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Abstract

We propose the modelling of piezoelectric elements perfectly bonded on an elastic structure. The study aims at predicting the static
and dynamic (vibration) electromechanical responses of the structure. The model is mostly based on the kinematic assumption of the
Love–Kirchhoff thin plate theory including shear function with a quadratic variation of the electric potential along the thickness direc-
tion of the piezoelectric parts. A variational formulation of piezoelectricity leads to the equations of motion for an elastic plate equipped
with piezoelectric elements. An important feature of the present investigation is that the stiffness and inertial contributions of the pie-
zoelectric patch is not neglected. Moreover, the numerical simulations demonstrate the influence of the actuator position on the global
and local responses of the elastic plate for two situations (i) bilayer and (ii) sandwich configurations. A number of benchmark tests are
considered in order to characterize the plate deformation when applying an electric potential to the piezoelectric patch faces. Plate vibra-
tion problem is also presented and the frequencies for the axial and flexural modes are obtained. The spectra of vibration for the plate
with a time-dependent electric potential are computed.
� 2006 Civil-Comp Ltd. and Elsevier Ltd. All rights reserved.
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1. Introduction

Piezoelectric materials, and especially piezoelectric
composites such as multilayered plates including active
piezoelectric layers are excellent candidates for designing
adaptive devices for shape and vibration control of elastic
structures. Such devices and piezoelectric composites are
of great technological interest in structural engineering with
applications to noise reduction or shape control of large
flexible structures (shape control of space antennas or tele-
scopes) [1].

Most modellings of piezoelectric actuators or composites
consider laminated structures made of continuous piezo-
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electric layers. The models are mainly based on thin plate
theory including some refinements and possible layerwise
approach [2,3]. Nevertheless, very few models of piezoelec-
tric elements or patches bonded on elastic structures have
been examined and quoted in literature [4–6]. The simplest
approaches to elastic structures (beam, plate, etc.) equipped
with piezoelectric elements consider effective forces and
moments induced by piezoelectric elements on the host
structure [7]. In such approaches the driving forces and
moments are generated by the electric potential applied to
the piezoelectric element, however, the sensor function of
the piezoelectric element is usually not accounted for. A first
order shear deformation theory has been considered to
describe the electromechanical state of the element bonded
on an elastic structure (beam or plate). The extensional-flex-
ural motion of the beam is then governed by a set of coupled
rights reserved.
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Fig. 1. Sketch of a piezoelectric element perfectly attached onto an elastic
plate.
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equations for the elongational displacement, deflection and
electric potential or electric charge. However, analytical
results are based on either Euler–Bernoulli beam theory
or Timoshenko beam modelling [7]. In most analysis it is
assumed that the stiffness and inertial contribution of the
piezoelectric actuators are neglected in comparison to those
of the host elastic structure [4]. Such an assumption leads to
inaccurate estimate of the electromechanical responses of
the structure. Especially, the prediction of the frequencies
of axial and flexural modes of the composite structure
requires a more accurate approach.

The present work concerns the modelling of a composite
structure made of a piezoelectric element perfectly attached
to an elastic thin plate. Moreover, the model considers two
kinds of kinematical hypotheses either for the elastic plate
or for the piezoelectric actuator. For the elastic plate a
refined description of the elastic displacement is consid-
ered, it is based on the Love–Kirchhoff elastic thin plate
theory including a shear function [8,9]. For the piezoelec-
tric element the kinematical hypothesis of the Love–Kirch-
hoff plate theory is merely adopted. The electric potential is
supposed to have a quadratic variation through the piezo-
electric layer thickness [8,9]. In the proposed formulation
there are no simplifying hypotheses on the stiffness and
inertial contribution of the piezoelectric elements. In fact,
the piezoelectric part introduces material and geometrical
discontinuities which lead to some mathematical difficul-
ties. In spite of these drawbacks, a closed-form solution
to the equation of motion can be obtained by using Fourier
analysis for an elastic plate simply supported under cylin-
drical bending and the solution for static and dynamic pro-
cesses are computed.

2. Variational formulation and governing equations

Let us define the following affine spaces:

Vu ¼ fðu;SÞ : u ¼ u0 on oXu and Sij ¼ uði;jÞ on Xg; ð1aÞ
V/ ¼ fð/;EÞ : / ¼ /0 on oX/ and Ei ¼ �/;i on Xg;

ð1bÞ
where Vu is the space of kinematically admissible displace-
ments and strain tensors and V/ is the space of admissible
electric potential and electric field. In Eq. (1) u and S are
respectively the displacement and the linear part of the
strain tensor. The scalar variable / is the electric potential.
In the framework of the quasi-electrostatic approximation,
the electric field E derives from an electric potential
Ei = �/,i. We consider the functional extended to piezo-
electric materials written as follows [10]:

F½ðu;SÞ; ð/;EÞ� ¼
Z

X
ð�HðS;EÞ þ �b � uÞdvþ

Z
oXT

T � uda

þ
Z

oXq

q0/da; ð2Þ

defined over the space V ¼Vu �V/. In the functional F,
H(S,E) is the electric enthalpy density functional given by
[10]
HðS;EÞ ¼ 1
2
rijSij � 1

2
DiEi; ð3Þ

where r is the stress tensor and D is the electric displace-
ment or induction vector. In Eq. (2), �b is an external force
per unit volume applied on X (including eventually inertial
forces �bi ¼ fi � q€ui). In the second part of Eq. (2), T is the
surface density of traction forces imposed on oXT and, in
the third part, q0 is the surface density of electric charges
applied on oXq.

Under suitable regularity conditions, the balance equa-
tions for piezoelectric body are found by imposing vanish-
ing first variations of the functional equation (2) with
respect to u and /. They read as

rij;j þ �bi ¼ 0; Di;i ¼ 0. ð4Þ
The boundary conditions on oX are also obtained from the
variation of the functional equation (2). They are rijnj = Ti

on oXT and Dini = q0 on oXq for the natural boundary con-
ditions and u = u0 on oXu and / = /0 on oX/ for the essen-
tial boundary conditions (oX = oXT [ oXu = oXq [ oX/

with oXT \ oXu = oXq \ oX/ = ;). The constitutive equa-
tions are given in the S � E form through the electric
enthalpy functional equation (3) and they are given by

rij ¼
oH
oSij
¼ CE

ijpqSpq � ekijEk; ð5aÞ

Di ¼ �
oH
oEi
¼ eipqSpq þ eS

ijEj; ð5bÞ

where, CE is the tensor of elasticity coefficients for null elec-
tric field, e is the piezoelectric coupling third-order tensor
and eS is the second-order tensor of electric permittivity
coefficients for null strain. The variational formulation
given in Eqs. (2) and (3) and the set of equations (4) and
(5) are the essential starting point of the modelling pro-
posed in the forthcoming sections.

3. Field approximation

Let us consider an elastic plate equipped with a piezo-
electric element as depicted in Fig. 1. Two configurations
are studied (i) a configuration made of one piezoelectric
element bonded on the elastic plate referred as a bilayer
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configuration and (ii) a configuration made of an elastic
plate sandwiched between two identical piezoelectric ele-
ments referred as a sandwich structure. The x–y plane is
coincident with the elastic plate mid-plane. We denote by
Ae the mid-plane occupied by the elastic plate and by Ap

the mid-plane of the piezoelectric element. It is assumed
that the piezoelectric elements or actuators are perfectly
glued to the carrying deformable structure. The axis z is
the thickness coordinate for both piezoelectric actuators
and elastic plate. The plate thickness is denoted by he and
that of the piezoelectric element is hp. They are supposed
constant. The elastic plate as well as the piezoelectric ele-
ments are materially homogeneous and either orthotropic
or transversally isotropic with respect to the z-axis (in par-
ticular, the piezoelectric actuators are polarized along the
thickness direction). In addition, the top and bottom faces
of each piezoelectric element are covered by a conductive
metallic electrode with negligible mechanical properties,
the lateral surfaces are bare.

In order to derive an efficient and accurate two-dimen-
sional model of the present composite plate accounting
for the direct and inverse electromechanical coupling, we
assume some hypotheses for the distribution of the electro-
mechanical fields as function of the thickness coordinate.

3.1. Mechanical field distribution for the elastic plate

The elastic displacement field for the plate is supposed to
be of the form

uðeÞ ¼ U ðeÞa � zwðeÞ;a þ f ðzÞca

h i
ea þ wðeÞe3. ð6Þ

The summation over the index a 2 {1,2} is applied. In Eq.
(6), Ua represents the mid-plane displacement component, w

is the deflection along the thickness direction and ca hold
for the shearing function. All the functions are defined at
the mid-plane coordinate (x,y, 0). The function f(z) of the

thickness coordinate is given by f ðzÞ ¼ he
p sin p

he
z

� �
[8,11].

3.2. Electromechanical field distribution for the

piezoelectric actuators

The standard Love–Kirchhoff kinematics for the elastic
displacement is considered. It is written as

uðpÞ ¼ U ðpÞa � zwðpÞ;a
h i

ea þ wðpÞe3. ð7Þ

The shear correction function, as defined for the elastic
layer, is not used for the piezoelectric part because the
piezoelectric patches are supposed to be very thin.

A layerwise quadratic distribution of the electric poten-
tial is considered and given by

/ ¼ 2
zp

hp
V þ P ðzpÞw with zp ¼ z� z0; ð8Þ

where V(x,y, t) is the applied electric potential such as /
(zp = +hp/2) = +V and /(zp = �hp/2) = �V, zp is the local
thickness coordinate with respect to the actuator mid-plane
and z0 ¼ 1

2
ðhp þ heÞ the coordinate of the mid-plane of the

piezoelectric element. The second term in Eq. (8) is referred
as the induced electric potential by elastic deformation in
the piezoelectric element [8,9]. The function P(zp) is defined

by PðzpÞ ¼ z2
p �

hp

2

� �2

.

Remarks. The above description concerns the bilayer
configuration (one piezoelectric element), however, in the
case of the sandwich configuration for the lower piezoelec-
tric element we must change V into�V in Eq. (8) and z0 into
�z0. We must distinguish the electric potential for the lower
actuator denoted by /(�) and the electric potential distri-
bution for the upper piezoelectric actuator given by /(+) in
Eq. (8).
3.3. Continuity conditions at the layer interfaces

The continuity of the elastic displacement at the inter-
face between the elastic plate and the piezoelectric elements
must be fulfilled at z = +he/2 (and at z = �he/2 in the case
of the sandwich configuration). These continuity condi-
tions read as

wðpÞ ¼ wðeÞ ¼ w; ð9aÞ

U ðpÞa ¼ U ðeÞa þ
he

p
ca. ð9bÞ

In the case of the sandwich configuration a third condition
identical to Eq. (9b) is also considered by changing he into
�he.

3.4. Composite plate state field

When hypotheses on the 3D distribution of the mechan-
ical displacements and electric potential are given as a func-
tion of the following in-plane fields:

W ¼ ½U;w; c;w; V �; ð10Þ
the strain tensor for the elastic plate can be written as

SðeÞ ¼ Sð0Þab þ zSð1Þab þ f ðzÞSð2Þab

� �
ea � eb

þ 1
2
f 0ðzÞca

� �
ea � e3; ð11Þ

and for the piezoelectric element we have

SðpÞ ¼ Sð0Þab þ zSð1Þab þ
he

p
Sð2Þab

� �
ea � eb; ð12Þ

by using the continuity condition, Eq. (9b), the electric field
within the piezoelectric element takes the form

E ¼ ½P ðzpÞEa�ea þ ½E3 � zpw�e3. ð13Þ

We have introduced the following generalized strain
tensors:

Sð0Þab ¼ U ðeÞða;bÞ; Sð1Þab ¼ �w;ab; Sð2Þab ¼ cða;bÞ; ð14Þ
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and the electric fields

Ea ¼ �w;a; E3 ¼ �2
V
hp

. ð15Þ

Hence, the 3D distribution of mechanical strains and elec-
tric fields is determined by the set of generalized electro-
mechanical fields

S ¼ Sð0Þab ; S
ð1Þ
ab ; S

ð2Þ
ab ;Ea;E3

n o
. ð16Þ

We denote by W the functional space of compatible elec-
tromechanical kinematic fields of the reduced plate model.
The fields defined by the sets (10) and (16) are said compat-

ible if they are related through the compatibility relations
(14) for the mechanical deformations and (15) for the elec-
tric fields which verify the essential boundary conditions
for the elastic displacement and electric potential.

4. Equations for the piezoelectric composite

4.1. Variational formulation of the plate model

The equations of the present piezoelectric plate model
are deduced by taking the first variation of the variational
functional stated in Section 2 and by using the approxima-
tions for the elastic displacement and electric field.

On integrating over the thickness of the elastic plate and
piezoelectric actuators, the dependence of the fields upon
the thickness coordinate z is then rubbed out. After
straightforward algebraic manipulations assuming inde-
pendent variations of the generalized kinematical fields
defined by Eq. (10). The variational formulation for the
reduced plate model can be recast into the sum of variation
contributions

�dU þ dW 1 þ dW 2 ¼ 0. ð17Þ
The different virtual works are defined on the mid-plan
surface Ae of the elastic plate and mid-plan surface of the
piezoelectric elements and also on the plate contour.

(a) The first part holds for the variation of the plate
model free energy written as

dU ¼
Z

Ae

N abdSð0Þab þMabdSð1Þab þ bRabdSð2Þab

n
þQadca �DadEa þD3dwþ qdV

o
da. ð18Þ

The generalized stresses Nab, Mab, bRab, the generalized elec-
tric inductions Da, D3 and the generalized density of elec-
tric charge q are defined (in the case of the sandwich
configuration) as

N ab ¼ N ðeÞab þ Y ðXÞ N ðþÞab þ N ð�Þab

� �
; ð19aÞ

Mab ¼ M ðeÞ
ab þ Y ðXÞ M ðþÞ

ab �M ð�Þ
ab

� �
; ð19bÞ

bRab ¼ RðeÞab þ
he

p
Y ðXÞ N ðþÞab � N ð�Þab

� �
; ð19cÞ

Da ¼ bDðþÞa þ bDð�Þa ; ð19dÞ
D3 ¼ bDðþÞ3 � bDð�Þ3 ; ð19eÞ
q ¼ qðþÞ � qð�Þ. ð19fÞ
It is worthwhile noting that for the bilayer configuration
only the contributions of the upper piezoelectric actuator
are involved in the above resultant definitions. In Eq.
(19) the function Y(X) is the index function defined as
Y(X) = 1 if X = (x,y) 2 Ap and Y(X) = 0 otherwise. The
resultants are computed using the 3D stress and electric
displacement (see Eq. (5)) as follows:

(1) for the elastic plateZ

N ðeÞab ;M

ðeÞ
ab ;R

ðeÞ
ab

� �
¼

þhe=2

�he=2

ð1; z; f ðzÞÞrðeÞab dz; ð20aÞ

Qa ¼
Z þhe=2

�he=2

1

2
f 0ðzÞrðeÞa3 dz; ð20bÞ
(2) for the piezoelectric actuatorsZ

N ðþÞab ;M

ðþÞ
ab

� �
¼

he=2þhp

he=2

ð1; zÞrðþÞab dz; ð21aÞ

bDðþÞa ¼
Z he=2þhp

he=2

P ðzpÞDðþÞa dz; ð21bÞ

qðþÞ; bDðþÞ3

� �
¼
Z he=2þhp

he=2

ð1; 2zpÞDðþÞ3 dz. ð21cÞ

The resultants for the lower piezoelectric actuator are
deduced from those of the upper one by changing the
superscript (+) into (�) and the segment of integra-
tion is [�he/2 � hp,�he/2].
(b) The second part in the variational formulation (17)
represents the virtual work of the body forces and
electromechanical loads prescribed to the elastic
plate and piezoelectric actuators. This virtual work
can take a linear form on the set dW of the space
defined by Eq. (10)
dW 1 ¼
Z

Ae

badU ðeÞa þ bT dwþ m̂adca

� �
daþ

Z
Ap

�qdV da;

ð22Þ

where b is the surface density of forces in the mid-
plane, bT is the surface density of normal forces and
m̂ is a density of moment per unit of area including
eventually the inertial terms and �q is the surface den-
sity of electric charges applied to the piezoelectric ele-
ments faces.
(c) The last term in Eq. (17) denotes the virtual work of
the forces and moments applied to the plate contour
given by
dW 2 ¼
Z
C

F adU ðeÞa þ bT dw�Mf ðdw;nÞ þ Cadca

� �
d‘

�
X

k

Zkdwk; ð23Þ

where F and bT are force densities per unit of length,
Mf and C are torques densities per unit of length de-
fined along the contour C of the plate with n the unit
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outward normal to C. At last, Zk are transverse forces
applied at the angular points of the contour
boundary.
Remarks. The inertial contributions due to the accelera-
tion forces are computed from the kinetic energy. The
surface density of forces are splitted into the mechanical
forces and inertial forces as b = f + f(I), bT = p + p(I),
m̂ ¼ mþmðIÞ, bT ¼ T þ T ðIÞ. The inertial contributions are
then given by f ðIÞa ¼ �CðUÞa , p(I) = �C(w), mðIÞa ¼ �CðcÞa and
T ðIÞ ¼ bCðwÞ.

The exact forms of the acceleration or inertial forces
corresponding to the equations of motion according to
two configurations are

(i) Bilayer configuration
CðUÞa ¼ I0ðXÞ €U a� I1ðXÞ€w;aþ J 1ðXÞ€ca; ð24aÞ
CðwÞ ¼ I1ðXÞ €U a;aþ I0ðXÞ€w� I2ðXÞ€w;aaþ J 2ðXÞ€ca;a;

ð24bÞ
CðcÞa ¼ J 1ðXÞ €U a� J 2ðXÞ€w;aþ J 3ðXÞ€ca; ð24cÞbCðwÞ ¼ ½�I1ðXÞ €U aþ I2ðXÞ€w;a� J 2ðXÞ€ca�na; ð24dÞ

where the different inertial moments are given by

I ‘ðXÞ ¼ I ðeÞ‘ þ Y ðXÞI ðpÞ‘ with ‘ 2 f0; 1; 2g;

J 1ðXÞ ¼ J ðeÞ1 þ Y ðXÞ he

p
I ðpÞ0 ;

J 2ðXÞ ¼ J ðeÞ2 þ Y ðXÞ he

p
I ðpÞ1 ;

J 3ðXÞ ¼ J ðeÞ3 þ Y ðXÞ he

p

� �2

I ðpÞ0 ;

and where we have defined the inertial moments of
different order as
 Z
I ðeÞ0 ; I ðeÞ1 ; I ðeÞ2 ;J ðeÞ1 ;J ðeÞ2 ;J ðeÞ3

� �
¼

þhe=2

�he=2

qeð1;z;z2;f ðzÞ;zf ðzÞ;f ðzÞ2Þdz;

I ðpÞ0 ; I ðpÞ1 ; I ðpÞ2

� �
¼
Z he=2þhp

he=2

qpð1;z;z2Þdz. ð25Þ
(ii) Sandwich configuration

In the case of the sandwich configuration equation
(25) are also considered by changing I ðpÞ‘ by 2I ðpÞ‘
(‘ 2 {0, 1,2}) and with I1(X) = J1(X) = 0.
4.2. Balance equations

The balance equations and the natural boundary condi-
tions are derived by using classical arguments of varia-
tional calculus in the functional space W of compatible
kinematical fields. The balance equations are then given by

N ab;b þ ba ¼ 0; ð26aÞ
Mab;ab þ bT ¼ 0; ð26bÞbRab;b � Qa þ m̂a ¼ 0. ð26cÞ
In addition, we have for the piezoelectric actuators

Da;a �D3 ¼ 0; ð27aÞ
q� �q ¼ 0. ð27bÞ

The natural boundary conditions are derived for all the
admissible variations of the field defined in the space (10)

½N abnb � F a�dU a ¼ 0; ð28aÞ

ðsaMabnbÞ;s � naMab;b � bCðwÞ þ T
h i

dw

þ ½naMabnb �Mf �dw;n ¼ 0; ð28bÞ
½bRabnb � Ca�dca ¼ 0; ð28cÞ
½Dana�dw ¼ 0. ð28dÞ

The vector s is the unit tangent vector to the contour C and
s is the curvilinear coordinate along the plate contour. The
condition at the angular points ak of the contour is given by
ssaMabnb � Zktak

dwk ¼ 0. Since the lateral boundary of the
piezoelectric actuators is bare (no electrode) there is no
electric charge density applied to the actuator contour.

Remarks

(1) It is worthwhile noticing that the first two equations
(26) are similar to those of the Love–Kirchhoff first-
order theory of elastic thin plates. The third equation
governs the shearing effect. The additional equations
(27) are deduced from the conservation law of the
electric charge or the Gauss equation.

(2) In the case of an electric potential applied to the pie-
zoelectric element faces, the electric charge balance
equation (27b) does not exist and it is replaced by
the essential boundary condition on the electric
potential (V given).
5. Constitutive equations

The constitutive equations for the present piezoelectric
composite plate model are deduced from the 3D constitu-
tive equations for piezoelectric and elastic materials stated
in Section 2. The global plate constitutive equations are
computed from the resultants defined by Eqs. (20) and
(21) and can be put in matrix form according to the two
configurations.

(i) Bilayer configuration

D

Q

� 	
¼ KDE 0

0 KQc

� 	
E

c

� 	
; ð29Þ

N

MbR
q
D3

2666664

3777775 ¼
KNU KNw KNc ðKNV ÞT 0

KNw KMw KMc ðKMV ÞT ðKMwÞT

KNc KMc KRc ðKRV ÞT 0

KNV KMV KRV KqV 0

0 KMw 0 0 KDw

2666664

3777775
Sð0Þ

Sð1Þ

Sð2Þ

V
w

2666664

3777775.

ð30Þ
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Fig. 2. Elastic plate sandwiched between two identical piezoelectric
elements.
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(ii) Sandwich configuration

N

D

Q

2664
3775 ¼

KNU ðKNEÞT 0

KNE KDE 0

0 0 KQc

2664
3775

Sð0Þ

E

c

2664
3775; ð31Þ

MbR
q

D3

2666664

3777775 ¼
KMw KMc ðKMV ÞT ðKMwÞT

KMc KRc ðKRV ÞT 0

KMV KRV KqV 0

KMw 0 0 KDw

2666664

3777775
Sð1Þ

Sð2Þ

V

w

2666664

3777775; ð32Þ

where all the components of the block matrices (not given
here for a sake of simplicity) depend on the elastic plate
and piezoelectric actuators thicknesses and material con-
stants of the constituents (elasticity, piezoelectricity and
dielectric permittivity). We have set the following resultant
vectors (using the Voigt notation):

N¼

N 1

N 2

N 6

2664
3775; M¼

M1

M2

M6

2664
3775; bR¼

bR1bR2bR6

2664
3775; Q¼

Q1

Q2

" #
; D¼

D1

D2

" #
.

ð33Þ

In addition, we define generalized strain vectors and elec-
tric field vector as follows:

Sð‘Þ ¼

Sð‘Þ1

Sð‘Þ2

Sð‘Þ6

2664
3775 with ‘ 2 f0; 1; 2g; c ¼

c1

c2

" #
; E ¼

E1

E2

" #
.

ð34Þ
Remarks

(1) It is observed that there is no coupling between mem-
brane deformation and plate deflection for the sand-
wich configuration.

(2) Some components of the block matrices can be zero
due to the particular material symmetry or the zero
material constants.
6. Solution to the plate under cylindrical bending

Here, we place our attention to the problem of a piezo-
electric element bonded on an elastic plate simply supported

under cylindrical bending as depicted in Fig. 2. In the cylin-
drical bending situation, the electromechanical state vari-
ables do not depend on the y variable. Accordingly, the
displacement u2 does not play any role in the problem, so
that U2 = 0 and c2 = 0.

The plate suffers a surface density of normal force applied
to the top face and an electric potential is applied to the top
and bottom faces of the piezoelectric patches. It is sup-
posed that there is no shear traction and surface density
of moment on the plate faces, i.e., fa = 0 and m̂a ¼ 0.

In this particular situation, the equations of motion take
the simplified forms

N;x ¼ CðUÞ; ð35aÞ
M;xx þ p ¼ CðwÞ; ð35bÞbR;x � Q ¼ CðcÞ; ð35cÞ
D;x �D3 ¼ 0. ð35dÞ
Eq. (27b) does not exist since the electric potential V is
given on the piezoelectric actuator faces.

The electromechanical loads are expanded in a Fourier
series over the segment [0, L] and are written as

ðpðx; tÞ; V ðx; tÞÞ ¼
XN

n¼1

ðSn; V nÞ sinðknxÞeixt; ð36Þ

with kn ¼ np
L and Sn and Vn are the Fourier coefficients of the

applied surface density of force and electric potential,
respectively. Moreover, we set V(x) = Y(x)V0 with Y(x) the
index function defined by Y(x) = H(x � L1) � H(x � L2),
where H(x) is the Heaviside unit function (H(x) = 1 if
x P 0 and H(x) = 0 otherwise) and V0 is the uniform elec-
tric potential, where L1 and L2 are the abscissa of the patch
ends (see Fig. 2).

We look for solutions to the equations of motion as
Fourier series given by

ðUðx; tÞ;wðx; tÞ; cðx; tÞ;wðx; tÞÞ

¼
XN

n¼0
ðUn cosðknxÞ;W n sinðknxÞ;Cn cosðknxÞ;

Wn sinðknxÞÞeixt. ð37Þ

We notice that Eq. (37) satisfies the boundary conditions
for the cylindrical bending configuration. Now, we substi-
tute the load equation (36) and solution equation (37) into
the set of linearly coupled differential equations. The next
step consists of projecting the equations on the Fourier
base {cos(kmx), sin(kmx)} and integrating over the segment
[0,L]. So, the dependency upon the x variable is cancelled
out and this leads to a set of linear algebraic equations
for the Fourier coefficients of the displacement and electric
potential {Un,Wn,Cn,Wn;n 2 [1, . . . ,N]}, where N is the
number of terms retained in the series to ensure the
convergence.



A. Fernandes, J. Pouget / Computers and Structures 84 (2006) 1459–1470 1465
(i) Bilayer configuration2 32 3 2 3
Tabl
Mate
in [n

PZT-

Tabl
Mate
in [n

Com

Fig.
Thro
the-t
mode
A11 A12 A13 O

A21 A22 A23 A24

A31 A32 A33 O

O A42 O A44

6664 7775
U

W

C

W

6664 7775 ¼
B1

B2

B3

0

6664 7775. ð38Þ
(ii) Sandwich configuration2 32 3 2 3

A11U ¼ 0 and

A22 A23 A24

A32 A33 O

A42 O A44

64 75 W

C

W

64 75 ¼ B2

B3

0

64 75.

ð39Þ
e 1
rial constants for the PZT4 ceramic (CE

ij in [GPa], eij in [C/m2] and �S
ij

F/m])

CE
11 CE

12 CE
33 CE

13 CE
44 e31 e33 e15 �S

11 �S
33

4 139. 77.8 115. 74.3 25.6 �5.2 15.1 12.7 13.06 11.51

e 2
rial constants for the graphite/epoxy composite (CE

ij in [GPa] and �S
ij

F/m])

CE
11 CE

12 CE
22 CE

23 CE
55 e31 e33 e15 �S

11 �S
33

p. 134.86 5.1563 14.352 7.1329 5.654 0 0 0 0.031 0.0266
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3. Numerical results for the bilayer configuration (patch located at x = L

ugh-the-thickness distribution of the axial displacement at x = L. (c) Thro
hickness distribution of the normal component of the electric displacemen
l).
The vectors B and B of N dimension contain the Fourier
coefficients of the electromechanical loads. The block
matrices A and A are N · N matrices and O is N · N zero
matrix. The vectors U, W, C and W contain the first N

Fourier coefficients. All these aforementioned quantities
are specified in Appendix A.

7. Numerical results and comparisons

The numerical computations using the present approach
are carried out for a piezoelectric patch made of PZT-4
ceramics perfectly bonded on a composite plate made of
graphite fibers aligned along x direction in epoxy matrix
(see Tables 1 and 2 for the material properties with CE

ab

expressed in GPa, eia in C/m2 and �S
ij in nF/m). The geomet-

rical parameters of the problem are L = 0.15 m, L/he = 50,
L/(L2 � L1) = 5 and he/hp = 3. Only the actuator function is
examinated with an applied electric potential of the order
V0 = 100 V (Sn = 0 or p = 0).

A first set of numerical computations for the bilayer and
sandwich configurations (two identical piezoelectric ele-
ments symmetrically bonded to the elastic plate) leads to
the global deflection as function of x 2 [0,L] for a piezo-
electric patch located at the plate center (Figs. 3a and 4a)
and located at x = L/4 (Figs. 5b and 6b). The solid-line
curve corresponds to the present model, the dashed line
curve to the simplified model (no shear correction and no
quadratic term in the electric potential). In spite of the
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t at x = L/2 (solid line: the present model and dashed line: the simplified
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Table 3
Characteristic electromechanical values for the bilayer configuration
(patch position at x = L/2 and x = L/4)

x = L/2 x = L/4

Simp.
model

Present
model

Simp.
model

Present
model

w* [lm] 13.7399 14.2384 5.94668 5.80753
u* [lm] 0.391476 0.40287 0.115113 0.110985
r�11 ½MPa� �1.70128 �1.73127 �1.62216 �1.67497
D�3 ½mC=m2� �2.90893 �2.96064 �2.92192 �2.98491

Table 4
Characteristic electromechanical values for the sandwich configuration
(patch position at x = L/2 and x = L/4)

x = L/2 x = L/4

Simp.
model

Present
model

Simp.
model

Present
model

w* [lm] 24.8281 26.3238 8.47685 8.20863
u* [lm] 0.56934 0.599314 0.130699 0.124644
r�11 ½MPa� �1.5523 �1.55115 �1.43574 �1.51824
D�3 ½mC=m2� �2.93339 �3.01699 �2.95253 �3.04228

Table 5
Modal frequencies in [Hz] for the bilayer configuration (patch position at
x = L/2 and x = L/4)

x = L/2 x = L/4

Simp. model Present model Simp. model Present model

Flexural

n = 1 603.96 598.48 608.79 604.29
n = 2 2770.2 2719.5 2474.9 2418.6
n = 3 5827.8 5570.8 5848.2 5595.7
n = 4 10,894. 10,163. 10,163. 9434.2
n = 5 16,695. 14,987. 16,461. 14,783.
n = 6 24,034. 20,819. 24,059. 20,775.
n = 7 33,056. 27,478. 31,799. 26,251.
n = 8 42,112. 33,449. 41,670. 32,997.

Axial

n = 1 39,050.9 38,754.6 46,351.5 46,106.4
n = 2 61,855.9 60,588.9 76,485.9 77,236.

Table 6
Modal frequencies in [Hz] for the sandwich configuration (patch position
at x = L/2 and x = L/4)

x = L/2 x = L/4

Simp. model Present model Simp. model Present model

Flexural

n = 1 539.86 532.52 550.79 544.88
n = 2 2751.3 2700.3 2432.2 2361.8
n = 3 5735.3 5447.4 5670. 5384.7
n = 4 10,664. 9932. 9696.8 8948.1
n = 5 16,883. 15,041. 16,598. 14,812.
n = 6 23,312. 20,094. 24,419. 20,844.
n = 7 33,800. 27,814. 31,825. 25,953.
n = 8 41,003. 32,351. 42,099. 32,937.

Axial

n = 1 39,602.5 39,602.5 27,458.8 27,458.8
n = 2 52,365.9 52,365.9 61,855.9 61,855.9
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slenderness ratio L/he = 50, the discrepancy for the maxi-
mum deflection between the present model and the simpli-
fied model is respectively about 3.5% for the bilayer
configuration and about 5.7% for the sandwich configura-
tion if the piezoelectric patches are located at x = L/2. It is
observed that the longitudinal displacement as function of
x (Figs. 5a and 6a) is linear within the piezoelectric parts
and it corresponds to the patch extension; in the elastic
part, it is obviously constant. The longitudinal displace-
ment at x = L, depicted in Figs. 3b and 4b, shows a linear
variation over the elastic plate thickness. The electrome-
chanical field distributions computed at the center of the
patch exhibit jumps at z = ±he/2 in Figs. 3c and 4c for
the longitudinal stress and in Figs. 3d and 4d for the nor-
mal electric induction. The latter curve is layerwise con-
stant in the piezoelectric actuators.

Some characteristic values in physical units w� x ¼ L
2
;

�
z ¼ 0Þ for the deflection, u� x ¼ L; z ¼ he

2

� �
for the axial dis-

placement, r�11 x ¼ L
2
; z ¼ he

2

� �
for the axial stress and D�3 x ¼ð

L
2
; z ¼ he

2
Þ for the normal component of the electric displace-

ment are given in Tables 3 and 4. In particular, we observe
a maximum of the deflection, when applying an electric
potential of 100 V, of the order of 26.3 lm for x = L/2
and only 8.2 lm for x = L/4 in the case of the sandwich
configuration. In the case of the bilayer configuration the
maximum of deflection is reduced to 14.2 lm for x = L/2
and 5.8 lm for x = L/4.

8. Plate vibrations and frequency spectra

The second set of numerical results concerns the fre-
quencies of vibration modes of the elastic plate (i) equipped
with a piezoelectric actuator and (ii) sandwiched between
two piezoelectric elements. The modal frequencies for the
closed circuit condition are listed in Tables 5 and 6 for
the first eight flexural modes and the first two axial modes.

The numerical results for the sandwich configuration
show that there is no difference between the present model
and the simplified model for the axial frequencies because
the shear correction does not play any role in these modes.
Nevertheless, for the flexural frequencies (see Table 6), the
discrepancy is quite significant (more than 20% for n = 8).

In the case of the bilayer configuration with x = L/2, the
difference between the simplified model and the present
model is over than 2% for the second axial frequency and
more than 20% for the eighth flexural frequency.

Comparing both results of Tables 5 and 6, we can
observe that the flexural frequencies for the sandwich con-
figuration are smaller than those for the bilayer situation.
This is due to the modification of the flexural stiffness of
the composite plate.

Furthermore, comments on the influence of the piezo-
electric actuator position can be reported. Indeed, it is
observed in Table 5 that the piezoelectric actuator located
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at x = L/4 affects mostly the modes number 2, 4 and 8 lead-
ing to lower natural frequencies. The same comment holds
for the sandwich configuration (Table 6). Insofar as the
axial modes are concerned, it is not so obvious. Piezoelec-
tric element position has a greater influence on the modal
frequencies. In fact, for the bilayer configuration the posi-
tion at x = L/4 tends to increase the modal frequencies (see
Table 5). For the sandwich configuration the same remark
holds except for the first mode because the flexural and
axial modes are not coupled.

If we suppose that the electric potential applied to the
piezoelectric elements is harmonic in time V = V0eixt. The
set of linear equations to be solved is still Eqs. (38) and
(39) but with Sn = 0 and Vn 5 0 and with non-zero circular
frequency (x = 2pm). The numerical results for the spec-
trum of the flexural mode is shown in Figs. 7 and 8 where
we notice that the simplified model overestimates the
higher resonant frequencies in comparison to the refined
model. It is worthwhile noting that the modal frequencies
listed in Tables 5 and 6 correspond to those of the peaks
of Figs. 7 and 8.

9. Conclusion

In the present work, we have investigated the modelling
of static and dynamic responses of an elastic structure
(plate) equipped with piezoelectric elements. We have pro-
posed an accurate and efficient approximation for the elas-
tic displacement including shear correction function and a
quadratic distribution of the electric potential through the
piezoelectric layer. The present approach accurately pre-
dicts the global (elongation, deflection, frequencies) and
local (field distribution) responses of the composite struc-
tures. A number of numerical tests has been proposed for
two cases (i) a bilayer configuration with one piezoelectric
element and (ii) piezoelectric actuators symmetrically
placed on both sides of the elastic plate. The study accounts
for the influence of the stiffness and inertial contribution of
the piezoelectric elements on the local and global responses
of the structure. They play non negligible role. One of the
important difficulties is that the piezoelectric patches intro-
duced material and geometrical discontinuities. In the pres-
ent work, the equations of motion have been solved by
projecting them on the Fourier base. Such a study of piezo-
electric composites including active piezoelectric elements
seems to be useful for structural control of elastic struc-
tures (vibration and shape) [12]. Extension to more refined
models including nonlinear effects could be investigated in
further works.

Appendix A. Fourier coefficients

The present appendix gives the detailed components of
the matrix form defined in Section 6 for the bilayer (Eq.
(38)) and sandwich (Eq. (39)) configurations in the case
of the cylindrical bending problem.
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(i) Bilayer configuration

For the bilayer configuration the components of the
matrix A are

amn
11 ¼ I 0ðeÞ0 dmn þ I 0ðpÞ0 cmn

00

� �
X2

� Q0ðpÞ11 smn
11 þ K2

nQ0ðeÞ11 dmn

� �
;

amn
12 ¼ �I 0ðpÞ1 cmn

01 X2 þ Z0Q0ðpÞ11 smn
12 ;

amn
13 ¼

He

p
I 0ðpÞ0 cmn

00 X2 � Q0ðpÞ11 smn
11

� �
;

amn
21 ¼ �I 0ðpÞ1 smn

01 X2 þ Z0Q0ðpÞ11 smn
21 ;

amn
22 ¼ I 0ðeÞ0 þ K2

nI 0ðeÞ2

� �
dmn þ I 0ðpÞ0 smn

00 þ I 0ðpÞ2 smn
02

h i
X2

� D0ðpÞ11 þ Z2
0Q0ðpÞ11

� �
smn

22 þ K4
nD0ðeÞ11 dmn

h i
;

amn
23 ¼ �

H e

p
I 0ðpÞ1 smn

01 þ KnJ 0ðeÞ2 dmn

� �
X2

þ H e

p
Z0Q0ðpÞ11 smn

21 þ K3
nd 0ðeÞ11 dmn;

amn
24 ¼ E031smn

20 ;

amn
31 ¼

He

p
I 0ðpÞ0 cmn

00 X2 � Q0ðpÞ11 smn
11

� �
;

amn
32 ¼ �

H e

p
I 0ðpÞ1 cmn

01 þ KnJ 0ðeÞ2 dmn

� �
X2

þ H e

p
Z0Q0ðpÞ11 smn

12 þ K3
nd 0ðeÞ11 dmn;

amn
33 ¼ J 0ðeÞ3 dmn þ

H 2
e

p2
I 0ðpÞ0 cmn

00

� �
X2

� bA055 þ K2
n
bD0ðeÞ11

� �
dmn þ

H 2
e

p2
Q0ðpÞ11 smn

11

� 	
;

amn
42 ¼ E031smn

02 ;

amn
44 ¼ G011cmn

11 þ H 033smn
00

and the components of the vector B are

bm
1 ¼ �2Kme031

bV m;

bm
2 ¼ �bS m þ 2K2

mZ0e031
bV m;

bm
3 ¼ �

2He

p
Kme031

bV m.

In the above definitions we have set Kn = knh0 and
ðHa; Z0Þ ¼ 1

h0
ðha; z0Þ with (a = e) for the elastic plate and

(a = p) for the piezoelectric element. We have also intro-
duced the dimensionless electromechanical and inertial
variables and material constants:

ð bU n; bW n; bCnÞ¼
C00

h2
0

ðU n;W n;h0CnÞ; bWn¼
C00Wn

E0

;

bV n¼
C00V n

h2
0E0

; bSn¼
Sn

h0

;

I 0ðaÞ0 ;I 0ðaÞ1 ; I 0ðaÞ2 ;J 0ðaÞ2 ;J 0ðaÞ3

� �
¼ 1

q0h3
0

h2
0I ðaÞ0 ;h0I ðaÞ1 ;I ðaÞ2 ;J ðaÞ2 ;J ðaÞ3

� �
;

X2¼q0h2
0

C00

x2;
D0ðaÞ11 ;d
0ðaÞ
11 ; bD 0ðaÞ11 ;Q

0ðaÞ
11 ; Â

0
55

� �
¼ 1

h3
0C00

DðaÞ11 ;d
ðaÞ
11 ; bDðaÞ11 ;h

2
0QðaÞ11 ;h

2
0Â55

� �
;

e031¼
E0e31

C00

; E031¼
E0E31

h3
0C00

; G011¼
E2

0G11

h5
0C00

; H 033¼
E2

0H 33

h3
0C00

;

with the physical quantities

QðaÞ11 ¼ haCðaÞ11 ; DðaÞ11 ¼
h3

a

12
CðaÞ11 ; dðaÞ11 ¼

2h3
a

p3
CðaÞ11 ;

bDðaÞ11 ¼
h3

a

2p2
CðaÞ11 ; bA55 ¼

he

2
CðeÞ55 ; E31 ¼ �

h3
p

6
e31;

G11 ¼
h5

p

30
�S

11; H 33 ¼
h3

p

3
�S

33

where the constants C00, h0 and q0 are respectively the con-
stant elastic modulus, the thickness and mass density of ref-
erences (elastic layer for numerical investigations) and for
numerical convenience E0 = 1010 V/m.
Moreover we have set

smn
ij ¼ hY ðX ÞKi

m sinðmpX Þ;Kj
n sinðnpX Þi

cmn
ij ¼ hY ðX ÞKi

m cosðmpX Þ;Kj
n cosðnpX Þi; fi; jg ¼ f0; 1; 2g

with the operator h,i is defined as hf ; gi ¼ 2
R 1

0
fg dX with

X ¼ x
L.

(ii) Sandwich configuration

For the sandwich configuration the components of
the matrix A are

�amn
11 ¼ I 0ðeÞ0 dmn þ 2I 0ðpÞ0 cmn

00

� �
X2

� 2Q0ðpÞ11 smn
11 þ K2

nQ0ðeÞ11 dmn

� �
;

�amn
22 ¼ ðI 0ðeÞ0 þ K2

nI 0ðeÞ2 Þdmn þ 2ðI 0ðpÞ0 smn
00 þ I 0ðpÞ2 smn

02 Þ
h i

X2

� 2ðD0ðpÞ11 þ Z2
0Q0ðpÞ11 Þsmn

22 þ K4
nD0ðeÞ11 dmn

h i
;

�amn
23 ¼ �

2He

p
I 0ðpÞ1 smn

01 þ KnJ 0ðeÞ2 dmn

� �
X2

þ 2He

p
Z0Q0ðpÞ11 smn

21 þ K3
nd 0ðeÞ11 dmn;

�amn
24 ¼ 2E031smn

20 ;

�amn
32 ¼ �

2He

p
I 0ðpÞ1 cmn

01 þ KnJ 0ðeÞ2 dmn

� �
X2

þ 2He

p
Z0Q0ðpÞ11 smn

12 þ K3
nd 0ðeÞ11 dmn;

�amn
33 ¼ J 0ðeÞ3 dmn þ

2H 2
e

p2
I 0ðpÞ0 cmn

00

� �
X2

� bA055 þ K2
n
bD 0ðeÞ11

� �
dmn þ

2H 2
e

p2
Q0ðpÞ11 smn

11

� 	
;

�amn
42 ¼ 2E031smn

02 ;

�amn
44 ¼ 2ðG011cmn

11 þ H 033smn
00 Þ

and the components of the vector B are

�bm
2 ¼ �bS m þ 4K2

mZ0e031
bV m;

�bm
3 ¼ �

4H e

p
Kme031

bV m.
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