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We propose the modeling of a buckled elastic slender beam based on elastica approach. The model
accounts for large rotations of the beam cross-section and rather large elastic displacements. Moreover,
the model incorporates the extensibility of the elastic beam. The nonlinear nature of the model is used to
amplify the transition from one stable position of the buckled beam to the other one. Such mechanical
structure is said bistable. The bistable beam is simply supported at each of its ends and is subject to a
transverse force applied at a point of the beam. The emphasis is placed especially on the bistable mech-
anism response caused by the applied force. The stability of the buckled beam is investigated in details
and the diagram of the applied force of actuation as function of the midpoint displacement is discussed
according to the applied force location. The snap-through phenomenon scenario is analyzed. The switch-
ing from one stable state to the other one occurs passing through an instability region in which the sec-
ond buckling mode is involved. For rather small end shortening of the beam, the post buckling behavior is
studied by reducing the solution of the complete elastica model to the first two buckling modes. The
reduced model allows us to discuss the switching path in terms of energy required and stability proper-
ties of the bistable mechanism. Numerical algorithms are developed in order to solve the strongly non-
linear problem.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

In a previous work the snap-through mechanism of an elastic
bistable beam was examined and compared to experimental vali-
dations (Cazottes et al., 2010). Especially, the study investigates
the force actuation of a bistable structure consisting of a stainless
steel buckled beam. Experimental evidences exhibit the transition
from one stable position of the buckled beam to the other one
passing through a region of instability. It is shown that the com-
bined buckling modes one and two can also be of value (lower
snapping force and larger stable domain) and should be considered
for mechanical design. The purpose of the present study is to inves-
tigate the switching mechanism of a bistable buckled beam on the
basis of elastica model. More precisely, we examine in details the
stability of the buckled beam undergoing a local force actuation
in the post-buckling regime. One of the main results that we want
to achieve is to understand the mechanism of snapping from one
stable position to the other one according to the actuation force
and the influence of the actuation location on the performances
of the system.

Bistable mechanisms make them very attractive candidates to
design systems that require two working states. The switching
from one state to the other one needs low energy. Bistable systems
are often used as switches (Saif, 2000; Brenner et al., 2003). They
are also used in microrobotic applications such as microgrippers
or binary robotic devices (Fang and Wickert, 1994; Schomburg
and Groll, 1998; Reni and Gerhard, 1997). A promising application
is quasitactile display with high density matrix of tiny pins with
excellent spatial resolutions (Jensen et al., 1999; Benali-Khoudja
et al., 2007; Hafez, 2007). Haptic applications can be considered
as well. One of the advantages of bistable systems is that they need
substantial energy during the switching process. Indeed, they take
advantage of the instability phenomena, a rather small of amount
of actuating work can produce displacements or rotations of the
slenderness structure of relatively high amplitudes. Once the actu-
ation is released, the system stays in its stable configuration indef-
initely. This property is exploited to the design of shape control
devices (Baker and Howell, 2002).

Other categories of mechanisms use their elastic deformation as
a function. Bistable systems belong to this kind of mechanisms.
Among a various nonlinear problems analyzed in the literature,
bistable systems consisting in buckled elastic beams have received
a great deal of attention due to their quite rich nonlinear behavior
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Fig. 1. Elastic beam simply supported: (a) the non loaded beam and (b) beam in its
buckled configuration with the actuating force.

2882 B. Camescasse et al. / International Journal of Solids and Structures 50 (2013) 2881–2893
and their attractive applications. A rather rough, nevertheless
really instructive, example of bistable system consists of rigid bar-
res, springs and masses. This class of bistable system is referred as
to pseudo rigid category (McInnes and Waters, 2008). In Pucheta
and Cardona (2010), the authors present an interesting study de-
voted to the design of bistable compliant mechanisms based on
various pseudo-rigid models with some instructive applications.
Numerous studies on bistable systems are available in the current
literature and modeling of systems depends strongly on the
hypotheses concerning kinematic description and the degrees of
sophistication of the approaches. Important foundation of the
large-displacement finite-strain approach of shear-deformable
beams has been laid down by Reissner (1972). Reissner has ex-
tended his beam approach for the plane case of shear-deformable
and extensible nonlinear beams to 3D-curved beams (Reissner,
1973). A restricted situation of the Reissner’s approach to unshea-
rable nonlinear beam originally straight has been extensively pre-
sented by Irschik and Gerstmayr (2009). On the basis of Irschik and
Gerstmayr (2009) and Humer and Irschik (2011) examined the
equilibrium configurations and stability of an extensible elastic
with an unknown length.

Numerous contributions to problem dealing with bistable
structures are based on elastic theory of flexible beams. In Patricio
et al. (1998), the authors analyzed the modes of stability of an elas-
tic homogeneous arch loaded at its center on the basis of elastica
theory. The stability of dynamics perturbations around static state
leads to stability diagram according to the end-shortening of the
beam and frequency. Nevertheless, the elastic model is supposed
to be inextensible. Experimental study of elastic arch loaded at
its center was performed by Pippard (1990). In Magnusson et al.
(2001), the authors examined the behavior of a pinned–pinned axi-
ally beam in the extensible framework. In the approach, the
authors study very clearly the buckling and post-buckling behavior
of the beam, and they extended their beam theory of Euler–Ber-
noulli for elastic beams to small displacements in order to account
for large-displacement and finite-strain.

Among various nonlinear studies analyzed in literature, buckled
elastic beams have received particular attention due to their com-
plex and rich dynamics responses to different kind of stimuli. In
this context, weakly nonlinear approach is often considered, in
Nayfeh and Enam (2008), the authors accounts for the geometric
nonlinearity arising from the mid plane stretching of the buckled
beam. They derived the governing equation of the transverse vibra-
tions exhibiting a cubic nonlinearity. Along with this approach, the
dynamic stability of the post-buckling solutions is investigated. A
simply supported shallow arch was examined by Pinto and Gonç-
alves (2002) for instability phenomena when the structure under-
goes dynamic and static loads, in particular, snap-through
buckling. The model used considers a weakly nonlinear geometric
behavior of an arch due to the beam extensibility. Among works
found in recent literature, most of them are mainly devoted to
the snap-through effect of a buckled elastic micro-beams and their
actuation. Interesting studies of the phenomenon at the micro-
scale are presented in Buchaillot et al. (2008), Krylov and Dick
(2010) and Krylov et al. (2001) with applications to MEMS, micro
robotics, micro-opto-electro-mechanical systems.

A weakly nonlinear behavior of the snap-through of com-
pressed bistable buckled beam was investigated by Vangbo
(1998) by considering the Lagrangian approach under constraint.
The energy associated with both bending and compression of the
beam is expanded using the buckling modes of a clamped–
clamped beam. The author characterized the bistablility response
due to a control loading. Qiu et al. (2004) extended the method
to a bistable system made of two centrally-clamped parallel
beams. Application to a tunable micromechanical bistable system
was examined on the basis of Vangbo’s work (Saif, 2000).
The proposed approach relies on the extensible elastica model
where the beam kinematics is described in terms of the cross-sec-
tional rotations. The equations of the model as well as the jump
conditions at the point of the force application are derived from
the virtual work principle. It is also shown that the model can be
deduced from a Lagrangian formulation. The conditions at the ends
of the beam are well formulated and the model parameters are
well identified. Especially, the axial compressive force and the
actuating transverse force are considered as unknown parameters
of the problem which are solved by using the end shortening con-
dition and the vertical coordinate location of the actuating force.
The set of equations are then solved by means of shooting numer-
ical method associated with a predictor–corrector algorithm to
capture the unknown model parameters (or the shooting un-
knowns). From the numerical investigation new results are ob-
tained and discussed, among them, the response diagram of the
actuating force as function of the driving point or the beam mid-
point. Moreover, a detailed discussion of the configurational stabil-
ity of the bistable system is presented in terms of buckling modes.
The analysis of the post-buckling regime of the bistable is investi-
gated by using a reduced order model limited to first two buckling
modes.
2. Description of the system

We consider an elastic beam of length L0 at the rest. The beam is
simply supported at each of its ends. The left end is fixed while the
right one can move along the beam axis. The cross-section of the
beam is supposed to be rectangular with a width b and thickness
h. The beam is subject to an end-shortening DL that reduces the
distance between the pin-joints. The distance becomes
L̂ ¼ L0 � DL. The end-shortening DL will play a crucial role in the
buckling process of the elastic beam. The elastic beam at the rest
and in the buckled configuration along with the parameters are de-
picted in Fig. 1. The elastic beam is initially straight when it is
stress free. The beam undergoes a deformation due to the end-
shortening and deflection can take place in the beam plane, i.e.
the ðxAyÞ plane.
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The buckled beam is loaded by a localized force F in the y-direc-
tion. The abscissa of the point C at which the force is applied is
maintained fixed while the beam is snapping-through. The ratio
d̂ ¼ xC�xA

xB�xA
¼ xC

L̂
is a key parameter of the problem.

The elastic beam is supposed to be materially homogeneous
with Young modulus E and mass density q. We denote by I the mo-
ment of inertia of the cross-section along z-axis.

3. Modeling

3.1. Kinematics and deformation descriptions

3.1.1. Geometric considerations
Before entering detailed considerations of the problem under

study, some basic prerequisites and assumptions must be intro-
duced and commented. Accordingly, we attach a fixed Cartesian
reference frame ~e1;~e2;~e3ð Þ to the structure in its initial configura-
tion referred as to R0. The x-axis coincides with the axis of the
beam which is supposed to be straight in the reference or under-
formed configuration. In addition, y represents the thickness coor-
dinate of the beam and the z-axis is perpendicular to plane
deformation, see Fig. 2. The deformation is assumed to take place
in ~e1;~e2ð Þ-plane. Any material point G00 of the beam in the reference
configuration R0, is given by its position

OG
�!0

0 ¼ OG
�!

0 þ y0~e2: ð1Þ

The transverse coordinate z0 has been omitted since it plays no role
in the beam deformation. We note by s the curvilinear abscissa
along the beam axis in the reference configuration. The position
of the material point G0 belonging to the beam axis is given by

OG
�!

0 ¼~q0ðsÞ ¼ s~e1; with s 2 0; L0½ �; ð2Þ

where ~q0 is the position vector in the reference configuration. The
plane deformation of the beam is ascertained if the loading and
the joints at the beam ends are symmetric with respect to the
~e1;~e2ð Þ-plane.

The material point G00 is transformed into G0 after beam defor-
mation in the current configuration R (or deformed state, see
Fig. 2). The position of the material point G0 is now given by the po-
sition vector

OG
�!0 ¼ OG

�!þ GG
�!0; with OG

�! ¼~q ¼ x~e1 þ y~e2: ð3Þ
× ×

×
×
×

Fig. 2. Reference configuration (underformed state)R0 and current configurationR
(deformed state) with the parameters of the beam configuration.
The actual position of the material point G0 is then function of the
coordinates in the reference configuration (Lagrangian description),
especially, it depends on s and y0.

Now, we formulate the Euler–Bernoulli assumptions, that is, the
cross-sections originally perpendicular to the beam axis in the ref-
erence configuration remain perpendicular to the axis in the de-
formed state, plane and undistorted, as well. The material point
G0 belonging to the beam axis in the reference configuration is
transformed into the material point G of the beam axis in the de-
formed state. We denote by~s the unit vector tangential to the cur-
rent axis of the deformed beam at the point G �sð Þ. The vector ~s is
usually defined by

~s ¼ dOG
�!
d�s

: ð4Þ

Nevertheless the position vector~q of the material point G is a func-
tion of the reference coordinate, especially function of the curvilin-
ear abscissa s. We denote by K ¼ d�s

ds the ratio of the length of
differential line element of the beam axis in the deformed state to
that of the undeformed configuration. Eq. (4) becomes

dOG
�!
ds
¼ K~s: ð5Þ

Denoting by~n the unit vector perpendicular to the tangent vector~s,
the set of orthogonal vectors f~s;~ng forms the local frame attached
to the deformed beam axis at the curvilinear abscissa �s (see
Fig. 2). These vectors can be written with respect to the fixed refer-
ential f~e1;~e2g

~sðsÞ ¼ cos hðsÞ~e1 þ sin hðsÞ~e2

~nðsÞ ¼ � sin hðsÞ~e1 þ cos hðsÞ~e2

�
ð6Þ

where the angle of rotation h is given by

h ¼ ð~e1;~sÞ: ð7Þ

Moreover, in the current configuration, the cross-sections are ro-
tated by the angle h about the z-axis with respect to the reference
configuration.

Now, the position vector of any material point G0 of the cross-
section in the deformed state takes on the form (see Eq. (3))

OG
�!0 ¼~qþ y0~n: ð8Þ

The coordinate of the position vector of the point G; ~q ¼ x; yð Þ in the
current configuration are function of the curvilinear abscissa s mea-
sured along the beam axis. Therefore, the current configuration of
the beam is a smooth curve defined by

CðsÞ ¼ f~qðsÞ ¼ xðsÞ~e1 þ yðsÞ~e2; s 2 0; L0½ �g; ð9Þ

One of the kinematic key parameters of the deformed beam is its
curvature j. The curvature of a line element d�s of the beam axis
is usually defined by Reissner (1972) and Simo (1985),

j ¼ d~s
d�s

����
����

����
���� ¼ 1

K
d~s
ds

����
����

����
����: ð10Þ

On using Eq. (6) we compute

d~s
ds
¼ h;s~n: ð11Þ

Accordingly, we obtain the following equation for the beam
curvature

j ¼ 1
K

dh
ds
: ð12Þ

The factor K is sometimes missing in elastic theory for extensible
elastic beam. On using the curvilinear abscissa �s measured along
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the deformed beam axis, the curvature takes on the following
form

j ¼ h;�s: ð13Þ
Remark. For inextensible elastic theory, obviously K ¼ 1 and we
cannot distinguish the curvilinear abscissa s and �s measured along
the undeformed and deformed configurations, respectively.
3.1.2. Gradient of deformation
According to the above hypotheses on the beam deformation,

the gradient of deformation can be written as Eringen (1967)

F ¼ Grad OG
�!0 ¼ @OG

�!0
@s
�~e1 þ

@OG0
��!
@y0

�~e2; ð14Þ

where Grad is the gradient of the transformation computed with re-
spect to the reference configuration. Now, by using Eqs. (3), (6), (8),
(11) and (12), we arrive at

F ¼ K 1� y0jð Þ~s�~e1 þ~n�~e2: ð15Þ

Next, we compute the component of the gradient of deformation in
the basis of the reference configuration by using Eq. (6), which can
be presented in the matrix form

F ¼
K 1� y0jð Þ cos h � sin h

K 1� y0jð Þ sin h cos h

� �
ð16Þ

From Eqs. (3), (5) and (6), we compute the gradient of deformation
of the beam axis relative to the beam curvilinear coordinate

x;sðsÞ ¼ KðsÞ cos hðsÞ
y;sðsÞ ¼ KðsÞ sin hðsÞ

(
ð17Þ

The gradient of deformation possesses a unique polar decomposi-
tion of the form (Eringen, 1967) F ¼ RU, where R is an orthogonal
tensor of rotation such that RRT ¼ RT R ¼ 1, and U is the symmetric
tensor of the right stretch. On using the matrix form of the gradient
of deformation given by Eq. (16), we are able to identify the polar
decomposition with

R ¼
cos h � sin h

sin h cos h

� �
: ð18Þ

We note that RðhÞT ¼ Rð�hÞ. In addition, the stretch tensor takes on
the form

U ¼
K 1� y0jð Þ 0

0 1

� �
: ð19Þ

Now it is clear that the tensor U is definite positive and it possesses
two distinct eigenvalues

U1 ¼ K 1� y0jð Þ; U2 ¼ 1: ð20Þ

The associated eigenvector are obviously ~e1 and ~e2, which are the
principal directions of stretch. From the physical point of view, U1

is the principal stretch of a material line element ds parallel to
the beam axis in the reference configuration and K is merely the
axis stretch. Therefore, the beam deformation is the combination
of a stretch of the beam axis follows by a rotation of angle h de-
scribed by the tensor of rotation R (h).

Moreover, the tensor of rotation can be written as

R ¼~s�~e1 þ~n�~e2: ð21Þ

Now using the polar decomposition with the forms of the stretch
tensor and the tensor of rotation, the gradient of deformation can
be written as

F ¼ U1 ~s�~e1ð Þ þ U2 ~n�~e2ð Þ: ð22Þ
This shows that the principal stretches give the ratio of length of
material line elements in the deformed configuration relative to
that of the reference configuration.

3.1.3. Distributor of transformation
The two strain measures of the beam model are given by the

extensional strain e ¼ K� 1 and the beam curvature j ¼ h;�s. Using
these definitions for the beam deformation, we introduce the dis-
tributor of the beam transformation that the components are the ac-
tual position of the current point G; OG

�!
¼ xðsÞ~e1 þ yðsÞ~e2 ¼~qðsÞ

and the rotation ~pðsÞ ¼ hðsÞ~e3 of each cross-section at the current
point of the curvilinear abscissa s. Therefore, it is necessary to de-
fine the following distributor of transformation gradient

dU
ds

� �
GðsÞ
¼ d

ds

~pðsÞ
~qðsÞ

� �
GðsÞ
: ð23Þ

The different deformation measures which have been introduced
in this section will be very convenient to deduce the beam
equations.

3.2. Elastica beam variational formulation

With the aim at deducing the beam equations, we adopt the
principle of virtual works. The principle for the present model of
beam and configuration is stated as follows

dW i þ dWe þ dWk ¼ 0: ð24Þ

The different contributions to the principle are denoted by W i for
the work of the internal forces, We for the work of the applied ac-
tions andWk for the work of the eventually constraints on the kine-
matic variables. The expression of the virtual works in Eq. (24) are
given in details in the next subsections.

3.2.1. Internal virtual work
The virtual work of internal forces reads as

dW i ¼ �
Z L0

0
T ðsÞf gGðsÞ �

d
ds

dUðsÞf gGðsÞds: ð25Þ

In Eq. (25), T ðsÞf gGðsÞ is the distributor of the internal forces defined
by

T ðsÞf gGðsÞ ¼
~RðsÞ
~MðsÞ

( )
GðsÞ

ð26Þ

where ~RðsÞ is the force resultant and ~MðsÞ is the moment computed
at the point GðsÞ of the beam. In Eq. (25), dUðsÞf gGðsÞ is the virtual
beam transformation as defined in the kinematic considerations.

On using Eq. (23),

ddU
ds

� �
GðsÞ
¼

d~p0ðsÞ

d~q0ðsÞ þ dOG
�!
ds � d~pðsÞ

8<
:

9=
;

GðsÞ

ð27Þ

where it has been set ð�Þ0 ¼ d�
ds the spacial derivative. Now, the vir-

tual work of internal actions can be put in the following form

dW i ¼ �
Z L0

0

~RðsÞ � d~q0ðsÞ þ ~MðsÞ � d~p0ðsÞ � ~q0ðsÞ �~RðsÞ
� 	

d~pðsÞ
n o

ds

ð28Þ
3.2.2. Virtual work of the applied actions
The only force acting on the elastica beam which produces non-

zero work is the actuation force ~F applied at the point C located at
the unknown curvilinear abscissa �sc in the deformed configuration.
For a virtual displacement of the point C; d~q �scð Þ, the corresponding
virtual work reads as
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dWe ¼~F � d~q �scð Þ ð29Þ

where in our particular situation, we have

~F ¼ �F~e2; d~q �scð Þ ¼ dyc~e2: ð30Þ
Remarks

(i) Obviously, we have the actions of the simple support at the
points A and B of the beam, nevertheless, these points are
fixed. The modeling can be easily extended to a general
boundary conditions at the ends of the beam, for instance
applied forces or moments or clamped conditions at the
beam ends or any other conditions.

(ii) The beam actuation can be extended to a lineic density of
force or applied moment located at a fixed point of the beam
which can be easily incorporated in the formulation.

3.2.3. Virtual works of constraints
Because of the simply supported conditions at each end of the

beam, geometric conditions must be fulfilled. More precisely, the
point A is fixed and the point B is subject to an end-shortening of
the fixed amount. The conditions are given by

xð0Þ ¼ 0; x L0ð Þ ¼ xB;

yð0Þ ¼ 0; y L0ð Þ ¼ 0;
ð31Þ

These conditions can be conveniently replaced by integral
conditionsZ L0

0
x0ðsÞds ¼ xB;

Z L0

0
y0ðsÞds ¼ 0: ð32Þ

The variation of the above condition leads toZ L0

0
d~q0ðsÞds ¼~0: ð33Þ

Now, the problem is to find the solution to the minimization of the
virtual work under the integral conditions Eq. (32). In order to use
the virtual work principle subject to the constraint Eq. (33) on the
arbitrary virtual displacement d~qðsÞ, we consider a Lagrange multi-
plier vector associated with the condition Eq. (33). Accordingly, we
introduce the virtual work due to the Lagrange multiplier

dWk ¼
Z L0

0

~k � d~q0ðsÞds: ð34Þ

The vector ~k ¼ kx; ky

 �

of which the components are the Lagrange
multipliers enforcing the integral constraint Eq. (33) associated
with the boundary conditions at the ends of the beam.

3.2.4. Virtual work formulation
Variational formulation established by Eq. (24) consists of look-

ing the state fields in space V ¼ xðsÞ; yðsÞ; hðsÞf g and those admissi-
ble Lagrange multipliers kx; ky


 �
satisfying the variational Eq. (24).

On using Eqs. (28), (29) and (34) the variational equation can be
written as

�
Z L0

0

~RðsÞ � d~q0ðsÞ þ ~MðsÞ � d~p0ðsÞ � ~q0ðsÞ �~RðsÞ
� 	

d~pðsÞ
n o

ds

þ
Z L0

0

~k � d~q0ðsÞdsþ~F � d~qðscÞ

¼ 0: ð35Þ

The actuating force ~F applied at the curvilinear abscissa sc of the
beam produces a discontinuity in the internal force resultant ~R at
this point. Consequently, we must split the variational Eq. (35) into
two segments of integration ½0; L0� ¼ ½0; sc½[�sc; L0�. The integrals in
Eq. (35) are also separated into two integrals over the segment at
the left of sc and the segment at the right of this point. Now, by inte-
grating by part, we arrive at the following variational equationZ sc

0

d ~R�

ds
� d~q� þ d ~M�

ds
þ ~q�0 � ~R�

 !
� d~p�

( )
ds

þ
Z L0

sc

d ~Rþ

ds
� d~qþ þ d ~Mþ

ds
þ ~qþ0 � ~Rþ

 !
� d~pþ

( )
ds

þ s~RðscÞtþ~F
� 	

� d~qðscÞ � s~MðscÞt � d~pðscÞ

¼ 0: ð36Þ

where we note the jump of any quantity by sAt ¼ Aþ � A�. The
above form the variational equation is now in a convenient form
to deduce the beam equations.

3.3. Elastica beam equations

Before writing down the equations of the beam, for sake of con-
sistency and in order to introduce key parameters as function of
the beam characteristics, we define the following dimensionless
parameters and variables

� lengths S;X;Y ; ~Q ;DL
� 	

¼ s; x; y;~q;DLð Þ=L0; ð37aÞ

� Forces and moments ~F;~R; ~M
� 	

¼ ~F=F0;~R=F0; ~M=M0

� 	
; ð37bÞ

� Energy Etot ¼ Etot=E0; ð37cÞ

with F0 ¼ EAk; M0 ¼ EI=L0 and E0 ¼ F0L0. In addition, we have
placed a key parameter in evidence

k ¼ I

AL2
0

ð38Þ

which characterize the ratio of the bending energy over the com-
pression energy. The parameter k / h=L0ð Þ2 with L0=h is the slender-
ness ratio of the beam which plays a crucial role in the bistable
mechanism. The total energy Etot is defined as the sum of the flex-
ural and compressive energies.

Therefore, the equation of the beam deduced from the varia-
tional formulation Eq. (36) is given by

d~M
dS
þ d~Q

dS
�~R ¼~0: ð39Þ

The above equation holds for both segments of the beam. In addi-
tion, we deduce the equations of the jump at the point of actuating
force for the resultant and the moment, that is

s~RðscÞtþ~F ¼~0;
s~MðscÞt ¼~0:

ð40Þ

The first equation of Eq. (40) denotes that the jump of the resultant
of the internal action is the actuating force while the second equa-
tion means that the bending moment is continuous across the point
C.

The geometrical compatibility Eq. (17) using the dimensionless
variables can be rewritten in the vectorial form

d~Q
dS
¼ 1þ eðSÞð Þ~s: ð41Þ
3.3.1. Constitutive equations of the beam
The analysis of the bistable beam must be completed by giving

the relationships between the strain measures and the resultants
in force and moment. The elastic behavior of the beam is supposed
to be linear. The constitutive equations are stated as
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~R �~s ¼ N ¼ EAeðsÞ;

~M ¼ EIh;s~e3:

On using the dimensionless quantities, we arrive at

eðSÞ ¼ kN; ð42aÞ

~M ¼ dh
dS
~e3: ð42bÞ

It is worthwhile noting that the parameter k holds for the compress-
ibility of the beam and N is the resultant along the beam axis and
perpendicular to the beam cross-section.

Remark. The equilibrium equation (39) can be deduced from the
following Lagrangian

L ¼
Z L0

0

1
2
~M � d

~p
dS
þ 1

2
Ne� 1þ eð ÞN

� �
dS; ð43Þ

where the first term in the integral equation (43) is reduced to
1
2
~M � d~p

dS ¼ 1
2

dh
dS


 �2
is the bending energy, 1

2 Ne with e ¼ kN is the com-
pression energy. The last term in Eq. (43) is deduced from the
boundary conditions at both ends of the beam of the displacements
XðSÞ and YðSÞ and it involves Lagrangian multipliers. More precisely,
from Eqs. (41) and (42) we write

1þ eð ÞN ¼ 1þ eð Þ~R �~s ¼ ~R � d
~Q

dS
:

Now, it clear, if we consider the boundary conditions on both
ends of the beam in their integral form given by Eq. (32), that
the vector ~R can be viewed as the Lagrangian multiplier. The lat-
ter can be identified to the vector ~k which has the meaning of a
force maintaining fixed the end-shortening on the right end of
beam and imposing the vertical displacements at both ends of
beam to be zero.

The beam equation (39) is deduced by rendering the Lagrangian
stationary, i.e., dL ¼ 0. The Lagrangian form is deduced directly
from the variational Eq. (36) after direct algebraic manipulations.
Due to the actuating force applied to the point C of the beam, the
Lagrangian equation (43) must be split into two integrals one over
the segment S 2 ½0; SC ½ and the other one over the segment
S 2�SC ;1�.

3.3.2. Beam equilibrium
The global equilibrium of the beam subject to buckling load

and actuating force allows to compute the unknown resultants
applied at each end of the beam. The resultants are found out
as follow

NA ¼ P; ð44aÞ

VA ¼ ð1� d̂ÞF; ð44bÞ

VB ¼ d̂F; ð44cÞ

where NA is the horizontal force at the point A and VA and VB are the
vertical components of the resultants at the beam ends A and B,
respectively. The parameter d̂ denotes the ratio d̂ ¼ XC

XB
, the relative

position of the point C.
Now, the internal resultant~R can be reach by studying the equi-

librium of the region on the left side of actuating point and on the
right side. We have

~R� ¼
R�x ¼ �P

R�y ¼ d̂�F

(
with

d̂� ¼ d̂� 1; 8S 2 0; SC½ ½;
d̂þ ¼ d̂; 8S 2 SC ;1� �;

(
ð45Þ

where the subscript (�) refers to the left region while (+) refers to
the right one.
3.3.3. Final form of the set of equations of the buckled beam
On using the different equations obtained in the previous sub-

sections and combining Eqs. (39), (42) and (45), the static equa-
tions for the present buckling beam take on the form

d2h
dS2 þ d̂� F cos hþ P sin h� kd̂� PF cosð2hÞ

� 1
2 k½P2 � d̂�

� 	2
F2� sinð2hÞ ¼ 0;

d~Q
dS ¼ 1þ kN�


 �
~s;

8>>>><
>>>>:

ð46Þ

the above equations are valid for both segments 0; SC½ ½ and SC ;1� �.
The resultant along the beam axis is given by

N� ¼ �P cos hþ d̂� F sin h: ð47Þ
3.3.4. Comments
The equations governing the equilibrium of the proposed buck-

led beam thus obtained deserve some comments and remarks.

1. At a first sight, the extensibility property of the beam produces
more or less complicated structure including nonlinear term in
the forces F and P. If the beam is inextensible, that is k ¼ 0, the
bending equation is simplified into a kind of sine–Gordon equa-
tion (Drazin, 1983). The latter possesses localized solution in
the form of lump structure corresponding to the beam
deflexion.

2. The parameter d̂ denoting the ratio of the abscissa of actuating
force to the distance between supports allows us to find an opti-
mal position of the actuating force; which is not necessary
located at the beam center.

3. As soon as the bending equation is solved with respect to h, on
using geometric compatibility equations (Eqs. (41)) we reach
the position XðSÞ and YðSÞ of the buckled beam.

4. Numerical solutions and results

4.1. Numerical method

We start with Eqs. (46) and (47). The problem is then to search
for the solutions hðSÞ; XðSÞ and YðSÞ which must satisfy the bound-
ary conditions on the left end of the beam

Xð0Þ ¼ 0;
Yð0Þ ¼ 0;
h0ð0Þ ¼ 0;
hð0Þ ¼ hA

8>>><
>>>: ð48Þ

and on the right end of the beam

Xð1Þ ¼ XB;

Yð1Þ ¼ 0;
h0ð1Þ ¼ 0;
hð1Þ ¼ hB:

8>>><
>>>: ð49Þ

In these boundary conditions, hA is unknown, XB is given (it is the
end-shortening of the support B), hB is unknown, but computed
once the solution obtained. Accordingly a numerical shooting algo-
rithm must be used. The input parameters of the method are given
by Eq. (48) and we start with an initial guess for hA. The objective
parameters are given by Eq. (49). Nevertheless, we do not know
the buckling force P since only the displacement of the right end
of the beam is given. Moreover, at each position YC ¼ YðSCÞ the ver-
tical coordinate of the applied force corresponds to one deformed
beam, while a same actuating force can produce, a priori, different
beam deformations. Therefore, the buckling resultant P , the actuat-
ing force F and the curvilinear abscissa SC of the application point
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are not known. In order to find the so-called shooting parameters
hA; P; F and SC we use along with the shooting method a predic-
tor–corrector algorithm starting with initial guess hA; P, F and SC

by varying continuously the guessed values until the conditions at
the right end of the beam (Eq. (49)) are fulfilled with a sufficient
accuracy. Each solution is recursively found by using a previous
one as initial guess for the following step. In the procedure, we
use four shooting parameters in order to reach an objective vector
with three components. As consequence, an orthogonality condition
is required between the predictor vector and corrector one to close
the system. Moreover, the orthogonality condition is such that the
method convergence is rapidly ensured. The numerical problem
concerns the solutions to a set of nonlinear differential equations
of two point boundary values problem given by Eqs. (48) and (49)
with integral constraint Eq. (32). The method is based on numerical
continuation methods (Allgower and Georg, 2003) which is quite
well efficient for the present numerical problem we want to solve.

4.2. Numerical results

4.2.1. Bifurcation diagrams
One of the first results which can be extracted from the numer-

ical computations is the bifurcation diagram. More precisely, the
evolution of the buckling load P as function of the end shortening
DL of the elastic beam. In this situation the actuating force F is set
to zero. The bifurcation curve shown in Fig. 3 exhibits very clearly
two domains. As far as the compressive force is less than the crit-
ical one, the beam is still straight. The relationship for DL versus P

follows a linear Hook law. Once the applied load is increased by a
small amount beyond the critical load, the beam is deformed into a
buckled configuration which is just very close to the original
straight beam, but with a small transverse deviation. This is the
post-buckling regime. The latter increases with the applied load
as shown in Fig. 3. The inset in Fig. 3 shows, in the vicinity of the
bifurcation point, the detailed variation of DL depending on the
parameter k.

4.2.2. Influence of the beam extensibility
It is worthwhile examining in details the diagram of bifurcation

in the post-buckling regime in the vicinity of the critical load. At
this end, we assume small end-shortening and consequently
Fig. 3. Bifurcation diagram: the end-shortening DL v.s. the buckling force P (for
k ¼ 1=5000; k ¼ 1=20000 and k ¼ 0). The inset shows the details around the critical
force and comparison to inextensible beam.
rotations of small amplitudes. We look for solution to the static
problem (see Eq. (46) with no applied transverse force) as a re-
duced form on the first buckling mode

hðSÞ ¼ h0 cos pSð Þ; ð50Þ

In order to compute the amplitude h0 satisfying the post-buckling
regime problem, we expand the Lagrangian of the system Eq. (43)
for small rotations up to the fourth order. We arrive at

~L ¼
Z 1

0
½1
2
ðh;SÞ2 þ P 1� 1

2
kP

� 
� 1

2
P 1� kPð Þh2

þ 1
24

P 1� 4kPð Þh4�dS: ð51Þ

On considering the first mode solution Eq. (50) into the new form of
the Lagrangian equation (43), after integrating over the segment
½0;1�, the latter takes on the form

~L ¼ P 1� 1
2

kP

� 
� 1

4
P� kP2 � p2
 �

h2
0 þ

1
64

P 1� 4kPð Þh4
0: ð52Þ

which is merely a polynomial function of the fourth order in h0.
Now, the problem is to find h0 which minimizes the Lagrangian
equation (52). The necessary condition reads as @~L

@h0
¼ 0, yielding

h0½P 1� kPð Þ � p2 � 1
8

P 1� 4kPð Þh2
0� ¼ 0: ð53Þ

It can be checked that the trivial solution h0 ¼ 0 (straight beam) cor-
responds to a maximum of the Lagrangian (unstable solution),
while the solution h0 – 0 realizes the minimum. We find

h2
0 ¼

8
P

P 1� kPð Þ � p2

1� 4kP

� �
: ð54Þ

For inextensible beam (k ¼ 0) and P P p2 (post-buckling regime),

we recover the classical formula h0 ¼ �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
P

P� p2ð Þ
q

. From Eq.

(54), the rotation amplitude h0 becomes non zero for a critical load
slightly greater than p2 because of the beam compressibility. We
can say that for small k, the critical loading can be approximated
by Pc ’ p2 1þ kp2


 �
. We can observe on the diagram of bifurcation

the tiny shift of the critical load relative to the inextensibility the-
ory. This is why the extensibility hypothesis of the beam becomes
significant as soon as we deal with small end-shortening and
Fig. 4. Bifurcation diagram: the rotation amplitude h0 as function of the buckling
force. Comparison to the inextensible elastica and comparison to the moderate
rotation approximation nearby the critical buckling force.
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rotations or displacements of small amplitudes. On the bifurcation
diagram, Fig. 4, the curve of h0 as function of loading force P (see
Eq. (54)), has been superposed to the solution coming from the
numerics. The difference is not practically observable.
Fig. 6. The buckling force as function of the position YC in the case of central force
actuation. The lower branch is that of associated with the admissible solution (for
k ¼ 1=2500 and DL ¼ 0:03).
4.2.3. Elastic beam response under actuating force
Now, we introduce the action of an applied transverse force F.

In this section we want to determine the actuating force as func-
tion of the vertical displacement of the mid-point of the beam
for given end-shortening DL and compressibility parameter k.

The first numerical results deal with the central actuating and
the force is maintained vertically at the abscissa XC such that
d̂ ¼ 0:5. The vertical displacement of the actuating force
YC ¼ YðSCÞ at the point C is controlled step by step. The correspond-
ing actuating force is computed with the help of the numerical
algorithm. The force–displacement diagram is shown in Fig. 5. A
classical N-shaped curve is obtained. Such results can be compared
to those presented by different authors (Vangbo, 1998; Qiu et al.,
2004) using different approaches, essentially based on buckling
mode expansion. More precisely, there are several branches on
the graph. The first branch starts at the either both stable positions
(point a1 or a2 on Fig. 5). The crossing point of the branch involving
the first buckling mode and that for the second mode occurs for the
bifurcation actuating force F ¼ Fb at the point b1. On decreasing the
actuating force the branch (b1b2) passes through the point c1 cor-
responding to YC ¼ 0 with F ¼ 0. The curve is symmetric with re-
spect to the origin. It is worthwhile noting that the slope of the
F� YC diagram is negative, this means that the bistable system
possesses a negative stiffness on this branch. Because of the sym-
metry of the structure, two symmetric solution exist for the second
buckling mode, but these solutions share the same branch (b1b2).
The branch selection is ensured by an energetic criterium. The part
of the graph drawn in dashed line represents the non-admissible
path, that is, the path with greater energy. In addition the branch
is unstable, because the snap-through of the beam involves a zero
mode (straight beam). Quite similar results have been obtained by
Pi et al. (2007) for circular shallow arches subjected to uniform
loading and simply supported.

Fig. 6 shows the non dimensional compressive force P as func-
tion of the vertical coordinate YC of the point C. We can observe
that as far as P P 4p2, the snap-through from one stable state to
the other one occurs involving a buckling mode 2. The upper
branch corresponds to a greater energy. The corresponding points
introduced for the force–displacement diagram have been reported
Fig. 5. Response of the bistable beam for central actuating force v.s. the vertical
position YC (for k ¼ 1=2500 and DL ¼ 0:03).
in the P� YC curve. We have the bifurcation points b1 and b2 for
which the lower branch (b1c1b2) corresponds to the second buck-
ling mode.

Instructive details are given by the graph of the total energy Etot

of the bistable system as function of the vertical coordinate YC

shown in Fig. 7 for the central actuation and for an end-shortening
of 3%. The two minima of the energy are located at the stable posi-
tions either the downwards buckling beam (point a1) or the up-
wards one (point a2) for null actuating force. At the bifurcation
points b1 and b2 the energy graph splits into two branches the low-
er one for the admissible solution and upper one for the non-
admissible solution.

A second series of numerical results is obtained for shifted actu-
ating force (force not applied to the beam center). In this situation
we want to examine the influence of the position of the actuating
force in the bistable system response. Especially, the question is, is
there an optimal position? In the work of Cazottes et al. (2010) the
advantage of shifted actuating force is experimentally placed in
Fig. 7. The total energy as function of the position YC in the case of central force
actuation. Two branches are present. The admissible solution corresponds to the
lowest energy (for k ¼ 1=2500 and DL ¼ 0:03).



Fig. 9. Graph for the shifted actuating force (at 39%) as function of the its vertical
position YC (for k ¼ 1=2500 and DL ¼ 0:03). The graph possesses several branches of
solution to the static problem. Only the branches in solid line correspond to the
admissible solution while the one in dashed-line is for higher total energy.
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evidence. In particular, this mode of actuation needs a maximum of
the actuating force smaller than that of the central actuation for a
given end-shortening.

We perform numerical simulation by varying the ratio d̂ (or the
location of the actuating force) for an end-shortening of about 3%.
Fig. 8 presents the maximum of actuating force as function of the
ratio d̂. The graph exhibits clearly two symmetric minima. The first
minimum is located at 39% of the total length of the beam.

We consider the actuating force located at the optimal position
and we observe the displacement of the beam center (at S ¼ 0:5).
The result is then drawn in Fig. 9 with a graph possessing three
loops. The curve in solid line corresponds to admissible solution
(path a1b1c1d1b2a2ð Þ) and (path a2b2c2d2b1a1ð Þ) while the one in
dashed-line is for higher actuation energy. The crossing point of
the branch using the first buckling mode and that of the second
mode is referred as to b1. The two symmetric points c1 and c2 cor-
respond to F ¼ 0 and those noted d1 and d2 are for YC ¼ 0. Because
of the dissymmetric loading the path going from the upwards solu-
tion (point a2) to the downwards position (point a1) is different
from the path for the inverse switching.

The buckling force P which imposes the end-shortening fixed is
plotted in Fig. 10 as function of the displacement YC . The different
points defined on Fig. 9 have been reported on the P� YC diagram.
In particular, the points d1 and d2 for YC ¼ 0 have the same locus.
The total energy Etot of the bistable system versus YC is presented
in Fig. 11. Similarly as for the central actuation, the curve exhibits
two branches, the lower branch corresponds to the admissible path
for the actuating response of the bistable beam. It is worthwhile
observing that even if we have two branches for the admissible
solution. As matter of fact, the branch b1d1b2ð Þ and the branch
b1d2b2ð Þ share the same part of curve in the Etot � YC diagram. It

means physically that the switching from upwards buckling posi-
tion to the downwards one and the reverse switching need the
same energy.
Fig. 10. The buckling force as function of the position YC for a non-central actuation
4.2.4. Influence of the end-shortening on bistable beam response under
actuating force

The model of the bistable buckled beam possesses, in its dimen-
sionless representation, two important parameters: (i) the
end-shortening of the right end of the beam DL (parameter of con-
figuration) and (ii) the extensibility parameter k which depends
mainly on the slenderness ratio of the beam (geometric
Fig. 8. The influence of the actuating force position on the maximum of the applied
force (for k ¼ 1=2500 and DL ¼ 0:03).

(at 39%). The lowest branch corresponds to the admissible solution (for k ¼ 1=2500
and DL ¼ 0:03).
parameter). The other parameters are controlling quantities, espe-
cially, the buckling force P is subject to the limit condition at S ¼ 1,
such that Xð1Þ ¼ XB which is given (see Eq. (31) or Eq. (49)).

In this subsection we want to know how the end-shortening DL

modifies the response of the bistable beam, that is, the paths of the
actuating force as function of its vertical position on the beam. The
response to this question is illustrated in Fig. 12 for four typical
values of the end-shortening and for central actuation. We observe
that the number of branches for the curve F versus YC increases as
DL. This means that physically for a given YC the number of equi-
librium solutions to the static equations becomes more numerous.
This does not means that all the solutions are stables. Only, the one
corresponding to the lowest energy is the admissible solution.
4.2.5. Influence of the extensibility parameter on bistable beam
response under actuating force

For a given end-shortening (DL ¼ 0:03), the extensibility
parameter k (see Eq. (38) for definition) is varied. Fig. 13 repre-
sents three situations corresponding to three values of k



Fig. 11. The total energy as function of the position YC (non-central actuation at
39%) (for k ¼ 1=2500 and DL ¼ 0:03).
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(k ¼ 1
20000 ; k ¼ 1

5000 and k ¼ 1
2500). We observe that the number of

branches of the F—YC diagram for equilibrium solutions is more
numerous as k is getting smaller, which is physically reasonable
Fig. 12. Influence of the end-shortening of right end of the beam on the bistable bu
d̂ ¼ 0:5; k ¼ 1=2500): (a) DL ¼ 0:02, (b) DL ¼ 0:03, (c) DL ¼ 0:04 and (d) DL ¼ 0:05.
since the beam is more flexible leading to a great number of equi-
librium configurations for a given actuating force. For k rather
moderate the number of branches remains limited to a couple of
branches. In fact, the extensibility parameter k represents the ratio
of the compressive beam energy to the bending energy, physically,
that means that the bending energy is more important for k small
or for slender beams. As consequence, for different values of the
actuating force F correspond to different levels of energy. Only
the lowest level of energy leads to the stable equilibrium solution.
In order to compare the influence of the extensibility on the F—YC

diagram, the graphs on Fig. 13 are plotted in dimension unit for the
force. The actuating force at the bifurcation point b1 of the F—YC

diagram have been computed, we find Fb. The actuating force at
the bifurcation point b1 of the F—YC diagram have been computed,
we have Fb ¼ 4651:85 N; Fb ¼ 2834:82 N and Fb ¼ 784:77 N
respectively for k ¼ 1

2500
L
h ¼ 14:43

 �

, k ¼ 1
5000

L
h ¼ 20:41

 �

and
k ¼ 1

20000
L
h ¼ 41

 �

. In the case of an inextensible beam (k ¼ 0) the
corresponding forces take on the following values Fb ¼ 6446:95 N
(�38:6%), Fb ¼ 3223:47 N (�13:5%) and Fb ¼ 805:87 N (�2:7%).
An extra comparison can be done with a very small k ¼ 3� 10�7

L
h ¼ 500 very slender beam

 �

, Fb ¼ 4:837 N to be compared to
Fb ¼ 4:835 N (0:04%) obtained with k ¼ 0. The percentages repre-
sent the difference between inextensible model with respect to
extensible one.
ckled beam response, actuating force v.s. the position YC (for central actuation



Fig. 13. Influence of the extensibility parameter k on the bistable buckled beam response, actuating force (in Newton) v.s. the position YC (for central actuation and
DL ¼ 0:03): (a) k ¼ 1

20000 , (b) k ¼ 1
5000 and (c) k ¼ 1

2500.
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4.3. Analysis of the role of buckling modes in the bistable snap-through

4.3.1. Reduced model
In this part we want to show how the bistable system uses the

buckling modes for the switching process from one stable state to
the other one. In Section 4.2.1, it has been examined the bifurcation
diagram in the post-buckling regime for moderate rotation.
Accordingly, it is reasonable to investigate the post-buckling
behavior of the system using reduced order model. We consider
a finite-dimensional approximation of the solution to the beam
equations by expanding the rotation hðSÞ as a series of buckling
modes truncated at the Kth order

hðSÞ ¼
XK

j¼1

Aj cos jpSð Þ; ð55Þ

where the Aj’s are the amplitude associated to the jth mode. The
approximation Eq. (55) can be viewed as a truncated Fourier series.
The Fourier coefficient being Aj and they can be computed by using
the orthogonality properties of the buckling modes, thus we have

Aj ¼ 2
Z 1

0
hðSÞ cos jpSð ÞdS: ð56Þ

Now, for each value YC of the vertical position of the actuating force F

we compute the admissible solution hðSÞ with YC as parameter. On
considering Eq. (56), the coefficient Aj depend only on YC , all other
ones are completely determined for a given end-shortening. The first
three coefficients Aj (j ¼ 1;2;3) are plotted in Fig. 14 versus YC . It is
clear that, in practice and during the switching process the first two
buckling modes are predominant. The third mode even if it is not
null, it remains rather small in comparison to the other two.

Here and henceforth, the analysis is done in hypothesis of
moderate rotation. Then we assume a two degrees of freedom
model by setting

hðSÞ ¼ A1 cos pSð Þ þ A2 cos 2pSð Þ; ð57Þ

Now, the discussion continues with the Lagrangian functional of the
bistable system computed with expansion given by Eq. (57). This
functional is now a function of the mode amplitudes A1 and A2.
We set LðrÞ A1;A2ð Þ the Lagrangian functional associated with the
model reduced to the first two buckling modes using Eq. (43).

4.3.2. Equilibrium and stability
The equilibrium configurations are defined as the solutions of

@LðrÞ A1;A2ð Þ
@Aj

¼ 0; for j ¼ 1;2: ð58Þ

The stability of the equilibria is examined by the Dirichlet theorem
for potential system (Thompson and Hunt, 1973; Huseyin, 1986;
Quoc Son, 1995), that is, the 2� 2 Hessian matrix of LðrÞ is



, ,

Fig. 14. The amplitudes of the first three buckling modes as function of the
actuating force vertical displacement (black: A1, red: A2, blue: A3) for
k ¼ 1

2500 ; DL ¼ 0:03 and central actuation. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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Hij A1;A2ð Þ ¼ @
2LðrÞ A1;A2ð Þ
@Ai@Aj

; for i; j ¼ 1;2: ð59Þ

If the matrix H is positive definite, i.e., if all the eigenvalues of H are
positive, the system is stable, because the Lagrangian functional is
convex. If one or more eigenvalues are negative the system is unsta-
ble, because the Lagrangian functional is concave with respect to
one or two directions determined by the associated eigenspaces.

The Lagrangian functional of the system is a function of the
amplitudes A1 and A2 and P as well, the buckling force. The latter
depends on the equilibrium configuration for a given end-shorten-
ing. This dependency is given by Eq. (31) or Eq. (32) which can be
written as

Xð1Þ ¼ XB ¼
Z 1

0
X0ðSÞdS ¼

Z 1

0
½1� kP cos hðSÞð Þ� cos hðSÞð ÞdS: ð60Þ

where hðSÞ is given by Eq. (57). Eq. (60) allows us to compute the
buckling force P as function of the amplitudes A1 and A2 for a given
end-shortening. Now, the Lagrangian functional can be plotted in
the A1;A2ð Þ-plane. Fig. 15 shows the 3D graph of the Lagrangian
functional as function of A1 and A2. The graph exhibits an unstable
equilibrium configuration for A1 ¼ A2 ¼ 0. But, for A2 ¼ 0 there ex-
ists two stable configurations for A1 ¼ A10 – 0, where A10 is the
amplitude of the first buckling mode with null actuating force. It
corresponds to the first buckling mode (upwards for A10 > 0 and
downwards otherwise) when the actuating force is not applied.
The surface possesses two saddle points for A1 ¼ 0 and A2 – 0
which means that the Lagrangian functional is convex in the A2-
direction while it is concave in A1-direction as shown in Fig. 15.

According to the study of the bistable response for actuating
force as function of the vertical position YC , we are able to param-
eterize the switching path going from one stable position to the
other one and vice versa in the contourplot graph in the A1;A2ð Þ-
plane. Fig. 16 shows such contourplot where the closed curve
Fig. 15. The 3D plot of the beam Lagrangian functional in the A1 � A2ð Þ-plane. The
graph displays (i) two stable equilibrium positions, (ii) one unstable equilibrium
position at (0,0) and (iii) two saddle points.
marks the limit of the unstable region. The latter is determined
by examining the sign of the eigenvalues of the Hessian matrix
Eq. (59). For each position YC while the bistable moves quasi-stat-
ically, there exists an equilibrium corresponding to a unique actu-
ating force as examined in Section 4.2.3. Two kinds of numerical
results are reported. The first result deals with a central force actu-
ation. The path P1ð Þ is the result, it is obtained by controlling the
switching from the stable position A10;0ð Þ to the other one
�A10;0ð Þ for each value of the vertical position YC . The equilibrium

positions are computed leading to the solution A1 YCð Þ;A2 YCð Þð Þ. The
path P1ð Þ starts using mainly a first buckling mode in the stable re-
gion and it quickly enters the instability domain. The second buck-
ling mode increases at the cost of the first mode passing through
the saddle point of the domain.

A second result is presented – path P2ð Þ – for non central force
at 40% from the left end (d̂ ¼ 0:4). In this situation, the beam begins
to switch using a non zero amount of the second buckling mode.
The equilibrium path P2ð Þ enters the instability region passing
through by the saddle points 0;�A20ð Þ as the path P1ð Þ. The bistable
beam follows the path P1ð Þ or P2ð Þ using the control of the actuat-
ing force quasi-statically until the intersection point with the
instability region is reached. Beyond this point the bistable system
becomes unstable and jumps to the other stable position by mak-
ing use of the second buckling mode which is the less energetic
mode as already presented for the actuation force response. It is
worthwhile noting that while the bistable beam switching what-
ever the actuating force position the energy barrier to be overtaken
is the same. Nevertheless, a non-central actuation allows to delay
the bistable system entering the instability domain. Similar insta-
bility phenomena can be met for shallow arches where the switch-
ing process depends on the arch height (Vangbo, 1998; Qiu et al.,
2004; Cen and Lin, 2005).

5. Comments and concluding remarks

The main objects of the proposed work are twofolds. The first
goal is to report a model for bistable buckled beam based on elas-
tica theory including extensibility. On using the complete model
Fig. 16. The contourplot of the bistable Lagrangian functional. The white closed
curve is the limit of the instability region. The red curve corresponds to the central
actuation and the blue curve is for shifted actuation at 39%. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)
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we next examine, in details, the switching process of the bistable
mechanism. The second goal deals with numerical results among
them the bistable response to localized actuating force according
to the application position on the beam and switching scenarios.
The present analysis based on an extensible elastic beam reveals
interesting buckling mode contributions to the snapping effect by
applying a punctual force and controlling the displacement of the
vertical position of the actuating force. The governing beam equa-
tions for large-displacement and finite-strain hypotheses have
been deduced from a correct variational formulation based on
the virtual work principle under the Euler–Bernoulli beam
kinematics.

The most pertinent results describing the behavior of the bista-
ble buckled beam are obtained by using a numerical algorithm
based on continuation scheme and Newton–Raphson method. This
apparently more or less simple bistable structure is rich enough to
provide particularly interesting results:

� The role played by extensibility parameter k in the post-buck-
ling regime has been put in evidence for the bifurcation diagram
analysis. It is interesting to note that for small end-shortenings
of the beam and in the post-buckling regime, the beam extensi-
bility becomes appreciable.
� Important results concern the response of the bistable system

to the action of a transversally localized force. For a given YC

– the vertical position of the actuating force - there exist several
branches of solution to the static problem. Nevertheless, only
one solution is really admissible. The branch selection has been
done using an energetic criterium, the solution corresponding
to the lowest energy is possible. Two kinds of results have been
obtained (i) for central actuation (d̂ ¼ 0:5) and (ii) for shifted
force actuation (d̂ ¼ 0:39). In each situation the response of
the bistable buckled beam is different according to the param-
eter k (extensibility parameter) and the end-shortening DL.
Especially, the number of branches of solution increases while
k is getting smaller and DL increases as well.
� The numerical simulations are performed for the end-shorten-

ing DL maintained fixed while the bistable switches, this means
that the buckling loading depends on the vertical position of the
actuating force. Accordingly, the relation between the buckling
force and the position YC has been computed for both situations
central and shifted actuations. The results are illustrated in
Figs. 6 and 10.
� In the framework of the reduced model (two degrees-of-free-

dom model), the transition from stable equilibrium position to
the other one follows equilibrium path passing through the
unstable region of the bistable energy. The switching scenarios
involve both first and second buckling modes. More precisely,
the buckled beam starts switching using the first buckling mode
and very quickly the second mode increases at the cost of the
first mode. At this stage the switching process is largely domi-
nated by the second buckling mode. The process is then
reversed when the bistable buckled beam goes out of the unsta-
ble domain to reach the other stable position.
� An optimal position of the actuating force has been placed in

evidence. For an actuation localized at about 39% from the left
or the right of the beam we have the minimum actuating force.
This result was already pointed out by Cazottes et al. (2010), but
on using another approach. These results can be of relevant
interest for engineering applications such as micro-switches
or MEMS.

A natural extension of the present work would be comparisons of
the present numerical results to experimental tests in order to
validate the proposed model based on the elastica beam theory.
Experimental identifications of the bistable buckled beam are in
progress and will be proposed in future works. Moreover, one of
the most interesting studies would be the dynamical response of
the bistable system under time dependent excitations, the latter
extension will be also explored in forthcoming researches.
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