
1

a
T
c
w
v
f

r
a
p

d
m

m
h
s
l
c
t
a
a
t
m
a
i

t
fi
v

J

Paul Cazottes
Institut Jean Le Rond d’Alembert,

UPMC Univ Paris 06,
CNRS-UMR 7190,

F-75005 Paris, France;
Laboratoire d’Interfaces Sensorielles,

CEA List,
F-92265 Fontenay-aux-Roses, France

e-mail: cazottes@lmm.jussieu.fr

Amâncio Fernandes
e-mail: amancio.fernandes@upmc.fr

Joël Pouget1

e-mail: pouget@lmm.jussieu.fr

Institut Jean Le Rond d’Alembert,
UPMC Univ Paris 06,

CNRS-UMR 7190,
F-75005 Paris, France

Moustapha Hafez
Laboratoire d’Interfaces Sensorielles,

CEA List,
F-92265 Fontenay-aux-Roses, France

e-mail: moustapha.hafez@cea.fr

Bistable Buckled Beam: Modeling
of Actuating Force and
Experimental Validations
Compliant bistable mechanisms are a class of mechanical systems that benefit from both
compliance, allowing easy manufacturing on a small scale, and bistability, which pro-
vides two passive and stable positions. These properties make them first-class candidates
not only for microswitches but also several other robotic appliances. This paper investi-
gates the actuation of a simple bistable mechanism, the bistable buckled beam. It is
pointed out that the position of the actuation has a significant impact on the behavior of
the system. A new model is proposed and discussed, with experimental validations to
compare central and offset loading, highlighting the strengths of each.
�DOI: 10.1115/1.3179003�
Introduction

Bistable mechanisms are systems, which use deflection to store
nd release energy in order to obtain two distinct stable positions.
hey can keep these two separate states without actuation. They
an also withstand small disturbances around their stable states,
hich allows for robust designs. All these properties make them
ery good candidates for systems that require two working states,
or example, on/off, open/closed, etc.

Bistable systems are commonly used as switches �1� in a wide
ange of sizes from the macro- to the microworld �2�. They are
lso greatly used in microrobotic applications such as microgrip-
ers or binary robotic devices �3�.

Another potential application is quasitactile display with a high
ensity matrix of tiny actuators. A spatial resolution of around 1
m is required to achieve efficient tactile rendering.
When miniaturizing these systems, classical assembly-based
echanisms are very difficult to build. Compliant mechanisms

ave proved to be a good solution for miniaturization of bistable
ystems �4�. The actuation technology should be accurately se-
ected. Electromagnetic motors, for example, are difficult to ma-
hine and manufacture, and they are oversized in comparison with
he whole mechanism. Bilayers, thermal actuators, or electrostatic
ctuators are examples of other common microactuators. Other
ctuators, called smart materials, look very promising. These ma-
erials are said to be smart because they are able to react to a

odification of their environment. For instance, shape memory
lloys �SMAs� are able to react to temperature changes, the effect
s based on an internal microstructure �austenite/martensite� modi-
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fication. Piezoelectric materials suffer elastic deformations when
an electrical field is applied.

This means that by modifying a physical parameter locally,
deflection and hence mechanical work can occur. These actuators
are of value in the microworld because as they are made of a
single material, they are monolithic. No assembling process is
required.

One drawback associated with smart materials is that when we
remove the applied power, they tend to come back to their initial
state �with some exceptions due to viscosity�. Therefore, they
need to be continuously powered. For a two-function system, this
means that continuous powering is needed. A better design would
only be powered during the transition phase between one stable
position and the other. We propose to combine a bistable mecha-
nism with a smart actuator, giving us a system that can be actuated
with much lower power requirements.

Different smart materials cover a large range of deflection and
displacement. This allows us to choose between a wide variety of
actuation designs. For instance, some actuators will have bending
deflection �SMA �5�, piezoelectrics, and electro-active polymers
�6��. Others, such as wire SMAs, will have linear deflection. A
force actuation can also be achieved, for instance, with a bender
actuator �such as an SMA bender �7��. These kinds of actuators
are widespread among smart materials. They are less powerful
than their stack equivalents, but allow much larger displacements.

In the present paper, we will focus on the actuation of a bistable
mechanism using a localized force.

2 Bistability of Precompressed Beams
There are two main families of buckled systems. First, the

mechanisms, which are buckled due to lateral force or stress re-
maining during their manufacturing process; then, there are sys-
tems, which are machined with a curved shape �8�. The latter is
very accurate for monolithic cuts and can achieve asymmetrical

bistability.
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A precompressed buckled beam, shown in Fig. 1, is studied in
his paper, with different actuation scenarios. The aim is to under-
tand the influence of the actuator location on the performances of
he system. This beam is actuated to switch from one stable state
o another. A force is applied to the beam at different locations.
he resulting displacement of the actuation point along the y-axis

s determined.
As shown in Fig. 2, the beam is initially straight. It is then

hortened by a small percentage of its length at the right end. As
redicted by the Euler model, under axial compression greater
han a critical force, the beam will buckle in its first buckling

ode. A second buckling mode is predicted but will never occur
ecause of its instability �a consequence of a higher level of en-
rgy�.

The previous analysis can be reproduced for the system with an
ctuation. A virtual beam, defined as a Euler–Bernoulli beam with
o compression energy, can be used to determine the deflection of
he beam, which will bring an equilibrium solution. The buckling

ig. 1 A clamped-clamped bistable mechanism. A force allows
he system to snap from one stable position to the other one.

ig. 2 Compression of the beam. The first buckling mode ap-
ears and during actuation, the second unstable mode is
riggered.

Fig. 3 Topological decomposition of the deflecti

particular solution

01001-2 / Vol. 131, OCTOBER 2009
phenomenon is then taken into account to obtain the actual deflec-
tion of the system; this means that the deflection can be written as
the sum of a general solution �consisting of the first buckling
modes� and a particular solution as found before. In the case of
the small-deflection hypothesis, only the first two buckling modes
are considered. The second buckling mode, which does not exist if
no forces are applied, may appear thanks to the extra energy
brought by the actuation.

Previous works for central actuation as in Ref. �9� or Ref. �10�
use an energy method based on the fundamental Euler–Bernoulli
beam equations. The internal energy of the system is analytically
defined then derived to produce the equilibrium configurations.
This could lead to very complex equations if a high degree of
precision is desired �hence a large number of buckling modes�. To
solve it, an analysis of the modes involved makes it possible to
reduce the behavior to two mechanical branches, mode 1 deflec-
tion only and mode 2 buckling giving the N -shape as defined
below. This gives excellent results for central actuation, and we
present no new results in this regard since our method produces
the same results.

However, it is not possible to use the previous analysis for a
noncentral actuation since the branches are not the same. This
paper presents a novel approach, still based on energy, but using a
different way of solving the beam equations of bistable systems.

The present analysis, as shown before and represented in Figs.
2 and 3, makes it possible to split the resolution into two steps.
The first is the particular solution resolution, which solves the
system before buckling, making it possible to obtain a large num-
ber of modes since the deflection is proportional to the actuation
excitation and no cross coefficients appear. Next, the buckling
phenomena are taken into account through the use of a complex
compression equation, which has cross parameters. This second
resolution is limited to the first two modes as they are topologic,
so it is possible to solve it speedily with a modern computer and a
numerical solver.

These two steps make it possible to benefit from both a high
degree of precision �with a large number of modes in the particu-
lar shape� and an efficient resolution with the only two topologic
modes taken into account in the second step. Moreover, it gives
the desired equilibrium f-d curve directly after the resolution
without needing to add and superimpose several mechanical
branches in the case of central or shifted actuation.

3 Analytical Model of a Buckled Beam
The system is considered using an out-of-plane beam model.

The Euler–Bernoulli beam model was selected. The beam is made
of stainless steel, so the deflection will be small enough to ensure

using a general solution „modes 1 and 2… and a
on,
Transactions of the ASME
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hat no plastification occurs. The end-shortening was chosen small
2%�, so the small-deflection hypothesis is still valid.

3.1 Equation of the Buckled Beam. The solution for the
otal deflection is written based on a topological approach as il-
ustrated in Fig. 3. The deflection is the sum of a general solution
for buckling behavior, including the first and second modes of
uckling� and a particular solution �for equilibrium�.
Buckling mode 1 is defined by the equations of Euler–Bernoulli

or an elastic buckled beam. For a clamped-clamped system, it is
iven by �11�

y1 = a1�1 − cos�2�
x

l
�� �1�

or mode 2, the deflection is given by

y2 = a2�1 −
2x

l
− cos�N2�

x

l
� +

2

N2�
sin�N2�

x

l
�� �2�

ith N2, the first positive solution for N in the following equation:

tan�N

2
� =

N

2
�3�

he role of those two functions is very different. Buckling mode 1
s responsible for bistability, with the selected state �positions 1 or
� given by the sign of a1. On the other hand, buckling mode 2 has
o effect on the state and occurs to limit the energy needed to
witch from one state to the other. In some cases, this second
uckling deflecting never occurs.

Deflection modes 1 and 2 are drawn in Fig. 4.
The particular solution corresponds to an equilibrium solution.

t can be determined analytically. Another method, used in this
tudy, is to calculate a particular solution for a virtual beam, which
as no compression energy using the Galerkin method.

Finally, as ya is a particular solution due to the actuation force,
he deflection is written as

y = y1 + y2 + ya �4�

f there are several actuators, several particular solutions must be
ummed and the deflection becomes

y = y1 + y2 + �
j=1

M

ya
�j� �5�

here j is the index of the actuator and M is the total number of
ctuators.

The displacement of a point P of axial coordinate xp is given by

d = y�xp� �6�

3.2 Energy Relations for a Buckled Beam. The energy of
he system is now calculated. An explicit formulation of the en-
rgy is used making it possible to draw the energy functions.
here are three kinds of energy in the Euler–Bernoulli model.

�i�

ig. 4 The first and second modes of buckling for a clamped-
lamped beam. These first two modes coexist during the snap-
ing process.
Bending energy Ub is given by

ournal of Mechanical Design
Ub =�
0

l
EI

2
� ���s�

�s
�2

ds �7�

where E is Young’s modulus, I is the quadratic moment, s
is the curvilinear coordinate along the beam, and � is the
cross sectional rotation. If Cartesian axes are used, with a
straight beam with small displacements and with E and I
constant along the beam, this expression can be approxi-
mated by

Ub 	
EI

2 �
0

l

y��x�2dx �8�

Using Eq. �4�, the above energy is then a polynomial func-
tion of second order with respect to amplitudes a1 and a2.

�ii� Compression energy is calculated using Hooke law; let us
define the deformation as

� =
s̄ − l0

l0
�9�

where l0 is the length of the unladen beam and s̄ is the
length of the buckled beam given by

s̄ =�
0

l

ds =�
0

l


1 + y��x�2dx �10�

As a small displacement hypothesis is used, an asymptotic
development of the square root can be performed, leading
to

s̄ 	 l +
1

2�
0

l

y��x�2dx �11�

The cross-sectional area S �with S=bh� is then used to
obtain the compression energy Uc as

Uc =
1

2
SE�2 �12�

The result is a polynomial function of the fourth order
with respect to amplitudes a1 and a2.

The normal force FN, as shown in Fig. 1 is defined as

FN = SE� . �13�
�iii� The energy resulting from the external force UF is the

opposite of the work of that force; it is written as follows:

UF = − Fy�xF� �14�

where F is the force and xF is the position of the applied
force.

Finally, the total energy Utot of the system is the sum of all the
previous energies.

Utot = Ub + Uc + UF �15�

3.3 Determination of a Particular Solution. In order to ob-
tain the particular solution ya, a projection on the buckling modes,
as defined in Ref. �11�, is used. On setting X=x / l, the buckling
modes are given by

yi = ai�1 − cos�NiX�� �16�

for odd i, with Ni= i� , i� �2,4 , . . .�, and

yi = ai�1 − cos�NiX� −
2

Ni
�NiX − sin�NiX��� �17�

for even i, with Ni the ith solution to Eq. �3�.
The particular solution can be approximated by the first M

buckling modes. We take M =20 in order to obtain a good enough

accuracy.

OCTOBER 2009, Vol. 131 / 101001-3
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ya 	 �
k=1

M

ak
�a�yk �18�

virtual beam without compression energy is used, hence,

Uc
�a� = 0 �19�

quations �18� and �19� can be now substituted into Eq. �15�. At
his stage, Utot is defined as a polynomial of �ak

�a��k��1,2,. . .,M� with
ll coefficients of degree less than or equal to 2. The extrema of
he energy are determined by writing

 �Utot
�a�

�ai
= 0�

i��1,2,. . .,M�
�20�

olving Eq. �20� makes it possible to determine coefficients ai,
hich will be put into Eq. �18� to obtain a particular solution ya.

t is worth noting that there is only one solution to this system �the
egrees of the polynomials are limited to degree 2, the derivate
as only one solution for each variable�, whereas the real mecha-
ism has several possible configurations.

3.4 Determination of the Equilibrium Solution on the Real
ystem. The next step is to obtain the equilibrium solutions on the
eal system.

The particular solution derived from the previous equations is
ow used in Eq. �15�. Utot is a polynomial function of coefficients
1 and a2, each of these are present up to degree 4. Figure 5 shows
he shape of Utot, depending on coefficients a1 and a2.

By writing the equilibrium criteria of the real system, all the
quilibrium shapes for a given external actuation are obtained
here for a given external force� as follows:

 �Utot

�a1
= 0,

�Utot

�a2
= 0� �21�

his is a system of two third order polynomial equations with
everal solutions. A numerical solver �the MAPLE

© solver� is used
o compute it.

For an external actuation force that is less than the snapping
orce, there are five equilibrium configurations, two of them are
table, two undefined �in terms of stability, i.e., stable for one
ariable and unstable for the other one�, and one is unstable.
quation �4� is used to draw, as in Fig. 6, these five shapes. The
ve configurations were drawn for a centrally actuated beam as an

ig. 5 Energy of the system depending on coefficients a1 and
2, drawn for an external force of 10 N „central actuation…
xample in Fig. 6. The unstable configuration, only using mode 1

01001-4 / Vol. 131, OCTOBER 2009
is shown as shape S1i. The two stable configurations are shapes
S1p and S1m for a positive and negative coefficient a1, respec-
tively. The two undefined solutions are shapes S2p and S2m for a
positive and negative coefficient a2, respectively. It is worth not-
ing that even if there are no higher modes than the first two modes
in the latter equation, the upper modes still exist thanks to the
particular solution. Finally, the force-displacement and the coeffi-
cients versus displacement curves can be drawn using Eqs. �6� and
�13�, and the result of Eq. �21�.

4 Performance Criteria
Several performance criteria �illustrated in Fig. 7� are defined

for mechanism optimization. Some of these criteria are linked to
stability positions �behavior in a nonactuated state�, others are
linked to the behavior of the system during a controlled switch
from one position to the other.

We note P as the normal force, which would need to be applied
to the structure in order to compress it from its initial length l0 to
the system length l without considering buckling. Hence, using
the law of elasticity, P is determined by

P = SE
l − l0

l0
�22�

P should be compared with Pc
�2�, the critical buckling mode 2 load

�11�, given by

Pc
�2� =

N2
2EI

l2 �23�

We define �P as

�P =
P

Pc
�2� �24�

Very low values of precompression give a �P that is lower than 1.
In other words, the compressive force of the fully straight beam is
smaller than buckling mode 2 critical force, so the system never
uses mode 2 buckling. The f-d curve is only made of a branch
�b1� using mode 1 buckling only, which is sinusoidal shaped as in
Fig. 7. It includes the two stable points and links them. As it only
uses buckling mode 1, amplitude a2 in Eq. �21� is always zero and
it can be determined with the particular solution and amplitude a2
set to zero in Eq. �21�. In this case, the system switches in a fully

Fig. 6 The five configurations of equilibrium for an actuation
force of 10 N, for a centrally actuated beam

Fig. 7 Performance indices: switching point „S…, apparent
stiffness „A.S.…, average apparent stiffness „a.A.S.… both on

point P1, stroke, and stable domains

Transactions of the ASME



s
o

h
t
m
n
a
a
o
s

s
i
d
d
q
s
t
u
e
n
t
s

m
t
t
F
b
s

F
e

F
�
T
s
t
=

J

traight configuration as in the case of shape S1i in Fig. 6 using
nly compression of the beam.

The case where �P is higher than 1 with Pc
�2� of the order of P

as already been studied by Vangbo �9� for central actuation. In
his case, a shape similar to Fig. 8 is obtained. There is still a

ode 1 branch �b1� with a sinusoidal shape but it is cut by a �b2�
egative stiffness branch. This branch uses mode 2 buckling and
llows the system to shorten the branch �b1� lowering the force
nd the energy needed to switch from one stable position to the
ther. It is this way that mode 2 buckling helps the system to
witch.

Concerning the branch �b3� due to the mode 3 buckling, the
ame behavior as for the previous branch �b2� is obtained. It is an
nverse stiffness branch with a higher absolute stiffness and it
oes not use mode 2 buckling �the two curves are fully indepen-
ent�. As it uses a higher mode, a higher level of energy is re-
uired and branch �b2� is always preferred over branch �b3� for
ingle beam systems. However, in the case of double beam sys-
ems, amplitude a2 of Eq. �21� is set to zero and branch �b3� is
sed. It is worth noting that there is a negative stiffness branch for
very upper mode, which is not used for the same reasons. We do
ot integrate it into the model because all of the useful informa-
ion is already included in the particular solution and it needs
ignificant computing power to be solved.

If �P is greatly larger than 1, as in our simulations and experi-
ents �we have P=30,000 N and Pc

�2�=161 N, hence �P=186�,
he shape of branch �b1� is changed to become closer to the par-
icular solution curve, which is a positive stiffness line as seen in
ig. 9. It still links continuously the two stable positions. The
ranch �b2� still exists, even if it does not appear in the graph
ince it is completely flattened. Hence, the branch �b1� is directly

ig. 8 f-d curve for a central actuation depending on param-
ter P

ig. 9 Full range f-d curve for a central actuation with a high
P parameter „�P=42, used from the following simulations….
he positive stiffness line appears representing the particular
olution behavior. The actual f-d curves are obtained by cutting
his curve to the useful force values, here F=−40 N to F

40 N as in Fig. 11.

ournal of Mechanical Design
cut by the branch �b2� �as seen in Fig. 11� and the two portions of
the branch �b1� seem vertical. Moreover, the vertical portion of
branch �b1� around the zero displacement point still exists and
appears in all the following f-d curves, as they are simply cut to
the useful force range.

For a shifted actuation, the branch is using both mode 1 and
mode 2 bucklings in a nonobvious way. It is not possible to use
for central actuation an analysis with a branch for each mode
behavior. It is one of the points of this paper to propose a model,
which directly incorporates mode 1 and mode 2 bucklings, with-
out needing a branch split as do previous works. Still, �P is rep-
resentative of the importance of mode 2 buckling during the
switch.

It should be noted that increasing P also increases the nonlin-
earities of the mechanism and at a certain point, a model, which
takes into account the geometrical nonlinearities, such as elliptic
displacements �12�, is needed.

We also consider the switching point, the point where the ap-
plied force reaches its maximum. We take into consideration both
the maximum applied force Fmax �therefore the maximum force
needed to switch from one position to another� and its position
�which delimits the domain that can be used in nonactuated state,
i.e., the depth of the stable domain�.

We use the apparent stiffness and the average apparent stiffness,
which represents the stiffness on the stable point and the average
stiffness from the stable point to the switching point, respectively.
These are key parameters to qualify the rigidity of the system.

The actuation stroke should also be studied along with the
depth of the two stable domains.

5 Simulation Results
First, a bistable structure with a centered force is investigated.

This actuation does not involve mode 2. The force is then shifted
to determine the effect of a translation of the actuator.

A beam with length of 100 mm, width of 20 mm, and thickness
of 0.4 mm is used in a 304 stainless steel of Young modulus E
=187.5 GPa, and the beam is subject to a 2% precompression for
the computation and experimental tests.

5.1 Bistable Beam With a Central Actuation Force. For
this system, a precompression such as P, which is higher than
Pc

�2�, is selected.
Figure 10 represents the chronology of the switching. A central

force �2� is applied up to a certain force when the beam buckles in
mode 2 �3�. Note that there are two symmetrical possible shapes
with equal probabilities �13� depending on the sign of a2. Then we
switch and go to sequence �4�, where the beam comes back to a
mode 1 only buckled shape.

The f-d curve is shown on Fig. 11. A classical N-shape is ob-
tained, i.e., there is a constant negative stiffness around the zero
displacement point. There are several branches on this graph.

The branch �b1� represents the straight configuration. It is sinu-
soidal shaped, and is cut in the diagram as it goes very high. In
Fig. 10, this branch is used on configurations 1, 2, 4, and 5. This
branch only uses buckling mode 1, i.e., the coefficient a2 along
this branch is zero.

Branches �b2p� and �b2m� use buckling mode 2. These
branches only appear when normal compression is high enough to
obtain buckling mode 2, so they only exist for a restricted domain.
In this domain, the entire energy of the system is lower in the case
of buckling modes 1 and 2 than in the case of mode 1 buckling
only, so one of these branches is preferred. In the fn-d curve �Fig.
12�, it can be observed that the two �b2� branches exist when the
normal force is equal to the critical force of the second buckling
mode �14�. These branches have the same probability and one of
those is chosen by the system.

In Fig. 13, the evolution of the coefficients a1 and a2 is repre-

sented. Displacement is proportional to coefficient a1. The coeffi-

OCTOBER 2009, Vol. 131 / 101001-5
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ient a2 curve is an ellipsoid with two separate upper �b2p� and
ower �b2m� branches. At the two extreme positions, the a2 coef-
cient is zero.
In Fig. 6, the five possible configurations found for a 10 N

ctuation are drawn. The three mode 1 shapes are S1m, S1i, and
1p, the negative state, the unstable straight configuration, and the
ositive state shapes of branch �b1�, respectively. Buckling mode

shapes S2m and S2p belong to branches �b2m� and �b2p�,
espectively.

In such systems, the apparent stiffness is excellent �120 kN/m�
nd the maximum force quite high �37 N�. The stroke is the maxi-

ig. 10 Snapping sequences for a typical clamped-clamped
eam. Mode 2 buckling is used to help the switch from one
osition to the other.

ig. 11 f-d curve for a central actuation clamped-clamped
eam

ig. 12 fn-d curve for a central actuation clamped-clamped

eam

01001-6 / Vol. 131, OCTOBER 2009
mum, which can be obtained with this mechanism. On the other
hand, the width of the stable domain is only half of the stroke.

5.2 Bistable Beam With a Shifted Actuation Force. A
shifted force actuation is now used �as in Fig. 14�. This breaks the
symmetry, i.e., whereas only odd modes are excited in the case of
a central force, all modes came actuated there.

Figure 14 presents a schematic chronology of the snapping pro-
cess. The snapping is delayed compared with a central actuation.
The system parameters are the same as for a central actuation �see
Fig. 1�, except that the actuator has been shifted laterally.

The previous theoretical model was used with xF changed to
40% in Eq. �14�. The particular solution was recalculated and now
a combined mode 1 and mode 2 actuation appear �plus upper
modes�. The resulting f-d, fn-d, and coefficients versus displace-
ment curves are drawn in Figs. 15–17, respectively. The full f-d
curve �before cutting� is given in Fig. 18.

Fig. 13 Coefficients a1 „cross… and a2 „circles… versus dis-
placement curves for a central actuation clamped-clamped
beam

Fig. 14 Switching sequences with a shifted force actuator, the
snapping is delayed

Fig. 15 f-d curve for a clamped-clamped beam with a shifted

„40%… actuation

Transactions of the ASME
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The f-d curve indicates a rounded curve with two separate
ranches �b2p� and �b2m� and a hysteresis. The straight configu-
ation still exists and links the two branches �this is out of the
ange of the curve and is not displayed in the normal f-d curve,
owever, it appears in Fig. 18�.

The plateau of the critical mode 2 now does not appear on the
fn-d curve. This is due to the combined mode 1 and mode 2
ctuation.

The curves of both coefficients a1 and a2 exhibit a more com-
lex shape than in the case of a central actuation. Coefficient a2
tarts to increase immediately after the stable position. More im-
ortantly, there is no continuity between the two branches �except
ith the unstable straight branch�. This means that the delayed

napping corresponds to a branch jump. It cannot be accurately
redicted with a static model. Moreover, this branch jump will be
ery sensitive to small machining tolerances and is hardly
redictable.

Concerning the performance of this system, the maximum force
25 N� has decreased compared with the central actuation one, the
pparent stiffness has fallen to 24,500 N/m and the stroke is
maller �16.3 mm compared with 18 mm�.

5.3 Use of More Than Two Modes of Buckling. In order to
erify the hypothesis that only the first two mechanically compat-

ig. 16 fn-d curve for a shifted actuation clamped-clamped
eam

ig. 17 Coefficients a1 „cross… and a2 „circles… versus dis-
lacement curves for a shifted actuation clamped-clamped
eam
Fig. 18 Full range f-d curve for a shifted „40%… actuation

ournal of Mechanical Design
ible modes are involved �modes 1 and 2 for a single beam, and
modes 1 and 3 for a double beam�, a system with the three first
modes �i.e., modes 1–3� is investigated.

Mode 3 buckling is defined as

y3 = a3�1 − cos�4�
x

l
�� �25�

The deflection y is now written as

y = y1 + y2 + y3 + ya �26�

where y1, y2, and y3 are defined by Eqs. �1�, �2�, and �25�.
The equilibrium equations are now changed into

 �Utot

�a1
= 0,

�Utot

�a2
= 0,

�Utot

�a3
= 0� �27�

As an example, a central actuation f-d curve is drawn in Fig. 19.
It appears that the curve has the same shape than the previous one
with a1 and a2 �branches �b1�, �b2m�, and �b2p��, plus two super-
posed branches that use only buckling mode 1 and mode 3
�branches �b3m� and �b3p� with a2=0 for these branches�, so that
f-d curve is a superposition of the previous curve using buckling
mode 1 and mode 2, and another one using only buckling modes
1 and 3 �actually the double beam f-d curve�. This is a conse-
quence of the orthogonality of the modes. This result was already
previously demonstrated by Qiu et al. �10� and Vangbo �9� with
other methods and is still valid for a shifted force. This is ex-
plained with the present model and the use of a particular solution,
only the first two modes are important for the buckling modeling
as the mechanism cannot simultaneously use three modes. Conse-
quently, only the first two modes are needed in the general solu-
tion to model a bistable switch.

5.4 Using a Preshaped Beam. Preshaped beams, as used by
Qiu et al. �10�, make it possible to obtain monolithic bistable
mechanisms, which are manufactured directly by cutting into a
single material part such as silicon wafers. The model has been
explained in the publication referred above, and this section is
intended to show how the present model can be extended to take
into account the specificities of this type of bistable system.

Preshaped beams are based on the use of a beam, which already
has a nonstraight shape when relaxed, typically the sinus mode 1
buckling shape. Hence, the free length is no longer l0 but the
length of the relaxed system calculated using the same formula as
for the beam of the current length s̄ in the free length s̄0 is there-

Fig. 19 f-d curve for a central actuation beam with 3 free pa-
rameters a1, a2, and a3
fore defined as

OCTOBER 2009, Vol. 131 / 101001-7
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s0 =�
0

l

ds =�
0

l


1 + y0��x�2dx �28�

ith y0 the shape of the beam when relaxed, either mode 1 buck-
ing or any shape. s̄ �in Eq. �11�� is unchanged. Then Eq. �9�
ecomes

� =
s̄ − s̄0

s̄0

�29�

urthermore, the bending energy needs to be changed to take into
ccount the initial shape, so Eq. �8� is now replaced by

Ub =
EI

2 �
0

l

�y��x� − y0��x��2dx �30�

his makes the system not symmetric in behavior. The latter equa-
ion can also be used to take a predeflection of stratified structures
nto account both in the case of a passive or an active structure
4�. No tests were carried out for it in this work so the simulation
esults are not presented. However, since it uses the same ap-
roach as in the work of Qiu et al. �10�, it is expected to produce
ood results.

Experimental Validation
Experimental validations were carried out to validate the
odel. We used the test bench shown in Fig. 20.
The bistable beam is made of stainless steel 304, with a Young
odulus of E=187.5 GPa, length of 100 mm, width of 20 mm,

nd thickness of 0.4 mm as in the case of the simulation.
The 2% precompression �hence a 2 mm displacement in the left

irection� is obtained through the use of a Thorlabs PT1 travel
ranslation table featuring a 10 �m adjustment. The precompres-
ion chosen was small enough to stay in the small-assumption
ypothesis and to avoid plastification. Since plastification also oc-
urs due to dynamical effects when switching, it was not possible
o calculate a maximum precompression without plastification.
he beam was checked after the test to ensure that no plastifica-

ion occurred.
Force is applied through a setup with two PT1 translation

ables. One is used to set the position of the force application
horizontal displacement�. The other controls vertical displace-
ent, hence, the displacement as defined in all f-d curves. It can

e observed that the translation table is reversed compared with
he classical Thorlabs setup, so the down-face of the vertical table
s seeable in Fig. 21. This particular setup was made since the
horlabs table uses springs and a precision micrometer. The up-

ace of the table is pressed to the micrometer. This setup makes it
ossible to ensure the system force is locked by the micrometer
nstead of the springs ensuring good contact, and therefore opti-

al precision.
The force is measured through an HBM S2-600 force sensor

an S-shaped force sensor with an internal double Wheatstone

ig. 20 Test bench for force-displacement measurement. On
he left is the Vishay console and on the right is the mechanical
etup.
ridge� interfaced with an analogic Vishay Wheatstone bridge

01001-8 / Vol. 131, OCTOBER 2009
console, a setup said to give a four digit precision. The force
sensor was calibrated before the tests, which confirms a degree of
accuracy greater than 0.04 N.

Next, the force is applied to the beam via a special plastic-made
V-shaped shaft. With such a system, only a negative force can be
applied but we avoid friction and damping effects.

Experiments were performed for the two simulation cases pre-
sented above. Central and shifted �40%� force actuations are su-
perposed to the simulation curves in Figs. 22 and 23, respectively.
For each experiment, we show the mean values of ten measure-
ments. The experimental points show that the model has a high
degree of accuracy for the shape of the f-d curves. The displace-
ment appears to be overestimated by roughly 5% in every simu-
lation. The level of forces is always lower than expected for these
experiments, but there is an uncertainty concerning the Young
modulus material although the global shape seems fine. In the
case of central force actuation, the vertical branch of the N is
rotated, an effect which seems due to the limit of the model in this
case, since a fully vertical branch cannot be obtained in the real
world.

As explained before, another effect is hysteresis phenomena.
There is a small hysteresis due to the two branches �branch �b2p�
and branch �b2m�� for a shifted force actuation. There is also a

Fig. 21 Test bench for force-displacement measurement

Fig. 22 f-d curve for a central actuation clamped-clamped
beam, with experimental points in cross

Fig. 23 f-d curve for a shifted „40%… actuation clamped-

clamped beam, with experimental points „cross…
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maller hysteresis phenomenon on each branch. This effect was
bserved on a nylon double beam system �13�. It was not predict-
ble using the proposed elastic model. It is observed on the central
ctuation f-d curve �Fig. 22�. The null force is achieved for a
isplacement of about 0.85 mm �5% of the stroke, giving a 10%
ysteresis�.

To emphasize the hysteresis, an experiment using the same con-
itions of a shifted force actuation as in Fig. 15 has been per-
ormed. The same stainless steel has been used but from another
et of steel plate from the same provider. The branch is followed
y applying a displacement to be close to the point where the
orce becomes positive, then coming back. The results are shown
n Fig. 24. This experimental protocol ensures sticking to the same
ranch during actuation and a branch hysteresis effect is observed.

Discussion of Results
The aspect of the f-d curve obtained with a shifted actuation

as a high degree of consistency with the experimental data. How-
ver, the N-shape obtained for a central actuation seems less ac-
urate. Actually, central actuation is a very special case of actua-
ion �no actuation on the second buckling mode�. This causes the
ransition between branches �b1� and �b2m� or �b2p� to be abrupt,
hereas a smoother transition would be physically more accept-

ble. A model with a very small shift has been implemented. The
esulting f-d curve of a closely central actuation �force is applied
t 49.5% of the length� is presented in Fig. 25 using the shifted
ctuation equation previously presented. Experimental data taken
rom a central actuation test with the second set of steel are shown
n the same curve.

Using a small shift in the actuation position results in a very
mall hysteresis and a smoother transition. The latter is much
etter but the apparent stiffness is still overestimated. This could
e a consequence of the linearity of the model. Although not
hown there, a lower precompression leads to a better agreement
f the theoretical with the experimental data. This means that the

ig. 24 f-d theoretical curve with a 40% actuation shift
points…, compared with experimental measurements „line…

ig. 25 f-d curve for a clamped-clamped beam with a slightly
hifted „49.5%… actuation, with central actuation experimental

oints „cross…
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linear model is no longer valid for high level of precompression
where nonlinearities should be accounted for. Concerning hyster-
esis, even if currently there is hysteresis in the real system, the
hysteresis exhibited by the model seems to be too low to explain
the actual phenomenon.

The snapping location, i.e., the point where the applied force
becomes negative, has a major impact on the behavior of the
system. This point indicates the end of the stable domain. After it,
the system does not return automatically to its first position. Fur-
thermore, it delimits the domain where the actuator is active. For
a central actuation beam, due to the N-shape of the f-d curve, the
stable domain is half of the stroke of the system. In the case of
shifted actuation, the hysteresis increases the stable domains. In
this configuration, we can inject energy in a longer stroke. Since
the total energy to put into the system is relatively constant for a
reasonably shifted force �from 50% to 65% of length, the energy
increases by less than 15%�, the maximum force decreases. It has
been demonstrated in the previous example that there has been a
37–21 N decrease in the peak force, a 43% drop. Furthermore, due
to the cantilever effect, the stroke of the actuator decreases even if
the active stroke increases. Another advantage is the rise of the
stable domain. The system has increased robustness against dis-
placement disturbance.

Another way to illustrate this change is to use an energy-based
method. As mentioned before, the effective snapping energy is
quite constant but the actuator is not designed for this energy. It is
actually designed, in most cases, to exceed the maximum required
force and stroke, so a design energy can be defined as the product
of the stroke and the maximum force of the actuator. Then the
ratio effective switching energy over the design energy can be
considered. This has been represented in Fig. 26 for a central
actuation and for a shifted �40%� actuation in Fig. 27. It can be
seen that this ratio is only 25% for the central actuation �due to the
triangularlike N-shape� and increases significantly for a shifted
actuation �roughly 50–60%�. This means that the actuation is best
used with a shifted force so it is possible to choose more compact
actuators.

Fig. 26 Energy used and actuator total energy for a central
actuation clamped-clamped beam. The ratio is about 25%.

Fig. 27 Energy used and actuator total energy for a shifted
„40%… actuation clamped-clamped beam. The ratio is much in-

creased compared with the central actuation.
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It is worth noting that the opposite effect is obtained when the
ctuation is shifted too far from the center. Indeed, a high propor-
ion of the energy is transmitted in the third and higher modes.
his energy is not used directly in the snapping dynamic and is
ainly lost. This leads to an increase in the maximum force in the

ase of significantly shifted actuation.
Although shifted actuation seems very useful, there are some

roblems. This type of actuation reduces the stroke, the apparent
tiffness, and average apparent stiffness, which are key parameters
or evaluating the performance of a bistable mechanism. It is also
orth noting that the actuation point will rotate during actuation,
hich could cause difficulties for a monolithic design �instead, the

entral actuation double beam mechanism avoids rotation of the
entral point�. Another problem is that during snapping, a shifted
ctuation mechanism will jump from one stable branch to another
eading to harsh shocks in the structure. Instead, the central actua-
ion mechanism has a much smoother continuous deflection.

Finally, on one hand, the central force actuation seems very
ood in terms of stability, having good apparent stiffness, maxi-
um stroke for the system, and a high maximum force. On the

ther hand, shifted actuation makes it possible to use the actuator
n a much more efficient way.

Smart use of both phenomena would include actuation using a
hifted force and a static use of the two stable positions that ben-
fits from both the stroke and the apparent stiffness of a central
ctuation. If a design can accept rotation of the central point, a
ingle bar system can be used instead of the double beam system.
or such a mechanism, a different actuation location can be used

o lower the maximum force and the stroke of the actuator, two
arameters that imply a reduction in the necessary actuator size. It
eans that the system has very different behaviors according to

he point of force application. Splitting the input and output loca-
ions should be considered for such bistable systems.

Conclusion
We have proposed a method that makes it possible to calculate

he behavior of most buckled-beam based bistable mechanisms
ctuated with normal force. We have demonstrated that deflection
an be split into the first two modes, which have complex behav-
or, and upper modes, which are simply related to equilibrium.

Most bistable mechanisms of the compressed beam class are
ctuated in their central point to obtain a maximum stroke, this is
mode 1 actuation. We have shown that a combined mode 1 and
ode 2 actuation can also be of value �lower snapping force and
01001-10 / Vol. 131, OCTOBER 2009
longer stable domain� and should be considered for a mechanical
design. Using separate input and output makes it possible to ben-
efit from different behavior of the same structure.

Experimental validations were carried out and demonstrated
that this model provides rather good results. Using the previous
method, we were able to simulate a very low shift �0.5%� from the
central location on the structure. It appears that this simulation
gives a more accurate model.

We have shown that an optimal choice of the actuator location
can lead to a significant decrease in the power needed by the
actuator. This makes it possible to use more compact actuators
without modifying the performances of the system.
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