extension
of the classical Lagrange multipliers method in which the
multipliers become space and time functions satisfying an
additional adjoint partial differential equation. This ap-
proach is close to the backpropagation procedure used in
neuronal nets [16], and has already been used in a geo-
physical context [17] or else in hydrodynamical problems
such as a coupled wakes experiment [18]. In biomechanical
studies, an analogous method has been previously intro-
duced to identify the artery wall elasticity [19]. However,
this latter work only considered numerical simulated quan-
tities and never experimental data.

The hydrodynamic model is introduced in Section 2.1
and the general principle of the inverse method is given in
Section 2.2 while the optimization procedure and its La-
grangian formulation are described in Section 2.3. Details
for the implementation of the time discretized model are
provided in Appendix A. Section 3 describes the test which
were performed to ascertain the precision and robustness
of the proposed algorithm in particular with respect to
noise and sampling time. Finally, Section 4 describes an
experimental set-up on which provided an experimental
data set. This set was used as a practical test of our
method. Perspectives are given in conclusion.

2 Model and methods

Let us introduce the numerical model as well as the inverse
technique based on numerical simulations of this model,
which evaluates fluid viscosity using experimental data.
For in vivo applications, the mostly used atraumatic way
of measuring velocities is the pulsed Doppler ultrasound

technique. This method allows to get instantaneous veloc-
ity profiles by determining the frequency shift induced, in
a moving fluid, by a Doppler effect. More precisely, the
data set obtained in typical echography measurements,
consists of an artery radius Rmeas and longitudinal veloc-
ities vjk

meas, measured at a unique vessel section for ns + 1
discrete radial locations r = aj ≡ j∆exp, j = 0, ..., ns,
∆exp being the apparatus spatial resolution. Such mea-
surements are only performed at nt + 1 discrete times
t = Sk ≡ kS, k = 0, ..., nt where S is the sampling time in-
terval. Note that measured velocities profiles vjk

meas as well
as artery radius Rmeas are affected by measurement errors.

2.1 Model

Let us consider the laminar axisymmetric fully-developed
flow of a Newtonian incompressible fluid when it is con-
fined in a vessel of radius R and generated by a given
time-dependent pressure gradient. Moreover as generally
assumed in the hemodynamics of large arteries, the fluid
density ρ and the kinematic viscosity ν are assumed to
be constant. This ideal situation, which can be assumed
in arterial blood flow, allows to get rid of entrance effects
a few diameters downstream of an arterial bifurcation. In
large arteries, as generally well admitted, blood viscosity
can be considered as constant since blood disaggregates af-
ter passing through the heart and the aggregation process
has not enough time to occur. Indeed an order of magni-
tude of the aggregation characteristic time is about 10 s
for standard physiological conditions. The above situation
is governed by the axisymmetric Navier-Stokes equations
together with boundary conditions. In the following, the
radial velocity can be neglected since the variation of ves-
sel radius δR(t, z) is assumed to be much smaller than
the average radius. In addition, the longitudinal veloc-
ity v(r, z, t) is almost independent on the z space vari-
able, the pulse wavelength being much larger than the
radius R. Within this approximation, the pipe may be
viewed as rigid, the pressure gradient ∂P/∂z becomes a
pure time dependent function and the non linear term
in the Navier-Stokes equation vanishes. As a consequence
the laminar flow is entirely described by the longitudinal
velocity v(r, t) governed by Stokes equation

∂v

∂t
= − 1

ρ

∂P

∂z
+ ν

1
r

∂

∂r

(
r
∂v

∂r

)
. (1)

Clearly ∂P/∂z is a quantity containing a lot of informa-
tions about the global problem. By imposing equation (1)
at r = 0, one gets a relation for the velocity vc(t) at the
center of a cross-section

dvc

dt
= − 1

ρ
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+ 2ν
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Eliminating the pressure gradient ∂P/∂z between equa-
tions (1) and (2) one then obtains
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This latter equation is useful since it allows a numerical
resolution leading to the knowledge of the velocity profile
which only uses vc(t) at r = 0 as an input. Moreover this
quantity can be measured atraumatically. An alternative
model may be written using the mass flux Q(t), instead of
the centreline velocity. For the sake of simplicity, the pre-
sentation below will be entirely based on the first model.

From now on (including the appendix), the model (3)
is put in dimensionless form and all quantities are meant
to be dimensionless except those written with a super-
script ∗ which are left dimensional. Echography measure-
ments provide a characteristic velocity V ∗

char, a time scale
T ∗

char (for periodic flow the time period is adequate). By
contrast, the characteristic length R∗

char is chosen to be the
true artery radius R∗. Its value is close but differs from
the measured one R∗

meas because of measurement errors.
The model is governed by a dimensionless equation

∂v

∂t
=
dvc

dt
− 4π
α2

∂2v

∂r2
(r = 0) +

2π
α2

1
r

∂

∂r

(
r
∂v

∂r

)
(4)

with v(r = 1, t) = 0 and ∂v
∂r (r = 0, t) = 0

which depends on the centreline velocity vc(t) and on the
Womersley number

α = R∗
char

√
ω∗

char

ν∗
where ω∗

char =
2π
T ∗

char

. (5)

Experimentally, longitudinal velocities vjk
meas are measured

at well known dimensional radial location a∗j . However the
associated dimensionless radial locations a∗j/R

∗ are not
precisely known: a∗j/R

∗
meas is actually known but R∗

meas/R
∗

is not precisely determined because of the presence of un-
known true radius R∗. The simulation of model (4) gener-
ates dimensionless profiles v(r, t) which provide the equiv-
alent numerical velocities v

(
a∗j/R

∗, Sk

)
. Since quantity β

β =
R∗

meas −R∗

R∗ (6)

is small the true radius R∗ being close to the measured
one R∗

meas, quantity v
(
a∗j/R

∗, Sk

)
can be expanded as fol-

lows

v

(
a∗j
R∗ , Sk

)
= v

(
a∗j
R∗

meas

(1 + β), Sk

)

∼ vjk
sim; (7)
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Moreover, in order to separate the contributions of viscos-
ity and artery radius, equation (4) now reads

∂v
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=
dvc

dt
− 2 ν̃

(
1 + β
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where ν̃ =
ν∗T ∗

char

R∗2
meas

. (9)

Equation (8) expresses the contribution of viscosity
through dimensionless viscosity ν̃ and the contribution of
artery radius through relative error β.

2.2 The inverse method

The proposed inverse method estimates the effective val-
ues of parameters ν̃, β and consequently an effective blood
kinematic viscosity ν∗opt and an effective artery radius R∗

opt.
This is possible since viscosity, vessel boundaries and iner-
tial effects directly govern the haemodynamics. Note that
the hematocrit or the blood density which are surely im-
portant factors for haemodynamics, only change indirectly
the flow by affecting blood kinematic viscosity ν∗. In order
to evaluate these parameters, such a dependency should
be modelled by phenomenological laws. We will not con-
sider such a problem here.

The identification is performed by determining the
values of ν̃ and β that optimally fit the experimental
measurements. This amounts at minimizing a function F
which quantifies the distance between experimentally
measured vjk

meas and numerically simulated vjk
sim longitudi-

nal velocities. In inverse problems, the choice of the cost
function is quite important and depends on the experi-
mental data available and also on parameters to be iden-
tified. A cost function which is quite sensitive to these
parameter values, is clearly the most appropriate. Previ-
ous works [13,14] have shown that the identification of
viscosity using an inverse method is very much dependent
on (i) the value of the Womersley number (5); (ii) the ra-
dial position; (iii) the time range at which data have been
collected [15]. A priori, this remark is still valid for the
present method. In addition, this procedure appears from
numerical tests, to be less noise dependent than the meth-
ods described in [14,15] and can be even used to clean the
data set (see below). In addition, note that, in medium
or large arteries, the Womersley number α ranges from 4
to 13 for normal physiological conditions [9]. This interval
prevents the flow to exhibit an almost Poiseuille α � 1
or plug like shape α � 1 for which the present proce-
dure cannot be used since the associated velocity shapes
are not dependent on viscosity. In the present work, the
cost function F used is built on the dimensionless local
errors vjk

sim − vjk
meas

F =
ns∑

j=0

nt∑
k=1

Hj

(
vjk

sim − vjk
meas

)2

(10)

where Hj varies from 1 near the center of the artery to 0
in the vicinity of the wall. This function is used in order
not to sum beyond the true radius R∗ and to eliminate
measurements near the artery wall where signal to noise
ratio and convolution effects are maximal. Practically, we
choose Hj = 1 for 0 ≤ j ≤ nr, with nr typically 80% or
90% of ns, and Hj = 0 elsewhere.
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This least square expression is chosen for several rea-
sons: it is the most classical cost function, and it is dif-
ferentiable with respect to vjk. This function depends
through vjk

sim on several model inputs: two parameters ν̃,
β and the centreline velocity vc(t). This latter velocity is
practically measured at sampling times Sk. This experi-
mental velocity is denoted by v0k

meas. As a consequence, ve-
locity vc(t) is parameterized through the following piece-
wise linear interpolation

vc(t) = vk
c +

(
vk+1

c − vk
c

) t− Sk

S
(11)

with Sk < t < Sk+1, where the nt parameters v1
c , ...,

vnt
c are close to the experimental v01

meas, ..., v0nt
meas. This in-

terpolation is part of the model on which the identifica-
tion technique is built. A better e.g. spline approximation
could be easily introduced but we will not further ana-
lyze this point. Note that the initial centreline velocity
v0

c is left equal to v00
meas. Finally the model and cost func-

tion F(
ν̃, β; v1

c , ..., v
nt
c

)
depend on parameters ν̃, β and nt

centreline velocities vk
c : the optimization of F is thus per-

formed on nt + 2 quantities. The procedure below implies
that F is also differentiable with respect to these nt + 2
quantities.

Since the first two parameters ν̃ and β possess quite a
different status compared with the centreline velocities vk

c ,
we proceed by an iterative procedure in which each itera-
tion is divided in two elementary steps: first (step (i)), the
minimum of F(

ν̃, β; v1
c , ..., v

nt
c

)
is found with respect to ν̃

and β at fixed vk
c values. Second (step (ii)), the minimum

of F(
ν̃, β; v1

c , ..., v
nt
c

)
is found with respect to the nt values

vk
c at fixed ν̃ and β values equal to those found in step (i).

This overall iterative procedure is started by the fol-
lowing inputs: β = 0 i.e. R∗ = R∗

meas, vk
c = v0k

meas and a
typical value for ν∗ e.g. ν∗ = 5 × 10−6 m2/s. After few
iterations (actually two are generally sufficient), the algo-
rithm has converged leading to effective values for ν̃ and
β i.e. viscosity ν∗opt, artery radius R∗

opt as well as a better
evaluation of the centreline velocity signal. In addition,
the reconstructed velocity profile is obtained by numeri-
cal simulation of the model with the optimal parameters.
During the elementary step (i) (resp.(ii)) of each itera-
tion, the minimum of F with respect to ν̃ and β (resp.
nt parameters vk

c ) is always found by a conjugate gradi-
ent algorithm [20]. The main problem is thus reduced to
obtaining the gradient of F with respect to parameters ν̃,
β and v1

c , ..., vnt
c . This task is not straightforward since

function F implicitly depends on these nt + 2 parameters
via the simulated velocity profiles vjk

sim. The so-called back-
propagation algorithm which is introduced in Section 2.3,
determines the gradient by solving a dual model. Figure 1
presents the most general procedure to get ν∗opt, R

∗
opt and

v1
c opt, ..., vnt

c opt.
The present method is valuable for two main reasons.

First, it works with no substantial cost with many pa-
rameters. By contrast, a direct approach which could be
attempted by using several numerical solutions for various
viscosity, radii and centreline velocities and approximat-
ing the gradient by finite differences, would not be robust

and its efficiency would deteriorate with the number of
parameters. Second, it will be checked in the subsequent
analyses that the optimal parameters are not too much
sensitive to measurement errors. If inverse methods are to
be applied on real data, this is crucial since real experi-
mental data show not a fairly good signal to noise ratio.

2.3 Cost function gradient computation
by a backpropagation technique

Since the numerical model must be discretized in space
and time, one must consider a discretized version of equa-
tion (8) in addition to the already discrete cost func-
tion (10). Appendix A is precisely devoted to this intri-
cated case which is actually implemented in Sections 3
and 4. In order to convey the principle of the method,
we present here below an easier version implemented on
a continuous system and a continuous cost function. One
assumes, for simplicity reasons, that time and spatial mea-
surements are continuous. Moreover, v1

c , ..., vnt
c are sup-

posed fixed. However, one can easily assume v1
c , ..., vnt

c

to be free parameters within a straightforward generaliza-
tion.

Velocity is zero at the wall v(r = 1, t) = 0 and the
centreline velocity vc(t) is assumed known from equa-
tion (11) and parameters v1

c , ..., vnt
c . The initial conditions

v(r, t = 0) are assumed to be known as well. Equation (8)
is equivalent to

∀ r ∈ [0, 1], ∀ t ∈ [0, Snt ],
∂v

∂t
−G

(
ν̃, β ; v(r, t)

)
= 0 (12)
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(
r
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With continuous time and space measurements, the cost
function reads

F(
ν̃, β

)
=∫ 1

0

∫ Snt

0

H(r)
(
v(r, t) + βr

∂v

∂r
(r, t)︸ ︷︷ ︸

vsim(r,t)

−vmeas(r, t)
)2

dr dt

(13)

where the smooth function H(r) plays the same role as
Hj in equation (10).

The main problem now is to compute the variation δF
of the cost function with respect to δν̃ and δβ. However,
variations of ν̃ and β appear in F through the following
constraint: velocity field v(r, t) satisfies the dynamics (12)
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Fig. 1. Simplified synoptic representation of the algorithm employed to compute from experimental data and cost function F ,
dimensionless viscosity and radius ν̃ and β and centreline velocities v1

c , ..., vnt
c . Dashed arrows are only used for the first time

step. Quantity ε is a threshold amplitude which can be tuned to increase the precision.

during the full time interval [0, Snt ]. In order to get around
this problem, one uses a generalized Lagrange multipliers
approach which introduces the following Lagrangian func-
tion

L = F +
∫ 1

0

∫ Snt

0

(
∂v

∂t
−G

)
ϕ(r, t) dr dt (14)

where quantities ϕ(r, t) correspond to Lagrange multipli-
ers. If equation (12) is satisfied, one gets L = F whatever
the value of ϕ(r, t). As a consequence, δL = δF what-
ever the value of ϕ(r, t). This freedom in the choice of the
Lagrange multipliers can be exploited to compute δL –
hence δF – as a function of δν̃ and δβ. In the most gen-
eral way, δL can be expressed as a function of δν̃, δβ,
δv(r, t) and δϕ(r, t):

δL = δF1 + δF2 + δF3 + δL1 + δL2 + δL3 + δL4

where
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ϕdr dt,
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0

∂G
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ϕ dr dt,

δL4 = −δβ
∫ 1

0
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0

∂G

∂β
ϕdr dt.

Since quantities v(r, t) satisfy the dynamics (12), one gets
δL1 = 0 for any arbitrary ϕ(r, t). In order to explicitly
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determine the δv(r, t) dependence, one integrates by parts
the time derivative in δL2 and the space derivative in δF3.
By assuming the initial conditions to be fixed i.e. δv(r, t =
0) = 0, a new expression is obtained for δL2.

δL2 =
∫ 1

0

ϕ(r, Snt) δv(r, Snt) dr

−
∫ 1

0

∫ Snt

0

(
∂ϕ

∂t
+
∂G

∂v
ϕ

)
δv dr dt (15)

and for δF3 as well

δF3 = −
∫ 1

0

∫ Snt

0

2β
∂

∂r

(
rH(r) (vsim − vmeas)

)
δv dr dt.

At this point, Lagrange multipliers ϕ(r, t) can be pre-
scribed in such a way that δF1 + δF3 + δL2 = 0 for
any δv(r, t). This prescription allows to suppress the terms
δv(r, t) in δL: it is then unnecessary to compute explicitly
these variations δv(r, t) in terms of δν̃ and δβ. Looking at
the above expressions for δF and δL2, the above choice
implies that ϕ(r, t) satisfy the following dynamical system

2H(r)
(
vsim − vmeas

)
− 2β

∂

∂r

(
rH(r) (vsim − vmeas)

)

−∂ϕ
∂t

− ∂G

∂v
ϕ = 0.

(16)

This system must be integrated backwards in time from
t = Snt to t = 0 with the prescribed condition ϕ(r, Snt) =
0 at t = Snt in order to suppress the first term of δL2 in
equation (15). The gradient of the cost function F now
simply reads

∂F
∂ν̃

=
δL3

δν̃
= −

∫ 1

0

∫ Snt

0
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∂ν̃
ϕ dr dt
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=
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+
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δβ
=
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0

∫ Snt

0

2H(r)
(
vsim − vmeas

)
r
∂v

∂r
dr dt

−
∫ 1

0

∫ Snt

0

∂G

∂β
ϕdr dt. (17)

The exact gradient is hence determined using only two
simulations: one of the direct model (12) and one of its
backpropagated companion (16).

3 Testing the reconstruction algorithm

The purpose of this section is to test and to understand
the advantages, limits and application range of our in-
verse technique. The efficiency of an identification algo-
rithm naturally depends on the capability of the physical
model on which it is based, to incorporate in a sufficiently
precise way the physics governing the measured quanti-
ties. In addition, its efficiency also relies on the sensitivity
of the algorithm to the data set and on other technical
issues: precision and stability of the numerical model dis-
cretization, precision and stability of the backpropagation

method. All these features are crucial since inverse prob-
lems are generally ill-conditioned: small variations on data
sets may give large variation on identified parameters. The
general consequence is a lack or not of the robustness for
the algorithm.

Let us emphasize that all results are here obtained us-
ing the complete inverse method presented in Appendix A.

3.1 Testing the accuracy of the backpropagation
calculation

Practically, the minimum of cost function F is hardly
reached by the conjugate gradient descent algorithm if
the gradient computed by the variational approach dif-
fers from the exact gradient (∂F/∂ν̃ , ∂F/∂β). In such a
case, a badly estimated set of parameters (ν̃opt, βopt) will be
provided by the identification method. The precision at-
tained when evaluating the cost function gradient is hence
an important issue. The gradient of the cost function F
(function here defined in Eq. (28)), was computed using
the variational approach and its value was compared to
the same quantity evaluated by a finite differences scheme

F(ν̃ + δν̃) −F(ν̃ − δν̃)
2δν̃

and
F(β + δβ) −F(β − δβ)

2δβ
(18)

as δν̃ → 0 and δβ → 0. The relative errors between both
quantities were less than a percent when δν̃ ≤ 10−2 and
δβ ≤ 10−3. Such values were computed based on the syn-
thetic data produced by equation (3) or more precisely
by its discretized version (22) with a dynamic viscosity
µ = 4 mPa.s. As a conclusion, equations (32, 34) correctly
and accurately estimate the gradient of F . Note that the
component of the gradient with respect to centreline ve-
locities are not presented here for the sake of simplicity.

3.2 The synthetic data set

The identification algorithm is tested on a synthetic data
set vjk

meas. This set is built in a two step process (see Fig. 2
top): a direct numerical simulation of system (22) gener-
ates a time signal Y jk followed by an addition of noise to
this signal

vjk
meas = Y jk +Bnoise ∗ N (j, k). (19)

The random variable N is characterized by a uniform
probability distribution function over the interval [−1, 1]
and Bnoise quantifies the ratio between the noise ampli-
tude and the maximum centreline velocity value. The ad-
dition of noise to the clean signal Y jk for all times Sk and
space locations aj mimics the effect of measurements er-
rors in true experimental conditions. One thus generates
an emulated experimental signal vjk

meas.
The numerical simulation to compute Y jk was per-

formed for given parameters ν̃ and β (here ν̃ = 0.49
and β = 0.05 obtained from the dimensional quantities
ν∗ = 4×10−6 m2 s−1, R∗ = 2.85 mm and R∗

meas = 3 mm)
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Fig. 2. (Top) Reference centreline velocity used for the syn-
thetic data here represented for two periods (continuous line
before noise addition, dotted after noise addition). The noise
amplitude is equal to 10% of velocity amplitude. The period of
the signal is 1 s (Bottom) Reference centreline velocity as the
result of the minimization of F (dashed) and reference centre-
line velocity before noise addition (continuous line).

as well as an initial profile and centreline velocity. The
centreline velocity was chosen to be equal to a true exper-
imental value (see Fig. 2 top) and the initial conditions
to be a Poiseuille like profile. The sampling time S∗ and
numerical time step ∆t were fixed at S∗ = 0.02 s and
∆t = S

200 . The time step ∆t was chosen very small in this
sub-section to ensure the convergence of the algorithm. It
was checked however that a larger value such as ∆t = S

40
is also valid. This latter value will be used in Section 4.
Finally, the Womersley number (5), associated to the fun-
damental frequency of the signal, was set to values close
to true experimental situations. A reference data set will
be often used which corresponds to a period of 1 s (i.e. a
Womersley α = 3.57).

By generating such a synthetic data, one is able to
test the algorithm itself since (i) the values of ν∗ and R∗
are know a priori in this case, and (ii) noise amplitude or
sampling time can be varied at will. In addition, various
independent such time series can be generated using dif-

Fig. 3. (Top) Temporal evolution of synthetic data (right side
of the profile) for a noise level of 10% and α = 3.57. The
value of the artery radius used for the simulation is taken
to be R∗ = 2.85 mm and the equivalent measured radius
R∗

meas = 3 mm. The reconstructed data is depicted on the left
side of the profile. Note that the reconstructed radius value is
equal to R∗

opt = 2.86 mm (see vertical line in the figure). Each
curve corresponds to different measurement time S∗

k . (Bottom)
Normalized optimal viscosity ν∗

opt and radius R∗
opt as function

of number of measured profiles nt for a relative noise level of
10%. There are 50 such profiles for a single period.

ferent realizations of the random variable N . The inverse
procedure could then be repeated with any given realiza-
tions of vjk

meas. This provides a value ν∗opt and R∗
opt for each

realization and consequently an average value and an as-
sociated root mean square for ν∗opt or R∗

opt.

3.3 Testing the robustness of the reconstruction
algorithm

Let us now test the robustness of the algorithm with re-
spect to several features: (i) number of experimental pro-
files nt, (ii) noise amplitude Bnoise, (iii) sampling time S,
(iv) Womersley number (5). Note that measurement errors
may perturb the quality of parameter identification in two
different ways. First, the value of the cost function (28)
is directly affected by measurements of the experimental
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Fig. 4. Influence of noise level on the dispersion of optimal val-
ues (ν∗

opt, R
∗
opt). Each curve corresponds to a certain noise level

ranging from 2% (inner curve) to 12% (outer curve). It displays
the mid-height contour of the probability distribution function
which is the result of 20 000 noise realizations. This computa-
tion has been performed using the reference data set (α = 3.57
for the fundamental frequency).

data set. Second, the centreline velocity vc(t) explicitly
appears in the algorithm through condition (27): a mea-
surement error on this specific quantity modifies the model
prediction as well.

Figure 3 (top) displays for a unique noise realization,
the result of the identification procedure for velocity pro-
files with α = 3.57: even though the synthetic vjk

meas (right
hand side of profile) is very much affected by a noise am-
plitude of 10%, the algorithm is capable to get the recon-
structed velocity field (the left hand side of profile) and
reconstructs as well the centreline velocity (see Fig. 2 bot-
tom).

For a given sampling time S∗, the optimal value ν∗opt
depends on the number of experimental profiles nt as well
as on the noise amplitude Bnoise. Figure 3 (bottom) il-
lustrates the evolution of ν∗opt and R∗

opt as a function
of nt for a given realization, a noise level of 10% and
α = 3.57. For this specific case, the optimal value con-
verges after nt ∼ 250. In the experiment presented below,
this means that one must wait 250 consecutive measure-
ments i.e. 250/50 = 5 s, hence 5 cycles of the experimental
signal, to converge towards a value which causes less than
5% relative error. Extensive computational investigations
were performed which confirmed the convergence for other
realizations of noise. A similar behavior was also found for
all noise levels.

The influence of noise amplitude Bnoise on the optimal
values (ν∗opt, R

∗
opt) can be studied in a more precise man-

ner by considering the dispersion of such optimal values.
Figure 4 demonstrates that our approach is quite robust
with respect to this parameter since optimal viscosity and
radius are found close to the expected value with a high
degree of precision even for significant Bnoise values.

The success of classical identification approaches such
as the basic least squares method depends on and is very

Table 1. Average and rms fluctuation of the optimal dynamic
viscosity µ∗

opt ≡ ν∗
optρ

∗ as a function of sampling time S∗.
The total time span ntS

∗ is fixed and equivalent to 5 periods
and 20 realizations were used to compute averages and rms
fluctuations. The true values were chosen to correspond to the
reference data set µ∗ = 4 cP and R∗ = 2.85 mm.

S∗ (ms) points per period viscosity (cP) radius (mm)
20 50 3.99 ± 0.13 2.84 ± 0.01
40 25 4.07 ± 0.15 2.84 ± 0.01
80 12 4.05 ± 0.31 2.81 ± 0.03
160 6 3.65 ± 0.27 2.73 ± 0.03

much constrained by the value of sampling time S∗ charac-
terizing the experimental data. For instance, the classical
least squares approach is based on the hypothesis that the
time derivatives can be discretized in such a way that

dv

dt
(Sk) =

v(Sk+1) − v(Sk)
S

(20)

and imposes that sampling time S and numerical time step
∆t are identical. In this case, the optimal value ν∗opt(S)
will fit to the true viscosity only for a clean data series
(Bnoise = 0) and a small experimental sampling time S.
In the opposite case (Bnoise 
= 0 or S too large), the dis-
persion of results becomes significant. Moreover condition
∆t = S imposes that the Euler scheme falls into an a
priori numerically unstable region. In the algorithm here
proposed, sampling time S and numerical time step ∆t
are independent: our procedure still works with S fixed
and ∆t very small. Some numerical comparisons between
a one time step method and ours as well as a complete in-
vestigation of parameters dispersion can be found for an
hydrodynamical case in [21]. Table 1 displays the average
value of ν∗opt (computed using 20 realizations) versus sam-
pling time S∗. Even the last case with 6 points per period
gives an acceptable value for viscosity.

Note that we made no hypothesis on the periodic or
aperiodic behaviour of the wave or on the absence of mul-
tiple reflections. Such situations are implicitly handled by
our inverse method. Let us assume that S∗ is here fixed so
that the temporal frequency acquisition is equal to 50 Hz
(hence 50 measurements for the reference data set per pe-
riod). The influence of the pulse rate or else the Womersley
number α is displayed in Figure 5 which characterizes the
dispersion of optimal values (ν∗opt, R∗

opt) for a given noise
level (10%). For low Womersley numbers (α ≤ 2), axial
velocities almost follow a Poiseuille profile and are thus
independent on viscosity which explains why F does not
possess a clear cut minimum in that case and the method
diverges. For greater values of α typically ranging from 4
to 10, relative errors on ν∗opt and R∗

opt are less than 10%
and 2% respectively. Note that the inverse method tends
to slightly underevaluate these parameters. At last, large
values of α are unsatisfying since the resulting viscosity is
strikingly underestimated (30%). This is a consequence of
a bad temporal and spatial sampling of the signal. For high
values of α, the shape of profiles hardly depends on α ex-
cept in the thin boundary layer. If one bears in mind that,
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Fig. 5. Contours of probability distribution functions for
(ν∗

opt, R
∗
opt) for various Womersley parameters α (α =

12.9, 10.1, 3.57). Each curve corresponds to 25%, 50% and
75% of the peak value of the probability distribution func-
tions. Parameter α is changed by modifying the flow frequency
all other parameters, in particular sampling time S∗ and noise
level being fixed. Each probability distribution function is the
result of 20 000 noise realizations. For Womersley parameters
α = 7.1, 2.5 only the curve corresponding to 75% of the peak
value of the probability distribution functions is shown here
for the sake of clarity.

when α increases, the boundary layer size decreases and
noise mainly affects this boundary layer region. In such a
case, an even more plug like flow than the true one, may
be used to fit the experimental profile. This reconstructed
profile can be naturally associated either to smaller vis-
cosities or smaller radii. Finally, when the width of the
boundary layer becomes of the order of ∆exp, information
on the viscosity vanishes and the identification method
fails. Moreover, α increases with ω∗ so that bad results
for high α flows may be also the consequence of a bad
temporal sampling. Applicability of the method to a com-
plex (non-sinusoidal) signal depends whether the α value
of first harmonics are within the above interval. In most
of physiological instances, this is the case.

The applicability of the inverse technique to determine
blood viscosity and vessel diameter depends on other as-
sumptions: we suppose that measurements are made a few
diameters away from any vessel bifurcation in order to
make the fully-developed flow approximation. Similarly
the radius of curvature of the vessel is assumed to be
much larger than the tube radius. Finally, the blood is
supposed to behave like a Newtonian fluid. In order to
remove such assumptions, it is necessary to modify or to
extend the present algorithm. For instance, an extension
to non-Newtonian fluids is presently in progress.

4 Experimental setup and results

A validation of our method is also based on true experi-
mental data. We emulated flow conditions close to clinical
ones using an experimental set-up depicted in Figure 6.

Fig. 6. Schematic diagram of the experimental set-up. The
constant level tank ensures a given mean pressure gradient.

Four experiments were performed corresponding to peri-
odic flux rates with positive average value. The radius of
the tube was known so that only identification of viscosity
was performed in that case.

The hydrodynamic bench is composed of a rigid tube
immersed in water to ensure a good US wave propaga-
tion. An electromagnetically driven pump associated with
a constant level tank ensures a pulsating flow rate of any
given shape. Here a purely sinusoidal flow rate superim-
posed to a mean flow, was generated. The periodic pres-
sure waves were in the 0–100 Hz frequency range. The
situation is close to a clinical case when considering the
Womersley number and the Reynolds number based on
the mean flux rate. A complete description of the ex-
perimental setup can be found in [14,22]. The fluid US
echogenicity was monitored by adding small latex par-
ticles. Its viscosity was adjusted by introducing glycerol
and periodically controlled using a Contraves low shear
40 viscometer: the dynamic viscosity µ∗ of the fluid was
constant and equal to 10 cP with an error bar of 1 cP. Its
kinematic viscosity ν∗ was hence equal to ν∗ = 10−5 in SI
units. Since the frequency was fixed to be 0.5 Hz, the cor-
responding Womersley number (5) equals α = 4.5 which is
usual in clinical situations. Velocity profiles were measured
by an ultrasonic velocimeter (DOP 1000 Signal Process-
ing Ultrasound velocimeter). The tube diameter (1.6 cm)
was chosen to allow a good quality of measurements,
when considering convolution effects. The deep sample
measurement was about 0.3 mm in length (about 2%
of the diameter) and convolution effects were negligible.
The Doppler characteristics (pulse repetition frequency,
P.R.F. = 15.62 kHz, ultrasound frequency = 10 MHz,
burst length = 8 cycles, number of emissions/profile =
441) allowed a large enough depth of the investigated zone
without significant attenuation of the US waves. Figure 7
displays a typical instantaneous velocity profile. Such pro-
files were measured every 40 milliseconds. Note the asym-
metry between the right and left halves of the velocity
profile. This difference is due to echography interference.
This effect can also be observed in vivo since the US re-
flective properties of the blood is different from that of
the soft tissues. Once it reaches the proximal wall, the US
beam is reflected and propagates into the external soft tis-
sues which are at rest and possess a low reflective power.
As a consequence this reflected beam does not alter the
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Fig. 7. (Top) An instantaneous velocity profile U(x) as mea-
sured by the ultrasonic velocimeter along the radial coordi-
nate x varying from the proximal to the distal walls. Note the
anomalous shape near the distal wall due to echography inter-
ference problems (see text). (Bottom) Centreline velocity as
measured in the experimental set-up.

Doppler signal near the proximal wall. On the contrary,
the beam which is reflected on the distal wall propagates
in the blood, which is reflective with a non zero velocity,
inducing a “mirror” velocity profile which is at the origin
of the observed artifact. Only the left half of profiles was
used in our method to evaluate viscosity. Note that this
configuration is less favorable than the one encountered
in vivo.

The optimal viscosity ν∗opt was computed using a low
cost personal computer. The experimental data was col-
lected every sampling time S∗ = 0.04 s and the numerical
time step ∆t = S/qt was chosen such that qt ∼ 100 which
ensured numerical convergence. The CPU time necessary
to compute the optimal dynamical viscosity µ∗

opt = ν∗optρ
∗

was then similar to the true physical time: real time nu-
merical computations could then be performed! For this
particular case, we have only one realization for a given
experiment. Table 2 shows that the algorithm is perform-
ing in a good manner.

Table 2. Optimal dynamical viscosity µ∗
opt computed based

on the four experimental data sets. The true dynamic viscosity
was measured to be 10 cP with a standard viscosimeter.

viscosity
series 1 9.82 cP
series 2 10.35 cP
series 3 9.48 cP
series 4 9.51 cP

Fig. 8. Temporal evolution of experimental data (right side of
the profile) and the reconstructed counterpart (left side of the
profile) for series 1.

Experimental data and the reconstructed velocity field
are displayed in Figure 8. The experimental data of ultra-
sonic Doppler velocimetry are clearly affected by measure-
ment noise. Near the vessel wall, at the reversing zone, the
signal-to-noise ratio is very low: classical methods will fail
under such experimental conditions. Since we have in this
experimental situation a very high reproducibility condi-
tions of the periodic imposed flux, we could improve these
results by profile averaging. One could build a less noisy
signal by averaging over the different periods. However we
did not attempt to perform this signal processing since,
in clinical situations, this cannot be applied due to the
non rigorous periodic character of the signal. In addition,
even in ideal conditions, the optimal values given by the
classical approaches are worse. Error peaks or rare events
(see Fig. 8) appear on experimental data. Because classical
algorithms use local approximations for derivatives such
as equation (20), these isolated peaks may dominate the
overall result. On the contrary, our variational approach
uses the complete integration time to compute the gradi-
ent function. Solitary peaks thus play a much reduced role
which explains the robustness of the method with respect
to noise.

5 Conclusion

A method has been presented which directly identifies the
fluid viscosity ν∗ from atraumatic US velocimetry exper-
imental data. This procedure is capable to handle even
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large sampling times S∗ and is robust with respect to
measurement noise. When applied on experimental data,
this approach is shown to provide a high and reproducible
precision for viscosity. This method applies within the as-
sumptions of axisymmetry and fully-developed Newtonian
flow. The flow is assumed to be laminar which imposes suf-
ficiently low instantaneous Reynolds number. In addition,
the Womersley number α should be in the medium range
to prevent an almost Poiseuille or plug like shape. The
ability of the present technique was demonstrated on peri-
odic flows but it can be used on any time dependent flow in
particular with multiple harmonics. For instance it works
for starting flow conditions as soon as the viscous bound-
ary layer is large enough to be detected by experimental
US devices (spatial discretization) and small enough to
prevent a fully developed Poiseuille flow. In other words,
the time measurement range must be neither too small
nor too large compared to the characteristic time for vor-
ticity diffusion. This work has been limited to in vitro
experiments with Newtonian fluid. It leads to improved
results when compared to previous methods [13,14]. Note
that the latter ones are in agreement with results of in
vivo studies. In a future work, we shall extensively apply
this procedure to clinical in vivo situations. For clinical
purposes, this approach because of its rapidity may be
used on real time to detect anomalous behaviors of patho-
logical origin. Because of its precision and flexibility, sev-
eral extensions can be performed with this computational
method. For instance, one possible extension is related to
the systematic error produced by the usual convolution
problem.

One may also envisage to introduce fluid non-
Newtonian rheological laws (ν as function of the shear
flow) which are more pertinent in the peripheral arte-
rial system, or to extend of this identification procedure
to different physiological parameters such as wall elastic-
ity, arterial shear wall which are fundamental to detect
atherosclerosis lesions, stenosis and aneurysms on vessels.

Appendix A: The Algorithm for the discretized
model and measurements

Because experimental data and numerical model are dis-
crete in time as well as in space, this section is devoted to
a discrete formulation of the Lagrangian approach which
is the one actually implemented. The numerical space step
∆r (resp. numerical time step ∆t ) is chosen so that the
spatial resolution ∆exp (resp. the sampling time S) is a
multiple of ∆r (resp. ∆t): ∆exp = qs∆r (resp. S = qt∆t).
Practically, qs is taken to be 3 and qt of order 100. As
a consequence, model (8) is numerically discretized using
a classical Euler integration scheme on a space-time grid
with Nt + 1 = qtnt + 1 times and Ns + 1 = qsns + 1 space
locations

tk = k∆t , k = 0, ..., Nt; rj = j ∆r , j = 0, ..., Ns.
(21)

For clarity reasons, one introduces the two quantities
γ = ∂v/∂r and σ = ν̃(1 + β)2γ so that equation (8) is

equivalent to

∂v

∂t
=
dvc

dt
− 2

∂σ

∂r
(r = 0) +

1
r

∂(rσ)
∂r

.

The corresponding discrete equation reads:

vj,k+1 − vj,k

∆t
=
v0,k+1 − v0,k

∆t
+
σ2,k − 4σ1,k

∆r
+

(j + 1)σj+1,k − (j − 1)σj−1,k

2j∆r
≡ G

(
ν̃, β; vlm, σpq

)
(22)

with

σjk = ν̃
(
1 + β

)2

γjk (23)

and

γjk =
vj+1,k − vj−1,k

2∆r
, j = 0, ..., Ns − 1 (24)

and

γNs,k =
vNs−2,k − 4vNs−1,k

2∆r
. (25)

Note that since σ0,k = 0 by symmetry, the discrete deriva-
tive ∂σ/∂r in r = 0 is not centered to ensure the second
order precision in ∆r. In addition, the value γNs,k is writ-
ten in such a way to take into account the no-slip condi-
tion vNs,k = 0 at the artery wall. Finally, the centreline
velocity v0,k is assumed known from interpolation (11) or
rather its discretized counterpart

v0,k = vm
c +

(
vm+1

c − vm
c

) tk − Sm

S
(26)

with

mqt ≤ k ≤ (m+ 1) qt (27)

in which the initial centreline velocity v0
c is left equal

to v0,0
meas but the other nt quantities v1

c , ..., vnt
c are assumed

to be free parameters which are close to the experimental
v01

meas, ..., v0nt
meas. This interpolation is part of the model on

which the identification technique is built. A better e.g.
spline approximation could be easily introduced but we
won’t further analyze this point. We also use an interpola-
tion of vj,0

meas as initial conditions. Finally the cost function
F(
ν̃, β; v1

c , ..., v
nt
c

)
depend on parameters ν̃, β and nt cen-

treline velocities vk
c . As a consequence, the optimization

of cost function F is performed on nt + 2 quantities.
Iterating equations (22–23) from k = 0 to k = Nt − 1

leads to the numerical velocities vjk which is then used in
evaluating F . In the discretized case, it is easy to verify
that this function reads as follows

F =
Ns∑
j=0

Nt∑
k=1

hjk(wjk)2 (28)

where the filter hjk introduces (i) the constraints that ex-
perimental measurements are only performed for time tk
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(or space location rj) coinciding with a sampling time Sm

or a measured location an; and (ii) the constraints of func-
tion Hj in equation (10). Consequently, hjk = 0 except if
(i) j and k are respectively multiple of qs and qt and (ii)
j < qs.nr. In that case hjk = 1. The value of quantity wjk

only matters when hjk = 1. In that case, it follows from a
discretized counterpart of equation (7) that

wjk ≡
(
vjk +

jβ

2
(
vj+1,k − vj−1,k

) − vj/qs ,k/qt
meas

)
. (29)

In order to get the variation δF of F with respect to δν̃,
δβ and δv1

c , ..., δvnt
c , a discrete Lagrangian is introduced

to avoid the explicit computation of δvjk as a function of
δν̃, δβ and δv1

c , ..., δvnt
c . It reads:

L = F

+
Ns−1∑
j=1

Nt−1∑
k=0

(
vj,k+1 − vjk

∆t
−G

(
ν̃, β ; vjk, σjk

))
ϕjk

+
Ns∑
j=1

Nt−1∑
k=0

(
σjk − ν̃

(
1 + β

)2

γjk

)
χjk

+
Ns−1∑
j=1

Nt−1∑
k=0

(
γjk − vj+1,k − vj−1,k

2∆r

)
ψjk

+
Nt−1∑
k=0

(
γNs,k − vNs−2,k − 4vNs−1,k

2∆r

)
ψNs,k

where ϕjk, χjk and ψjk are Lagrange multipliers. When
equations (22, 23) and (25) are satisfied, L = F so that
δL = δF for any values of variables ϕjk, χjk and ψjk.

Let us express δL as a function of δvjk, δσjk, δγjk,
δϕjk, δχjk, δψjk, δν̃ and δβ. The calculus is performed by
renaming indices in sums, using constraints δvNs,k = 0,
δvj,0 = 0, δσ0,k = 0, δγ0,k = 0 and by introducing the
following notations

ϕ0,k = ϕNs,k = ϕNs+1,k = ψ0,k = χ0,k = 0 (30)

(boundary conditions for Lagrange multipliers) and

ϕj,Nt = ψj,Nt = χj,Nt = 0 (31)

(“initial” conditions for Lagrange multipliers).

The variation can be decomposed as follows

δL = δF + δL1 + δL2 + δL3

where

δF =

⎛
⎝ Ns∑

j=1

Nt∑
k=1

j hjkw
jk

(
vj+1,k − vj−1,k

)⎞⎠ δβ

+
Nt∑

k=1

(
2h0,kw

0,k − h1,kβw
1,k

)
δv0,k

+
Nt∑

k=1

2
(
h1,kw

1,k − βh2,kw
2,k

)
δv1,k

+
Ns∑
j=2

Nt∑
k=1

(2hjkw
jk + hj−1,k(j − 1)βwj−1,k

−hj+1,k(j + 1)βwj+1,k)δvjk

δL1 =
Ns−1∑
j=1

Nt−1∑
k=0

(
vj,k+1 − vjk

∆t
−G

(
ν̃, β ; vjk, σjk

))
δϕjk

−
Nt∑

k=1

⎛
⎝Ns−1∑

j=1

ϕj,k−1 − ϕj,k

∆t

⎞
⎠ δv0,k

+
Ns−1∑
j=1

Nt∑
k=1

ϕj,k−1 − ϕj,k

∆t
δvjk

+
Nt−1∑
k=1

⎛
⎝ 4
∆r

⎛
⎝Ns−1∑

j=1

ϕjk

⎞
⎠ +

ϕ2k

4∆r

⎞
⎠ δσ1k

+
Nt−1∑
k=1

⎛
⎝ ϕ3k

3∆r
− ϕ1k

∆r
−

Ns−1∑
j=1

ϕjk

∆r

⎞
⎠ δσ2k

+
Ns−1∑
j=3

Nt−1∑
k=0

j

2∆r

(
ϕj+1,k

j + 1
− ϕj−1,k

j − 1

)
δσjk

δL2 =
Ns∑
j=1

Nt−1∑
k=0

(
σjk − ν̃

(
1 + β

)2

γjk

)
δχjk

+
Ns∑
j=1

Nt−1∑
k=0

χjkδσjk

−
(
1 + β

)2

⎛
⎝ Ns∑

j=1

Nt−1∑
k=0

γjkχjk

⎞
⎠ δν̃

−2ν̃
(
1 + β

) ⎛
⎝ Ns∑

j=1

Nt−1∑
k=0

γjkχjk

⎞
⎠ δβ

−ν̃
(
1 + β

)2 Ns∑
j=1

Nt−1∑
k=0

χjkδγjk
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δL3 =
Ns−1∑
j=1

Nt−1∑
k=0

(
γjk − vj+1,k − vj−1,k

2∆r

)
δψjk

+
Nt−1∑
k=0

(
γNs,k − vNs−2,k − 4vNs−1,k

2∆r

)
δψNs,k

+
Ns∑
j=1

Nt−1∑
k=0

ψjkδγjk

+
Nt∑
k=1

ψ1k

2∆r
δv0,k

+
Ns−3∑
j=1

Nt∑
k=1

ψj+1,k − ψj−1,k

2∆r
δvjk

+
Nt∑
k=1

(
ψNs−1,k

2∆r
− ψNs−3,k

2∆r
− ψNs,k

2∆r

)
δvNs−2,k

+
Nt∑
k=1

(
−ψ

Ns−2,k

2∆r
+

2ψNs,k

∆r

)
δvNs−1,k.

The first terms of δL1, δL2 and δL3 are equal to 0 insofar
as equations (22, 23) and (25) are satisfied. The final result
can be expressed in the form:

δL =

⎛
⎝−

(
1 + β

)2
Ns∑
j=1

Nt−1∑
k=0

γjkχjk

⎞
⎠ δν̃

+

⎛
⎝ Ns∑

j=1

Nt∑
k=1

j hjkw
jk(vj+1,k − vj−1,k)

−2ν̃
(
1 + β

) Ns∑
j=1

Nt−1∑
k=0

γjkχjk

⎞
⎠ δβ

+
Nt∑

k=1

ξkδv0,k +
Ns−1∑
j=1

Nt∑
k=1

Ajk
(
ϕ, χ, ψ

)
δvjk

+
Ns∑
j=1

Nt−1∑
k=0

Bjk
(
ϕ, χ, ψ

)
δσjk

+
Ns∑
j=1

Nt−1∑
k=0

Cjk
(
ϕ, χ, ψ

)
δγjk

where ξk, Ajk, Bjk and Cjk are linear combinations of
Lagrange multipliers and source terms originating from
δF . The Lagrange multipliers are required to satisfy the
constraints Ajk = 0, Bjk = 0 and Cjk = 0. This linear
system can be solved with a time reversal scheme from
k = Nt to k = 0 (backpropagation) using boundary con-
ditions (30) and initial conditions (31).

Finally, the expression of the gradient with respect to
ν̃ and β follows:

∂F
∂ν̃

= −
(
1 + β

)2 Ns∑
j=1

Nt−1∑
k=0

γjkχjk (32)

∂F
∂β

=
Ns∑
j=1

Nt∑
k=1

j hjkw
jk(vj+1,k − vj−1,k) (33)

−2ν̃
(
1 + β

) Ns∑
j=1

Nt−1∑
k=0

γjkχjk.

The gradient with respect to centreline velocities v1
c , ...,

vnt
c is obtained by differentiating equation (26). One easily

gets by inserting

δv0,k.qt+i = δvk
c +

(
δvk+1

c − δvk
c

) i

qt
, (34)

k = 0, ..., nt − 1 and i = 0, ..., qt − 1

in equation (32) that

∂F
∂vk

c

=
qt−1∑
i=0

(
ξk.qt+i +

i

qt

(
ξ(k−1).qt+i − ξk.qt+i

))

for k = 1, ..., nt − 1, and

∂F
∂vnt

c
=

qt∑
i=1

i

qt
ξ(nt−1).qt+i.
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