Stability of a growing end-rim in a liguid sheet of uniform thickness
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Whe study the stability of o viscows Gguid layer of uni-
form thickness subject only to viscous stresces and surface
tension. We showr that the growing oylindrical end rim does
it typecally hreakup intg droplets; thos other mechanisns
are needed to canse the instabilities which, for instance, bead
to the famons milk crown.

L INTRODTOTION

Deoplet formation eom the breakup of lguid jets is
of primary Importance for several Indusielal procosses.
For Instance, the Importance of the disintegration of 1ig-
ubd fuel before combustion & well known, but only re-
cently complete and n-depth studbes of the problem have
emerged.

In liquld-gas flows a thin laver of liguid 1s known 1o be
ejected Into the gas (1), Droplets are generated from the
breakup of these thin layers. This flest step, prlmaey at-
omizatkon, has been extensively ohserved experimentally
and numerkeal simulations reproduce the phenomena in
a qualitative manner. The second step I the break-up
ol the sheets and, consequently, droplet formation. Cur-
rently, there ls no agrepment on the mechanlsm of prl-
mary atombzatbon and breakup. Oue approach o the
problem s wo establish a slmple configuration o quan-
tify the Importanee of surlace orees. We study a thin
liguid sheet of uniform thickness & subject only to the
surfame tenslon . The Initlal confguration s show in
figure 1.

Since Rayleigh's work [2] it 18 known that such sys-
tenss develop a rim along their edge, which s then capidly
pulled back. Surface tension pulls hack the rim at a eon-
stant veloclty «', concentrating the galned mass of fuid
Intoa roughly evlindrleal elon of radivs B which increases
In vplwre unid] it = seen to break Into drops. Morent.um
halance s 20 = 2xpR' By’ wheee o 18 the surface tension
and g the density. and mass halanee
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The idea that it 1s Plateau’s and Rayvlelgh's jet Instability
that causes the rim to break up nto drops was put foz-
ward by G. L. Taylor [3]. Based on the lnear analysis of

thiss

perturbations we predict In what follows a halt Ino the am-
plitude growih in a growlng rim conflguration, and moee-
over 8 sell-slmilar dynamics for a dimensionless growth
rate. We will then show that the Plateau-Raylelgh ln-
stability, In thls configuration, cannot break the rim and
that we need other external mechanlams (such as ghear
ar large lnstantaneous acoeleration) to move the sysiem
into zones where non-linear dynamics 5 privileged and
hence effective. We compare our theoeetical prodictions
to numerical simulations (Including viscous effects) of the
same phenomena.

1L DIMENSIONAL AMNALYEIS OF THE
BREAR-UF OF A LIQUID JET

We gcale length with e, mass with pe? and tlme with
(pe~'e®)V? and henceforth denote the dimensionloss
variables without peimes. In these varlables o = /2. We
conslder & small perturbation of wavenumber & of the
hase solution [the receding vlm configuration of figure
1). The single dimensionless parameter 8 this savenum-
ber k. From the mass balanee argument (1] with Initlal

radiug Ap =1
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This defines & time dependent selutlon on top of which
wie study perturbathons of transverse wavenumber k.
The development of & perturbatlon on top of & tlme
dependent base solutbon s governed by a linear problem
with a time dependent operator. Let s(k, &) be at any
Instant the largest real part of the spectrum. As the rim
grows, eventually | the amplitude grows as long as & has
a positive real part, with

A meoalk, 1A
This will last untll at some time £.(k) we get s(k, L] = 0.

Thus the anplitude of the perturation grows by a factor
A=Al )/A0) with

£ ik}
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Our key argument 5 that the above Integral diverges
woakly for small values of k. To close the problemn we



need the behavior of gk, ) for small k and large § when
the rim radius s large compared to the sheet thicknoess
(H % 1) In this Hmit the shoeet ecan be noglected in
the stability study, and the charseteristie time or rim
growth 5 small [BfR <& 1) s0 Raylelgh's analysis of the
break-up of a lguid jet may apply.

IIL CLASSICAL ANALYSIS

The ¢lassical theory of deoplet formation by the break-
up of a thin jet of water shows that caplllacity leads to
Instability. Rayleigh [2] analyeed in detall the nstahil-
Iy problem for an Incompressible Inviseld lguid cylinder
wlith surface tension. Following [2], to find the dispersion
relation for an infinkie eylinder of radius o, we linearkeo
the contlouity and Euler equations for an lnviseld fluid
arpund the base stato u = ().

Rw.uJJ then that the method of normal modes with
(u,p 8} = {uir),plr), @pettEs+ofl glaie the follow-
ing perturbed pressure equatlon :

I SO
e n* e p =10

This Is the medifled Bessel equation of order 1 with so-
Iutdons T, (ke), K, (kr). The additlonal conditbon that
pressure ls bounded at the center of the et allows us
to wrlte the solutlon a8 p = Al (Bl Adding alzo the
pertueked eguathon for the veloclty, we find two hommo-
geneous equations for two unknown constants which give
the classical egenvalue relatlon In terms of the peduced
wavenumbor o = ak:

s Llal {a)

= L::-::] (1 —a®—n?). (5

The stability of the systemn depends on properibes of the
mendified Bessel function in the Interval o € (0, 1}, The
Jet lastable to all nor-axisymmet rle modes (02 0], buat It
I8 unstable (o axisyvmmeiric modes (7= () whose wave-
lengih A = 2a/k Is greater than the clreumlerence 290 of
the jet. Numerically the largest growch rate 1 obialoed
for o~ (LGET0. Then Amae = 9006 §s the wavelength
ol greatest Instability. We have neglecied viscosity | the
full viseous linear theory s glven in (4]} but since [is ln-
troduction tends to stabillee the Qow it only ronforces
QUF AFEUIBenL.

I'V. TEMPORAL STABILITY ANALY SIS FPOR
THE RECEDING RIN

The pext step I8 to compute the amplification Cac-
tor. In equatkon [(5) (with n = ) we replace the con-
stant radivs @ by the time-dependent B, We use the
[ollowlng propertbes of the modifled Bessel lunctions .
Byix) = hiz) and I {z)/To(z) ~ %1- g0 that

- 1
.¢=ﬁ[l—&*Rﬁﬂ (6]
It & obvlous feom the last equation that the ofective
dynamics galos In complexity. From lnspection of equa-
tlon (G}, the maln qualitative feature & that the growth
rate s(k, ] of the Initlally fastest growing mode keee de-
creases with & Moreover the growth vanlshes for Bk = 1,
thus fe =~ 1/k.

From [§) we can deflne owo regimes: the st whero
the growth I8 Intense but short (for the &'s arownd Emaer
for ¢ ~ ) and the second one wheee the growth Is slow
but Is alway present (Ior k& — 00, At the Inftlally most
unstable wavenumber & = 212 we have

. Lfx
slt) = (£ (7
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where the last expansion & for amall ¢, and makes gense
anly forf < a4, so

A me Agelt— a“:!*]_

which gives an amplification of grder 1. However the am-
plification diverges at small & and large §, sinee there from
equation [6) &(k, ] ~ ERE-1? w B-1Y and replacing In
(4)

£
In A -uf T | e
0

Thus the amplification rate diveeges but only weakly. To
et a large amplification, one needs very lange transverse
wavelengihs, The numerical slmulations that follow give
a lower hound lor these wavelengihs.

FIG. 1. Typical initial setup fw a sheet of uniform thick-
miss, i spanwise sinnsoidal perturbation 15 added to initiate
the instability. The perturbation is refatively large to enhance
the instability.
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FIG. 2. {a) Comparative temporal evelution for the growth
rivtin for faster growth modes © in the rim-sheet configuration
and the classical infinite cylinder omee,

Vo NMUMERICAL SIMULATIONS

We perfimem divect nurserical simulations of the Navier-
Stokes equation lor an ncompeessible viscous fluld to
compute the amplitede evolution o our simplifed con-
figuration. The SURFER algorithm and the method of
resolution are described in [5-7]. A first order in time ex-
plicit Integratlon of the Naviee-Stokes equation was per-
Tormed wsing the MAC staggered lnlte-difference grid lor
the momentum halance equation. The Incompressibility
condition 8 accurately met by a projection method [8]
with the help of & multigrid algorithm [9). Surface ten-
slon 5 Implemented In a momenium conseeving way, via
the Introduction of & nonlsotrople sieess tensor coneen-
trated near the interface. This representation of a surface
tension s very Interesting for the simulation of hreakup,
slnee It avolds the slngularity which would oceur In the
contlouum lHmit when interfaces change topalogy and the
curvature beoomes locally Inflolte. The velocity feld ob-
talned &t each time stop s used {0 propagate the Intoerfacs
ualng the second-order volume of fuld method deseribed
In [10,6,7). A 130 = 66 = 34 cublc grid was used, the
direction 8 the streamwise one. Numerleal slmulation
al an unpertueked sheet for different viscositbes conflrms
the Baylelgh's petraction welocity, for Instance computed
constant welocity of sety & L4035 In aceord with the theo-
rical value 24, A spanwise (in the y directlon) sinusoldal
perturbation with fxed & (a composition of theee dimen-
slonless modes of values (K20, (.58 amd 0.88) I8 added
to telgper the Instability phenomens with a large Iniclal
amplitude. We show on the Figure 3 a typlcal linal state.

FIG. 3. Typical final state of the simulations [rotated fram
Fig. 1).

A large number of evolutions were simulated For Jdif-
ferent valwes of the physical parametess. The Instability
was always stopped by the radlus growth, Table T glves
the values for the three sets of physical variables gp fpe.
irf o, and the Oneshgorge number £ = pif[p:,n el

TABLE [. The three sets of physical wrinbles,

prfpe a2 3 10}
j.l:_]fi.lr; 11l 1 . 2
- 4 1w 0.4 10" 02wt
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FIG. 4 MNormalized radins growth for the three sets of
physical wariables.

The normallzed radlus growth foe theee sols of physical
variables |5 shown In Flgum 4.

VI CONCLUSION

In this communication we analyze a simple conflgura-
thon of a thin layer of fluld of uniform thickness in oerder
to understand one of mechanlsms of the droplet forma-
thon. We presented the stability theory for & thin sheet of
fluid subject anly to capillary forces. The maln conclu-
slon I8 that the temporal evolution of the perturbations
18 bounded, 5o the Onger foemation and thelr breakup =
not due to the caplllary effects alone. We are studying
the dynamles of the external gas which could lead to a
noawniform sheot thickness, In this situation, the mass
ol fluld entering the end-rim = not eonstant and, under
s clFcumat anees, radius growil will be stopped, and
the system destabilized by surface loroes.
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