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Abstract

The present work proposes a new approach to laminated plates with piezoelectric layers based on a refinement of the
electric potential as function of the thickness coordinate and accounting for shearing correction of the elastic displacement. The
approach deals with the combination of an equivalent single-layer approach for the mechanical displacement with a layerwise-
type modelling of the electric potential considered as an additional degree of freedom. Such an approach offers flexibility
in accommodating electric conditions at the layer interfaces. The equations governing the force, moment and electric charge
resultants of the laminated piezoelectric plate are then deduced from a variational formulation involving mechanical surface
loads or prescribed electric potential on the top and bottom faces of the plate as well as at layer interfaces. A particular attention
is devoted to the interface conditions which are enforced by using Lagrange multipliers in the variational principle. Emphasis
is placed on the performances, advantages and limitations of the present approach. The quality of the predictions of the global
and local responses (the through-the-thickness variation of elastic displacements, stresses, electric potential and induction)
is quantified for particular structures of practical interest such as piezoelectric bimorph, bilayer structure and piezoelectric
sandwich undergoing applied density of force and electric potential. Moreover, comparisons of the results provided by the
refined approach to those of finite element computations and simplified model are also presented. The comparisons assess of
the effectiveness of the present laminated piezoelectric plate model that improves, in significant way, the predictions given by
a simplified approach. 2002 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction

The analysis of piezoelectric composites such as laminated plates requires theories with efficiently accurate approximation of
bothsensorandactuator functions. The study of novel materials consisting of composite structures equipped with piezoelectric
layers remains an active area of research and the success ofadaptive deviceshas attracted the attention of industry due
to numerous technological applications (Tani et al., 1998; Sunar and Rao, 1999). The most simple piezoelectric actuator is
usually made of single component system (for instance, a slab of piezoelectric ceramics). Typically, such an actuator produces
displacements in the order of few micro-meters when applying an electric field up to 1 kV/mm. To overcome this limitation,
an actuator using flexural-extensional deformation of thin structures requires several components and it will be acomposite
material rather than a monolithic structure. One of the most popular multilayer piezoelectric composites commonly used is
the piezoelectric bimorphor bender. The application of an electric field across the two layers of the bender causes one layer
to expand while the other one shrinks. The global result is a flexural deformation much greater than the length or thickness
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deformation of the individual layers. This is theactuatoror motor function, and a magnification of the elastic displacement
by a factor of 100 is thus obtained. Conversely, when a piezoelectric bimorph or bi-layer is forced to flex, one layer will be
in tension while the other is in compression. The variation of stresses in each layer will produce electric (voltage and current)
outputs. Piezoelectric materials and especially piezoelectric composites open completely new possibilities in the design of
adaptive or smart structures and very interesting technological applications have been proposed, ranging from aeronautical and
automotive structures (shape control of large space antennas, active or passive control of vibrations, etc.) (Rao and Sunar, 1994;
Loewy, 1997; Hagood and Von Flotow, 1991; Yoon and Washington, 1998) to miniature positioning devices (micro-robots,
medical apparatus, micro-pumps, etc.) (Muralt et al., 1986) and other engineering applications.

It seems, therefore, that a coupled piezoelectric laminated plate approach that canaccuratelyand efficientlypredict the
electromechanical stateof thin and intermediary thick piezoelectric laminated composites requires a particular attention.
The importance of the challenging study of these models was recognized in the literature (Saravanos and Heyliger, 1999;
Gopinathan et al., 2000). The present work attempts to develop consistent, yet comprehensive approach to piezoelectric
plates made of a stack of piezoelectric or/and non-piezoelectric layers. Quite number of recent studies establishing correct
and efficient piezoelectric plate models has been reported (Saravanos and Heyliger, 1999; Wang and Yang, 2000). Here, we
propose an approach combining anequivalent single-layertheory for the mechanical displacements includingshear effects
with a layerwise-type approximationfor the electric potential. This approach is also an interesting feature because multilayered
piezoelectric structures are appropriate to accommodate multiple voltage actuator inputs and sensor outputs. Furthermore, the
present study is a continuation of a paper devoted to single-layered plate (Fernandes and Pouget, 2001-a, 2001-b).

A number of studies attempts to incorporate various representations of approximation through-the-thickness of laminated
piezoelectric plates with extensions to shells. Pioneer works on piezoelectric plates were proposed by H.F. Tiersten (1969),
R.D. Mindlin (1972) and more recently by C.K. Lee (Lee and Moon, 1989; Lee, 1990). Furthermore, various types of
piezoelectric laminates are classified according to the kinematic assumptions for approximating the through-the-thickness
variation of electromechanical variables, refinement of field approximations and the method of representation of piezoelectric
layer. The more common model is based on the elementary beam or plate theories using the kinematic assumption of the Love–
Kirchhoff’s theory. The simplest approach to piezoelectric beams and plates incorporate effectives forces and moments induced
by piezoelectric actuation on plate deformation, however the electric charge equation is not considered in the analysis. This
kind of approach is referred usually asinduced strain models. The latter models have been presented in the works of B. Wang
and C.A. Rogers (1991), extensions to layerwise approach have been considered by P.F. Pai (1993) and D.H. Robbins and
J.N. Reddy (1993).

A large number of formulations assumes that piezoelectric laminate will deform as a single homogeneous layer and the
electric charge conservation equation or Gauss law is considered for the sensor function of the laminate. Such an approach,
namedequivalent single layer model, has been reported mainly by C.K. Lee and F.C. Moon (1989) and C.K. Lee (1990). Many
authors have considered single-layer theories for the analysis of active and sensor laminated plates and shells, based either on
the Love–Kirchhoff’s assumption or on the first-order shear deformation approximation (Chandrashekhara and Donthireddy,
1997). The approach considers both direct and converse piezoelectric constitutive equations and provides two-dimensional
equations of motion for the resultants and effective electric charge equations. The latter equations are however used to compute
the electric outputs of the sensor function.

In order to remedy the limitation of the previous approach some attempts have been made to introduce the electric degrees
of freedom in addition to the elastic displacement as function of the thickness variable, effective charge equations are then
obtained and present the fully piezoelectric coupling effects. This kind of models are usually referred as tocoupled single-
layer piezoelectric plate theories. Earlier works dealing with coupled single-layered approaches were reported by H.F. Tiersten
(1969) and R.D. Mindlin (1972). Nevertheless, they did not considered extension to multilayer theories. A number of consistent
coupled single-layer piezoelectric plate models were developed by J. Kim et al. (1997) and J. Wang and coworkers (1999)
leading also to finite element modelling of piezoelectric structures. J.A. Mitchell and J.N. Reddy (1995) propose a hybrid or
mixed approach to piezoelectric laminates using the equivalent single-layer assumption for the elastic displacements while the
electric potential is considered as discrete-layer approximation providing then excellent predictions of the laminate responses.

Nevertheless, the equivalent single-layer theory turns out to be insufficient in some utmost situations, for rather thick lam-
inates or plates with strong variations of elastic, piezoelectric and dielectric coefficients.Layerwise approachesare therefore
considered for which their kinematic and electric potential variations through the plate thickness is smooth enough within each
layer and the continuity conditions at the layer interface are also ascertained. Layerwise models incorporate the local electro-
mechanical responses of each layer of the laminate. Lot of works were reported on layerwise approach, among them, we quote
the works of E. Carrera (1997), P. Heyliger and D.A. Saravanos (1995), U. Icardi and M. Di Scuva (1996) and J.S. Yang (1999).
Some of them deal with layerwise approaches mostly dedicated to finite element formulation such as works of D.A. Savaranos
et al. (1997) or J. Kim and coworkers (1997). Extensions to piezoelectric multilayered shells have been proposed by H.S. Tzou
(1993) based either on Kirchhoff–Love’s hypothesis or on the first-order shear deformation theory.
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Another efficient and interesting approach uses asymptotic techniques. The full three-dimensional electroelasticity solution
is researched for as asymptotic expansions with respect to a small parameter (typicallyε = h/L, whereh is the plate thickness
andL is a characteristic transverse dimension). The solution is then obtained by solving the two-dimensional field equations at
successive orders (Maugin and Attou, 1990; Cheng and Batra, 2000; Cheng et al., 2000).

The approach to piezoelectric laminates proposed here includes shear effects approximated by trigonometric functions
(Fernandes and Pouget, 2001-a, 2001-b). This particular choice of approximation is motivated by the boundary conditions on
the top and bottom faces of the plate that must be satisfied by transverse shear components. In addition, the approach accounts
for the fully approximation of the charge equation or Gauss equation. As consequence, we do not consider any hypothesis on the
electric displacement or induction. The present consistent approach to piezoelectric laminates is performed in the framework
of generalized variational formulation for linear piezoelectric materials. The effective equations of motion for the generalized
stress and electric charge or induction resultants are then deduced from the variational formulation along with the corresponding
boundary conditions. Various situations are considered such as bimorph structure, bilayer piezoelectric plate and sandwich plate
undergoing different kinds of electromechanical loads:

(i) surface density of force applied to the upper face of the plate; and
(ii) applied electric potential on the top and bottom faces of the plate.

Various benchmark tests are then proposed for the cylindrical bending problem of a simply supported piezoelectric plate. With
the view of characterizing theperformanceandcapabilitiesof the present approach but also the limitation of the model some
comparisons tofinite element computationsperformed on the 3D problems are presented. Moreover, in order to show thequality
of predictionof the plate modelling, the results are compared to those coming from a simplified model based on the Kirchhoff–
Love’s assumption (no shear effects). One of the key point of the study is to assess the capability of the present approach
to describe theglobal structural response(deflection, elongation, electric potential or charge), as well as thevariation of the
electromechanical quantities, stresses, electric inductions through the laminated plate thickness for typical slenderness ratios.

The outline of the paper is organized as follows. The formulation of linear piezoelectricity, governing equations and
variational principle are briefly stated in Section 2. The field distribution through the thickness is discussed in Section 3,
the treatment of the boundary conditions on the plate faces and the interface continuity conditions are also underlined. The
governing equations for the plate approach along with the associated mechanical and electric boundary conditions on the plate
contour are given in Section 4. Section 5 is dedicated to the constitutive laws for the generalized forces and moments as well as
generalized electric charges. The study of a laminated piezoelectric plate under cylindrical bending is examined in Section 6 for
two types of electromechanical load: applied density of force and electric potential. Numerical results and comparisons to finite
element method and simplified plate theory and discussions for piezoelectric bimorph, bilayer structure and sandwich plate for
different materials and slenderness ratios are proposed in Section 7. At last, discussion on the most pertinent results, limitations
of the model and extensions are presented in Section 8.

2. Piezoelectricity: variational formulation and governing equations

In this section we summerize the necessary ingredients about piezoelectricity involved in the following sections. The
formulation is based onHamilton’s principle. The advantage of this approach is that it accounts for both mechanical and
electric aspects simutaneously. The variational principle can be stated as

δ

t2∫
t1

∫
Ω

Ldv dt +
t2∫

t1

δW dt = 0, (1)

whereL is the density of the Lagrangian functional given by

L= 1
2ρu̇i u̇i −H(Sij ,Ei), (2)

where the first term in the right hand side of Eq. (2) is the kinetic energy density withui the components of the displacement,
ρ is the mass density,H(Sij ,Ei) is called theelectric enthalpy density functionwith Sij = u(i,j) = 1

2(ui,j + uj,i ) the linear
part of the strain tensor component andEi the electric field vector. For the linear piezoelectricity the enthalpy density function
takes on the form (Maugin, 1985)

H(Sij ,Ei) = 1
2σij Sij − 1

2DiEi, (3)
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whereσij are the components of the stress tensor andDi represents the electric displacement or induction vector. The last term
in Eq. (1) is the virtual work of the prescribed mechanical and electric quantities on the domain boundary given by

δW =
∫
∂Ω

Tiδui dS +
∫
∂Ω

Qδφ dS. (4)

In Eq. (4),T represents the surface traction andQ is the surface density of electric charge, both applied on the domain bound-
ary ∂Ω . The scalar variableφ is the electric potential. We restrict ourselves to classical linear piezoelectricity within the
framework of thequasi electrostatic approximationwhich allows for the electric field to be derived from the electric potential
as follows:

Ei = −φ,i . (5)

It is also observed that the piezoelectric material is a perfect isolator and dielectric. On using a classical argument of integration
by part, the field equations are (in absence of body force and density of free electric charge):

σij,j = ρüi , Di,i = 0. (6)

The associated boundary conditions read as{
σij nj = Ti or ui = ūi on∂Ω,

Dini = Q or φ = φ̄ on∂Ω.
(7)

The above equations must be completed by constitutive laws forσ andD. The latter electromechanical quantities are derived
from the enthalpy density function

σij = ∂H

∂Sij
, Di = − ∂H

∂Ei
. (8)

For linear piezoelectricity the enthalpy density function usually takes on the following form (Maugin, 1985; Ikeda, 1996):

H(Sij ,Ei) = 1
2C

E
ijpqSij Spq − eipqEiSpq − 1

2ε
S
ijEiEj . (9)

It has been assumed isothermal processes, moreover the thermomechanical coupling and pyroelectricity effect have been
neglected. Consequently, the constitutive equations for linear piezolectricity are

σij = CE
ijpqSpq − elij El, Di = eipqSpq + εSijEj . (10)

In Eq. (10)CE is the fourth-order tensor of elasticity coefficients measured in a constant electric field,e is the third-order
tensor of piezoelectricity coefficients andεS is the second-order tensor of dielectric coefficients measured in a constant strain.
In the following, we will focus our attention to materials which possess three mutually perpendicular planes of symmetry
(orthotropicsymmetry). The matrix form of the constitutive equations (10) is given in Appendix A.

3. Approximation of the elastic displacement and electric potential

Along with the accepted kinematic assumptions for the displacement field in most plate theories (Reddy, 1984; Ochoa and
Reddy, 1992) we consider an expansion of the displacement as a series of the thickness coordinate. For the present approach,
the displacement field and electric potential are assumed to be of the form

uα(x, y, z, t) = Uα(x, y, t) − zw,α(x, y, t) + f (z)γα(x, y, t), α ∈ {1,2},
u3(x, y, z, t) = w(x,y, t),

φ(*)(x, y, z, t) = φ
(*)
0 (x, y, t) + z*φ

(*)
1 (x, y, t) + P*(z*)φ

(*)
2 (x, y, t) + g(z)φ

(*)
3 (x, y, t).

(11)

With * ∈ {1, . . . ,N} is the layer number. In the local expansion (11)z* is the thickness coordinate with respect to the mid-plane
of the*th layer (see Fig. 1).

Some comments on the above approximations are in order.

(i) The present approach combines anequivalent single-layertheory for the displacement field with alayerwise-type
approximationfor the electric potential. The purely elastic plate problem has been extensively examined by M. Touratier
(1991). In Eq. (11),Uα holds for themiddle plane displacement component, w is thedeflectionandγα represents the
shearing function. All the functions are defined at the mid-plane coordinate(x, y,0).
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Fig. 1. Piezoelectric multi-layered plate.

(ii) For the electric potential (Fernandes, 2000), the first two terms can be associated with theapplied electric potentialon the
plate faces or the continuity condition of the electric potential at the layer interface. The third term is referred as to the
induced electric potentialby elastic deformation in the*th layer. The last term in Eq.(11)3 is connected with the shearing
deformation. In the present model, the through-the-thickness distribution of the shearing correction is approximated by
a trigonometric function. Consequently, we propose the following functions:

P*(z*) = z2
* −

(
h*

2

)2
, f (z) = h

π
sin

(
πz

h

)
, g(z) = h

π
cos

(
πz

h

)
, (12)

where h is the plate thickness which is supposed to be uniform andh* is the thickness of the*th layer andz* ∈
[−h*/2, h*/2].

(iii) We notez
(*)
I the interface coordinate between layers(*) and(*+1) with respect to the plate mid-plane (see Fig. 1). We set

z
(N)
I

= h/2 andz(0)
I

= −h/2 for a plate made ofN layers. Therefore, we havez ∈ [z(*−1)
I

, z
(*)
I

]. It could be convenient to
define the following coordinate change:

z* = z − z
(0)
*

, z
(0)
*

= 1
2

(
z
(*)
I

+ z
(*−1)
I

)
, (13)

wherez(0)
*

is the coordinate of the*th layer mid-plane with respect to that of the plate.

4. Boundary and interface conditions

(i) Two kinds of boundary condition are considered on bottom and top faces of the plate.
(a) We consider a force density per unit area applied on the top face of the plate and perpendicular to this face.
(b) An electric potential is supposed to be applied on the top and bottom faces of the plate.
The latter condition can be written as

φ(1)(x, y,−h/2, t) = φ
(1)
0 (x, y, t) − h1

2
φ
(1)
1 (x, y, t) = V−(x, y, t),

φ(N)(x, y,+h/2, t) = φ
(N)
0 (x, y, t) + hN

2
φ
(N)
1 (x, y, t) = V+(x, y, t),

(14)

thanks toP1(−h1/2) = 0,PN(+hN/2) = 0 andg(±h/2) = 0. For the sake of simplicity, we takeV+ = V andV− = −V

and the applied electric potential is supposed to be uniform on the plate faces.
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(ii) It is worthwhile discussing the continuity conditions at layer interfaces. Since the layers are perfectly bounded, it is clear

that the elastic displacements are continuous atz = z
(*)
I

. However, the continuity of the electric potential as well as the

normal component of the electric induction must be satisfied atz = z
(*)
I

(* ∈ {1,N − 1}). Therefore, we must write{
A* = φ(*+1)(x, y,−h*+1/2) − φ(*)(x, y,+h*/2) = 0,

B* = D
(*+1)
3 (x, y,−h*+1/2) − D

(*)
3 (x, y,+h*/2) = 0,

(15)

where the normal component of the electric induction of the*th layer is calculated from the constitutive Eq.(10)2:

D
(*)
3 = e

∗(*)
3αβ Sαβ − ε

∗(*)
33 φ

(*)
,3 , (16)

wheree∗(*)3αβ andε∗(*)
33 are the effective piezoelectric and dielectric constants of the*th layer (see Appendix E).

(iii) The condition (15)2 is accounted for if no electric potential is applied at the interface, otherwise we must replace the
condition by the jump condition[[D3]]z=z

(*)
I

= Q* whereQ* is the surface density of electric charge at the interface

z = z
(*)
I .

(iv) At this stage of the study, we can use the 2(N − 1) conditions of continuity (15) to reduce the number of unknown
functions and consider the variational principle next. In the present work we consider an other way of solving the problem
by introducing the Lagrange multipliers associated with the continuity conditions (15).

(v) Another possible electric boundary condition iselectric chargesapplied on the top and bottom faces of the plate. In this
case the boundary condition on the electric induction is[[D]] · n = Q, which, in our case, reads as

D3(x, y, z = ±h/2, t) = Q(x,y, t).

In the present work such boundary conditions will not be envisaged.

5. Equations of the plate model

The variational formulation stated in Section 2 is then used to derive the equations of thetwo-dimensional modelfrom the
fully three-dimensional theory of piezoelectricity. By substituting the expansions defined in Eq. (11) for the elastic displacement
and the electric potential and integrating over the plate thickness we eliminate the dependency of the field on the thickness
coordinatez. Nevertheless, the continuity conditions (15) are then accounted for by introducingLagrange multipliersµ* andν*
in the Hamiltonian principle. The variational principle takes on the new following form:

t2∫
t1

(δK − δU + δW1 + δW2 + δΛ)dt = 0. (17)

In the present work static processes are only investigated and the kinetic energy is not written down. The second term in Eq. (17)
is the variation of the internal force work

δU =
∫
Σ

{
Nαβ(δUα),β −Mαβ(δw),αβ + M̂αβ(δγα),β + Q̂αδγα

+
N∑

*=1

[ 3∑
m=0

D
(m)(*)
α δφ

(*)
m,α +

3∑
k=1

D
(k)(*)
3 δφ

(*)
k

]}
dS. (18)

We introduce the following stress and electric charge or induction resultants:

(
Nαβ,Mαβ, M̂αβ

) =
N∑

*=1

z
(*)
I∫

z
(*−1)
I

(
1, z, f (z)

)
σ
(*)
αβ dz, (19)

Q̂α =
N∑

*=1

z
(*)
I∫

z
(*−1)
I

f ′(z)σ (*)
α3 dz, (20)
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(
D

(0)(*)
α ,D

(1)(*)
α ,D

(2)(*)
α ,D

(3)(*)
α

) =
z
(*)
I∫

z
(*−1)
I

(
1, z − z0

*,P*

(
z − z0

*

)
, g(z)

)
D

(*)
α dz, (21)

(
D

(1)(*)
3 ,D

(2)(*)
3 ,D

(3)(*)
3

) =
z
(*)
I∫

z
(*−1)
I

(
1,P

′
*

(
z − z0

*

)
, g′(z)

)
D

(*)
3 dz, (22)

with P ′(z) = dP(z)/dz, f ′(z) = df (z)/dz, andg′(z) = dg(z)/dz. The third and fourth terms in Eq. (17) represent the works of
applied forces and electric charges on the plate boundary which are the sum of works of the forces and electric charges applied
to the top and bottom faces of the plate and those of the same quantities on the lateral boundary of the plate, namely:

δW1 =
∫
Σ

{
fαδUα − pδw + m̂αδγα +

N∑
*=1

3∑
m=0

q
(*)
m δφ

(*)
m

}
dS, (23)

δW2 =
∫
C

{
FαδUα + T δw + Cαδγα − Mf (δw),n +

N∑
*=1

3∑
m=0

Q
(*)
m δφ

(*)
m

}
ds −

∑
p

Zpδwp. (24)

In Eq. (23),fα andp are the densities of force per unit of area,m̂α is a surface moment density. The generalized electric charges

q
(*)
m are given by(

q
(*)
0 , q

(*)
1 , q

(*)
2 , q

(*)
3

) = [(
1, z − z0

*,P*

(
z − z0

*

)
, g(z)

)
D

(*)
3

]z(*)I

z
(*−1)
I

. (25)

In Eq. (24),Fα andT are densities of force per unit of length,Mf andCα are lineic moment densities andZp are transverse
forces applied at angular points of the edge boundary contourC of the plate. Finally,(δw),n is the derivative of the variation

δw with respect to the normal direction of the boundary contour. The electric charges per unit of lengthQ
(*)
m are supposed to

be zero (no electrode), because the dielectric constant of the piezoelectric material is much larger than that of the outside air.
Finally, the last term in Eq. (17) is the virtual work of forces due to Lagrangian multipliers and it reads as

δΛ =
N−1∑
*=1

∫
S
(*)
d

δ
[
µ*A* + ρe(*)

(
φe(*) − V e(*)

) + νē(*)Bē(*)

]
dS, (26)

whereS
(*)
d

is the surface of the interface between the*th and(* + 1)th layers. In the formulation (26), the case where the
electric potential is applied to an interface through a metallic electrode has been considered. In Eq. (26),e(*) is the number of
the electroded interface for whichνē(*) = 0 andē(*) is the interface number without electrode for whichρe(*) = 0. In addition

V e(*) is the given electric potential on the interface numbere(*). On taking into account Eq. (15), the constitutive law (16) and
approximation (11), straightforward algebra leads to the virtual work of the Lagrangian multipliers

δΛ =
∫
Σ

{
Au
αβ(δUα),β −Aw

αβ(δw),αβ + A
γ
αβ(δγα),β

+
N−1∑
*=1

[ 3∑
m=0

(
A

+(*)
m δφ

(*+1)
m + A

−(*)
m δφ

(*)
m

) +A*δµ* +Bē(*)δνē(*) + (
φe(*) − V e(*)

)
δρe(*)

]}
dS, (27)

where the coefficientsAf
αβ with f ∈ {u,w,γ } depend on the material constants of the layers as well as their thicknesses. The

explicit forms of these coefficients are given in Appendix B.

On using integration by part if needed and collecting all the factors of the arbitrary variations –δUα , δw, δγα , δφ
(*)
m ,

δµr , δνē(r), δρe(r) with m ∈ {0,1,2,3}, * ∈ {1, . . . ,N} andr ∈ {1, . . . ,N − 1} – we reach the field equations (static process):
Nαβ,β + fα = 0,

Mαβ,αβ − p = 0,

M̂αβ,β − Q̂α + m̂α = 0,

D
(m)(*)
α,α −D(m)(*)

3 + q
(*)
m = 0, * ∈ {1, . . . ,N} andm ∈ {0,1,2,3},

(28)
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where we have introduced the modified force, moment and electric charge resultants:

Nαβ = Nαβ − Au
αβ,

Mαβ = Mαβ − Aw
αβ,

M̂αβ = M̂αβ − A
γ
αβ,

D(m)(*)
3 = D

(m)(*)
3 −A

−(*)
m − A

+(*−1)
m , * ∈ {1, . . . ,N} andm ∈ {0,1,2,3}.

(29)

In addition, we must setA+(0)
m = A

−(N)
m = 0 and we haveD(0)(*)

3 = 0. The variation of the Lagrangian multipliers yields the

continuity conditions given by Eq. (15) (A* = 0,Bē(*) = 0 andφe(*) − V e(*) = 0 on electroded interfacesz = z
e(*)
I

).
The associated boundary conditions on the plate contourC are:

Fα = Nαβnβ or Uα given,

T = (ταMαβnβ),s + nαMαβ,β or w given,

Mf = nαMαβnβ or w,n given,

Cα = M̂αβnβ or γα given,

D
(m)(*)
α nα = 0 orφ(*)

m given,

(30)

with * ∈ {1, . . . ,N} and m ∈ {0,1,2,3}, wheres is the curvilinear coordinate along the contourC. Moreover, we have
[[ταMαβnβ − Zp]]Ap

= 0 at the angular pointsAp of the plate contour whereτ is the tangent vector to the contourC.

Comments. (i) The first two Eq. (28) are similar to those of the Love–Kirchhoff first-order theory of elastic thin plates, the third
equation governs the shearing effects.

(ii) The set of equations(28)4 are deduced from the conservation law of the electric charge or the Gauss equation. It is

worthwhile noticing the presence, in Eq.(28)4, of the variation of surface density of electric chargeq
(*)
m between the interfaces

of the*th layer.
(iii) For an applied electric potential on the top and bottom faces of the plate, the conditions given by Eq. (14) must be

considered. Consequently, the variation of the unknown functionsφ
(1)
0 andφ

(N)
0 are no longer arbitrary, then Eqs.(28)4 for

m = 0 and* = 1 orN disappear.

6. Constitutive relations for multilayered piezoelectric plates

We consider, here, the constitutive laws for the linear piezoelectricity as stated by Eq. (10) or (A.1). On using the stress and
electric induction resultants defined by Eqs. (19)–(22) and integrating over the plate thickness we are able to put the constitutive
equations for the generalized resultants in the following matrix form:

N
M
M̂
D3

 =


A B E P1
B D Ê P2
E Ê D̂ P3

P
T
1 P

T
2 P

T
3 H




S(0)

S(1)

S(2)

F1

 , (31)

where the block matrices are given in Appendix C and we have set the following vectors (we use the Voigt notation for sake of
convenience):

N =
 N1

N2
N6

 , M =
 M1

M2
M6

 , M̂ =
 M̂1

M̂2

M̂6

 , (32)

for the in-plane resultant, the moment resultant and moment resultant produced by shearing effect, respectively,

S(j) =


S
(j)
1

S
(j)
2

S
(j)
6

 , (33)
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for the generalized strains defined by

S
(0)
αβ = U(α,β), S

(1)
αβ = −w,αβ, S

(2)
αβ = γ(α,β), (34)

with α,β ∈ {1,2} and the parentheses mean the symmetric part of the tensor.
In addition,D3 andF1 are vectors of 3N dimension given by

D3 = [
D

(1)(1)
3 ,D

(2)(1)
3 ,D

(3)(1)
3 , . . . ,D

(1)(N)
3 ,D

(2)(N)
3 ,D

(3)(N)
3

]T
, and (35)

F1 = [
φ
(1)
1 , φ

(1)
2 , φ

(1)
3 , . . . , φ

(N)
1 , φ

(N)
2 , φ

(N)
3

]T
. (36)

The second constitutive law has also the matrix form Q̂
D1
D2

 =
 R L1 L2

L
T
1 T1 0

L
T
2 0 T2


 G

F0,1
F0,2

 , (37)

with the vectors

G =
[
γ1
γ2

]
, Q̂ =

[
Q̂1

Q̂2

]
, (38)

and

Dα = [
D

(0)(1)
α ,D

(1)(1)
α ,D

(2)(1)
α ,D

(3)(1)
α , . . . ,D

(0)(N)
α ,D

(1)(N)
α ,D

(2)(N)
α ,D

(3)(N)
α

]T
, (39)

F0 = [
φ
(1)
0 , φ

(1)
1 , φ

(1)
2 , φ

(1)
3 , . . . , φ

(N)
0 , φ

(N)
1 , φ

(N)
2 , φ

(N)
3

]T
, (40)

with α ∈ {1,2} andF0,α holds for the derivative with respect toxα . All the block matrices involved in Eqs. (31) and (37) are
explicitly defined in Appendix C. The components of the matrices depend on the layer geometry (layer thickness and interface
coordinates) and material constants (elasticity, piezoelectricity and dielectric permittivity) and they are defined in Appendix D.
Some components of the above block matrices can be zero due to their particular form and the zero material constants.

Remarks. In the case of an electric potential applied to the bottom and top faces of the plate, the unknown functionsφ
(1)
0

and φ
(N)
0 depend on the functionsφ(1)

1 and φ
(N)
1 and also onV ± through Eq. (14). Accordingly, the dimension of the

vectorF0,α is reduced to 4N − 2. Moreover, the corresponding equations (see Eq.(28)4) for * = 1, m = 0 and* = N , m = 0
disappear. The electric potentialV ± is then considered as an applied field in the plate equations.

7. Laminated piezoelectric plate under cylindrical bending

One of most interesting situations is the study of the laminated piezoelectric plate undergoing anapplied surface force
densityor/andelectric potentialundercylindrical bending, because the equations of piezoelectric plate can be easily solved
by means of Fourier series. Moreover, this situation can be compared to finite element method. It is assumed no shear traction
(fα = 0) and no surface moment density (m̂α = 0) on the plate faces. The simple support conditions for a rectangular plate of
lengthL and widthl are given by

σ11(0, z) = σ11(L, z) = 0,
σ13(0, z) = σ13(L, z) = 0,
u3(0, z) = u3(L, z) = 0.

(41)

It is worthwhile noting that the boundary conditions along the contourC given by Eq. (30) are obviously satisfied for the
cylindrical bending configuration.

In addition, all stresses, strains, displacements, electric field and potential do not depend on they variable, so that the
displacementu2 plays no role in the study. As consequence, we setU2 = 0 andγ2 = 0. The electromechanical load functions
can be expressed in the form of Fourier series as follows:

(
p(x),V (x)

) =
∞∑
n=1

(Sn,Vn)sin(λnx), (42)
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with λn = nπ/L and{
Sn = 4S0/nπ, Vn = 4V0/nπ, if n odd,
Sn = 0, Vn = 0, if n even.

(43)

The loads defined by Eqs. (42)–(43) represent uniform applied surface density of forceS0 and electric potentialV0. A solution
to Eqs. (28) along with the constitutive equations (31)–(40) which satisfies the boundary conditions of the cylindrical bending
of a plate simply supported takes on the form

(
U1(x), γ1(x)

) =
∞∑
n=1

(Un,Γn)cos(λnx), (44)

(
w(x),φ

(*)
0 (x),φ

(*)
1 (x),φ

(*)
2 (x),φ

(*)
3 (x)

) =
∞∑
n=1

(
Wn,Φ

(*)
0,n,Φ

(*)
1,n,Φ

(*)
2,n,Φ

(*)
3,n

)
sin(λnx), (45)

and the same type of series holds for the Lagrange multipliers

(µr , νē(r), ρe(r)) =
∞∑
n=1

(
M

(r)
n ,N

ē(r)
n ,R

e(r)
n

)
sin(λnx), r ∈ {1,N − 1}. (46)

The Fourier coefficients in the above series are determined by substituting the solution (44)–(46) into the plate equations and
constitutive equations, next solving simultaneously a set of linear algebraic equations for eachn where the right hand side
contains the electromechanical loads given by Eq. (42). The set of linear algebraic equations for the Fourier coefficients can be
taken on the form

AnXn = Bn,

whereAn is a square matrix of 6N + 1 order in the case of the open circuit configuration and of 6N − 1 order in closed-circuit
conditions or applied electric potential. The vectorXn contains the Fourier coefficients

Xn = {
Un,Wn,Γn,Φ

(*)
m,n,M

(r)
n ,N

ē(r)
n ,R

e(r)
n

}
, m ∈ {0,1,2,3}, * ∈ {1,N}, r ∈ {1,N − 1}.

The vectorBn contains the applied fields as function of the Fourier factorsSn andVn. The matrixAn and vectorBn are function
of λn, the layer geometry and material constants.

8. Numerical results and comparisons

This section attempts to quantitavely demonstrate the performance of the present approach to piezoelectric laminated plates.
Numerical simulations are performed for typical configurations and they are mostly used as benchmark tests. In addition, the
results are directly compared with those provided byfinite element formulationand with solutions extracted from a simplified
theory (based on kinematic assumptions of Love–Kirchhoff’s theory keeping however quadratic terms in the expansion of the
electric potential) and they are presented in order to place the advantages and limitations of the refined approach in evidence.
Additional comparisons were considered to exact 3D solution to laminated plates which are merely extensions of the Pagano’s
work to piezoelectric laminated plates (Heyliger and Brook, 1996; Bisegna and Maceri, 1996; Fernandes, 2000). Nevertheless,
there is no noticeable discrepancies between the results coming from the finite element computations and those given by the
exact solutions (Fernandes, 2000). Two mechanical load configurations are considered corresponding to practical applications:

(i) sensor functionwith a force density per unit area applied to the upper face; and
(ii) actuator functionwith an electric potential applied to the top and bottom faces of the plate.

Attention will be focussed on particular structures undergoing cylindrical bending among them:

(i) piezoelectric bimorph;
(ii) bi-layer structure made of a piezoelectric layer glued to a non-piezoelectric but elastic layer; and

(iii) piezoelectric sandwich plate consisting of composite layer coated with two piezoelectric layers including the intermediary
electroded configuration.

The capability of the present approach is characterized by illustrating the local variation of electromechanical variables through-
the-thickness of the plate and global response such as deflection of the plate, the maximum of the induced electric potential and
stresses at layer interfaces. The material properties of the layers used for the numerical simulations are given in Tables 1 and 2.
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Table 1
Independent elastic, piezoelectric and dielectric constants of piezoelectric materials (transversally isotropic symmetry)

CE
11 CE

12 CE
33 CE

13 CE
44 e31 e33 e15 ε∗

11 ε∗
33

(GPa) (C/m2) (nF/m)

PZT-4 139.0 77.8 115.0 74.3 25.6 −5.2 15.1 12.7 13.06 11.51

Table 2
Independent elastic, piezoelectric and dielectric constants of a composite made of graphite fibers alongx direction in epoxy
matrix,CE

13 = CE
12, CE

22 = CE
11, CE

66 = CE
55 andCE

44 = 1
2(C

E
22 −CE

23), ε
S
22 = εS33

CE
11 CE

12 CE
22 CE

23 CE
55 e31 e33 e15 ε∗

11 ε∗
33

(GPa) (C/m2) (nF/m)

Composite 134.86 5.1563 14.352 7.1329 5.654 0 0 0 0.031 0.0266

The geometry of the plate isL = 25 mm andl = 12.5 mm and different slenderness ratios are consideredL/h = 5,10 and 50
depending on the situation to be examined. Furthermore, the numerical results for the electromechanical variables are given
with the following dimensionless units

(i) for a density of force per unit areaS0 �= 0 (S0 = 1000 N/m2) we set

(U,W,Φ) = CE
00

hS0
(u1, u3, φ/E0), (Tij ,Dk) = 1

S0
(σij ,E0Dk),

(ii) for an applied electric potentialV0 �= 0 (V0 = 50 V) we have

(U,W,Φ) = E0

V0
(u1, u3, φ/E0), (Tij ,Dk) = hE0

CE
00V0

(σij ,E0Dk),

for numerical convenience we takeE0 = 1010 V/m andC00 is a reference elastic constant depending on the situation to be
examined. The number of terms in the series (42)–(46) are adjusted according to the slenderness ratios, electromechanical loads
and selection of materials thus considered in order to ascertain the series convergence. The finite element computations for
comparison are carried out with ABAQUS code by using plane strain elements of 8-node biquadratic type and 800 elements are
considered.

8.1. Piezoelectric bimorph

In this situation both piezoelectric layers are made of identical materials and have the same thickness 0.5h, however,
the piezo-active axes are in opposite directions (see Fig. 2). We takeC00 = CE

11 (PZT-4). Such a piezoelectric structure is
an excellent candidate to design versatile actuators and micro-positioning devices (Muralt et al., 1986; Smits et al., 1991).
In this problem, two Lagrangian multipliers are only necessary in order to enforce the continuity conditions on the electric
potential and normal component of the electric induction. The matrixAn associated with the set of linear equations is a 11× 11
matrix.

Fig. 2. Piezoelectric bimorph setting.
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Fig. 3. Force density applied on the top face of a piezoelectric bimorph in closed circuit forL/h = 10. Plate model (full line), finite element
(small circles) and simplified plate model (dashed-line).

Table 3
Piezoelectric bimorph, applied density force

L/h Approaches W Error Φ Error T13 Error
(L/2,0) % (L/2,−h/4) % (L/4,0) %

50 F.E.M. −1.4286× 106 19.0 −18.31
Present −1.4287× 106 0.007 18.986 0.007 −18.625 1.7
L.K. −1.4268× 106 0.12 18.986 0.007 0.0 100.0

10 F.E.M. −2360.0 0.7925 −3.62
Present −2358.36 0.07 0.775 2.15 −3.726 2.9
L.K. −2283.18 3.25 0.7574 4.43 0.0 100.0

5 F.E.M. −165.7 0.2234 −1.80
Present −161.468 2.55 0.2063 7.64 −1.86 5.67
L.K. −142.74 13.85 0.188 15.7 0.0 100.0

8.1.1. Surface density force
The numerical results are collected in Fig. 3 in dimensionless units. In a first case, the piezoelectric bimorph, made of two

PZT-4 layers, suffers an applied force density normal to the top face with the electric potential specified to be zero (V = 0).
The discrepancy between the maximum values of the deflection, at the plate center, for the present approach and finite element
computation for the full 3D model is given in Table 3. A comparison to the simplified model (no shearing correction) is also
presented in Table 3 for three typical aspect ratios (L/h = 5,10 and 50). The induced electric potential atx = L/2 displaying
an asymmetric profile is plotted in Fig. 3(a). The normal shear stressσ13 computed atx = L/4 is given in Fig. 3(b). It is
worthwhile noting the continuity of the normal shear through the interface between piezoelectric layers while it is identically
zero for the elementary approach based on the kinematic hypothesis of Love–Kirchhoff. Table 3 tells us that the discrepancy
for the deflection between the present approach and finite element results is about 0.01% forL/h = 50, 0.07% forL/h = 10
up to 2.5% forL/h = 5 (thick plate) while it is over 14% for the simplified model. The estimate of the maximum value of the
electric potential is also excellent, it is about 0.007% forL/h = 50.

8.1.2. Applied electric potential
This situation concerns a piezoelectric bimorph subject to an electric potential applied to the top and bottom faces of the

structure (−V atz = −h/2 and+V atz = +h/2 withp = 0). The deflection at the plate center is given in Table 4 in comparison
to those provided by the finite element computations and the simplified model. The error does not overtake 2.3% forL/h = 5,10
and 50. ForL/h = 50 with an applied electric potential of the order of 100 V, the bender produces a deflection of the order of
30µm. The deflection variations through-the-thickness at the plate center is presented in Figs. 4(a). At last, Fig. 4(b) shows an
interesting result for the componentD3 of the electric induction which is almost constant through the plate thickness. Table 4
also exhibits the errors in estimating the jump of the stressT11 at the interface and the electric charge at the plate faces between
the three approaches according to the slenderness ratios. This shows the efficiency of our refined model to predict both local
states (profiles) and global responses for the actuator function of the piezoelectric bimorph.
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Table 4
Electric potential applied to a piezoelectric bimorph

L/h Approaches W Error [[T11]] Error D3 Error
(L/2,0) % (L/2,0) % (L/2, h/2) %

50 F.E.M. 2945.0 2.431 −21.94
Present 2943.3 0.02 2.422 0.36 −21.97 0.15
L.K. 2945.3 0.05 2.413 0.74 −21.89 0.22

10 F.E.M. 116.6 2.43 −21.94
Present 116.0 0.5 2.425 0.26 −21.995 0.25
L.K. 118.0 1.2 2.412 0.78 −21.88 0.27

5 F.E.M. 28.296 2.43 −21.94
Present 27.653 2.3 2.425 0.26 −21.99 0.25
L.K. 29.651 4.8 2.412 0.78 −21.88 0.27

Fig. 4. Electric potential applied to a piezoelectric bimorph forL/h = 10.

8.2. Piezoelectric bi-layer

Now, we consider a more complex situation than that of the bimorph when both layers are made of different materials and
have different thicknesses. The lower layer is made of composite material, more precisely graphite fibers in an epoxy matrix
with h1 = 0.8h while the upper layer is an PZT-4 piezoelectric ceramics withh2 = 0.2h. The composite is non-piezoelectric
but elastic and dielectric. The material coefficients are given in Tables 1 and 2 and we haveC00 = CE

11 (Composite). As in the
previous case we present the responses of the structure suffering two electromechanical loads. The electric potential is applied
to the piezoelectric layer using metallic electrodes at the interface (z = zI ) and at the top face of the plate (z = h/2). A sketch
of the bi-layer configuration is depicted in Fig. 5. Then, the boundary conditions on the electric potential must be examined in
details, those are

φ(1)(z = +zI ) = φ(2)(z = +zI ) = −V, φ(2)(z = +h/2) = +V, (47)

with zI = (h1 −h2)/2. There is no electric potential imposed on the bottom face of the lower layer (no electrode), nevertheless,
it is assumed there is no density of electric charge, too. Then the boundary condition reads as

D
(1)
3 (z = −h/2) = 0. (48)

It is obvious that the continuity of the electric potential at the layer interface is ascertained. As a consequence, there is no
continuity condition on the normal component of the electric induction and the Lagrangian multipliers associated with the

Fig. 5. Piezoelectric bi-layered plate setting.
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Fig. 6. Force density applied on the top face of a piezoelectric bi-layer in closed circuit forL/h = 10.

equations of continuity are not considered. On using the conditions Eq. (47) the electric potential within each layer takes on the
form 

φ(1) = φ
(1)
0 + z1φ

(1)
1 + P1(z1)φ

(1)
2 − g(z)

g(zI )

(
V + φ

(1)
0 + h1

2
φ
(1)
1

)
,

φ(2) = φ
(2)
0 + 2

z2

h2

(
V − φ

(2)
0

) +P2(z2)φ
(2)
2 − 2

g(z)

g(zI )
φ
(2)
0 ,

(49)

with

z1 = z + h2/2, z2 = z − h1/2, P1(z1) = (z − zI )(z + h/2), P2(z2) = (z − zI )(z − h/2),

andg(z) is the cosine function defined by Eq. (12). The number of unknown functions needed to solve the problem completely

is now 8, namely,{U1,w,γ1, φ
(1)
0 , φ

(1)
1 , φ

(1)
2 , φ

(2)
0 , φ

(2)
2 }. Regarding to the boundary condition Eq. (48), the latter is used for

computing the generalized electric charges in Eq.(28)4 defined by Eq. (25). However, a density of electric charge does exist on
the layer interface atz = zI . This density is then given by[[D3]]z=zI = Q. It should be noticed knowing that the lower layer is

not piezoelectric, thereforeD(1)
3 = −ε

∗(1)
33 φ

(1)
,3 where the electric potential is given by Eq.(49)1.

8.2.1. Applied surface density of force (V = 0)
The numerical results and comparisons are shown in Fig. 6 for the aspect ratioL/h = 10. The elongational displacement,

deflection, induced potential and longitudinal stress are plotted in Figs. 6(a)–6(d), respectively. We observe that the through-the-
thickness distribution of the present plate model is very close to the results given by finite element computations. Conversely, the
prediction of the deflection and the induced electric potential given by the simplified model is less accurate. Some characteristic
values of electromechanical variables such as the maximum of the deflection at the plate center, the extremum of the electric
potential within the piezoelectric layer and the normal component of the electric induction at the upper face are presented in
Table 5 for the three slenderness ratios. We note the excellent results for the present model and the errors are less than 0.3% for
L/h = 50.

8.2.2. Applied electric potential (p = 0)
The interesting situation is an electric potential applied to the piezoelectric layer. Here, when an electric potential is applied

to the active piezoelectric layer, the elongation or contraction of the piezoelectric layer is hindered by the non-responsive but
elastic layer and the bi-layer composite suffers a bending motion. Figure 7(a) shows the elongational deformation with a quasi-
linear variation through the plate thickness. Moreover, we observe that the piezoelectric bi-layer is subject to a deflection as
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Table 5
Piezoelectric bi-layer, applied density force

L/h Approaches W Error Φ Error D3 Error
(L/2,0) % (L/2, (h1 − h2)/2) % (L/2, h/2) %

50 F.E.M. −1.15× 106 −2.4392 2070.0
Present −1.147× 106 0.25 −2.4377 0.06 2071.7 0.082
L.K. −1.139× 106 0.92 −2.4249 0.58 2071.8 0.087

10 F.E.M. −2227.19 −0.1113 82.241
Present −2131.22 4.3 −0.1098 1.3 82.781 0.65
L.K. −1823.086 18.1 −0.09696 12.8 82.877 0.77

5 F.E.M. −234.697 −0.0384 20.328
Present −190.442 18.8 −0.0371 3.38 20.628 2.8
L.K. −113.943 51.4 −0.0242 37 20.724 3.3

Fig. 7. Electric potential applied to piezoelectric bi-layer forL/h = 10.

Table 6
Piezoelectric bi-layer, applied electric potential

L/h Approaches W Error U Error
(L/2,0) % (0,0) %

50 F.E.M. 4146.25 −241.222
Present 4145.197 0.025 −233.155 3.3
L.K. 4143.585 0.064 −232.869 3.5

10 F.E.M. 168.22 −53.4888
Present 167.367 0.5 −47.2719 11.6
L.K. 165.743 1.5 −46.5741 13.0

5 F.E.M. 43.8665 −29.9969
Present 43.0617 1.83 −24.0863 19.7
L.K. 41.4359 5.54 −23.2873 22.4
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depicted in Fig. 7(b). The elongational stress and the normal electric induction are shown in Figs. 7(c) and 7(d), respectively.
A particularly interesting result is that, in this case, we do not have a pure deflection of the plate, in fact, it is accompanied by
a small global elongation of the plate as depicted in Fig. 7(a) (U(x = 0, z = 0) �= 0). Our laminated plate model provides a good
prediction for both local and global responses in comparison to the results coming from the simplified model. The errors are
presented in Table 6 for the three characteristic slenderness ratios. The results agree very well with those predicted by the finite
element computations. The discrepancy for the deflection is about 0.025% forL/h = 50, 0.5% forL/h = 10 and it is less than
2% for a rather thick plate.

8.3. Piezoelectric sandwich plate

In this part we consider a three-layered plate made of a composite layer (graphite fibres in an epoxy matrix) sandwiched
with two piezoelectric layers (PZT-4 ceramics. It has been setC00 = CE

11 (Composite).). The top and bottom faces of both
piezoelectric layers are recovered with conducting electrodes as depicted in Fig. 8. The boundary conditions for the electric
potentials for the layers are:

φ(1)(z = −h/2) = +V,

φ(1)(z = −zI ) = φ(2)(z = −zI ) = −V,

φ(2)(z = +zI ) = φ(3)(z = +zI ) = −V,

φ(3)(z = +h/2) = +V,

(50)

with, in the present case,zI = h2/2. The continuity conditions on the electric potential at the interfaces are obviously
ascertained. Moreover, there is no continuity condition on the normal electric induction component and the Lagrangian

multipliers therefore disappear. Owing that the middle layer is a non piezoelectric material the fieldsφ
(2)
2 andφ(2)

3 are dropped
out. Accounting for the boundary and continuity conditions Eq. (50), the electric potential for the three layers can be written as

φ(1) = φ
(1)
0 + 2

z1

h1

(
φ
(1)
0 − V

) +P1(z1)φ
(1)
2 − 2

g(z)

g(zI )
φ
(1)
0 ,

φ(2) = −V,

φ(3) = φ
(3)
0 − 2

z3

h3

(
φ
(3)
0 − V

) +P3(z3)φ
(3)
2 − 2

g(z)

g(zI )
φ
(3)
0 ,

(51)

with

z1 = z + 1
2(h1 + h2), z3 = z − 1

2(h1 + h2), zI = h2/2,

P1(z1) = (z + zI )(z + h/2), P3(z3) = (z − zI )(z − h/2),

andg(z) is still given by Eq. (12). The number of unknown functions is mostly reduced and the problem involved finally 7

unknown functions, namely{U1,w,γ1, φ
(1)
0 , φ

(1)
2 , φ

(3)
0 , φ

(3)
2 }. Two kinds of electromechanical loads are considered for the

numerical simulations as in the previous cases.

8.3.1. Surface density of force
In this case the applied electric potential is set to zero (closed circuit,V = 0) and a density of force per area is applied

to the top face of the sandwich plate. From Fig. 9, we see the variation of the longitudinal displacement, deflection, induced
electric potential and electric inductionD3 as function of the thickness coordinate. It turns out, once more, that the refined
model including shearing correction improves the prediction in a significant way. We note the difference with the simplified

Fig. 8. Piezoelectric sandwich plate with intermediate electrodes.
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Fig. 9. Force density applied on the top face of a piezoelectric sandwich plate in closed circuit forL/h = 10.

Table 7
Piezoelectric sandwich plate, applied density force

L/h Approaches W Error Φ Error [[T11]] Error
(L/2,0) % (L/2, (h2 + h3)/2) % (L/2, zI ) %

50 F.E.M. −1.321× 106 −2.807 532.6
Present −1.319× 106 0.12 −2.805 0.08 508.19 4.58
L.K. −1.312× 106 0.6 −2.793 0.48 508.15 4.6

10 F.E.M. −2491.0 −0.1255 20.73
Present −2372.97 4.74 −0.1231 1.9 20.36 1.76
L.K. −2100.14 15.7 −0.1117 11 20.35 1.8

model especially for the deflection. The error is clearly increased when the slenderness ratioL/h is getting smaller as shown
in Table 7. The interesting picture is the profile of the electric potential, the latter does not have linear variation it is, instead,
piecewise parabolic within the piezoelectric layers. The higher-order terms in the expansion Eq.(51)3 play a crucial role in the
prediction of the local response. ForL/h = 50 the maximum value of the induced electric potential is about−5.2 V. The profile
plotted in Fig. 9(d) shows very distinctly the jump ofD3 at the layer interface. This means that a surface density of electric
charge is produced on the interfaces and on the top and bottom faces of the sandwich plate. The electric charge thus produced
on the interface electrodes is of the order of 1.1× 10−2 C/m2.

8.3.2. Applied electric potential
The through-the-thickness profiles of electromechanical quantities produced by an applied electric potential are shown in

Fig. 10. The longitudinal displacement (see Fig. 10(a)) has a linear variation leading to a global bending deformation of the
sandwich plate. In Fig. 10(b) the straight line corresponds to the deflection given by the present plate model. We note that the
result provided by the simplified model is less accurate. The variation of the electric potential (see Fig. 10(c)) is well described
by the expansions Eq. (51), the profile is linear in the piezoelectric layers while it is constant through the dielectric part. The
variation of the longitudinal stress is shown in Fig. 10(d), the profile exhibits very clearly the jump at the layer interfaces.
The discrepancies between the present model, the simplified model and finite element simulations are presented in Table 8
for two slenderness ratiosL/h = 10 andL/h = 50 for the maximum of the deflection at the plate center, the longitudinal
displacement at the top face and the jump of the electric induction componentD3 at the upper interface (z = zI ). It is worthwhile
noting that, once again, our approach leads to excellent results less than 1.4% for L/h = 50. Although the simplified model
provides rather correct predictions, it is less than the refined model. From the practical point of view, the piezoelectric sandwich
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Fig. 10. Electric potential applied to a piezoelectric sandwich plate forL/h = 10.

Table 8
Piezoelectric sandwich plate, applied electric potential

L/h Approaches W Error U Error [[D3]] Error
(L/2,0) % (0, h/2) % (L/2, zI ) %

50 F.E.M. 8947.0 −360.5 −112.70
Present 8946.509 0.005 −355.5 1.38 −111.345 1.20
L.K. 8943.508 0.04 −354.95 1.54 −111.367 1.18

10 F.E.M. 360.3 −74.3 −112.7
Present 360.76 0.13 −72.38 2.57 −111.356 1.2
L.K. 357.74 0.71 −71.0 4.44 −111.385 1.17

(L/h = 50) produces a maximum deflection of the order of 90µm for an applied potential of 100 V. The surface density of the
electric charge produced at the interface electrodes is given by the jump of the electric induction[[D3]]z=zI = Q and we have
Q ≈ 3× 10−2 C/m2. Such a structure is an excellent candidate to design performant actuators. This piezoelectric structure has
been particularly studied leading to more or less similar predictions with various approaches among them we quote (Zhang and
Sun, 1996; Benjeddou et al., 2000; Vinhas-Bertolini, 2001).

9. Concluding remarks

A new refined approach to piezoelectric laminated plates is presented and analyzed in details displaying its performances
and efficiency. The theory is mainly based on the principle of linear piezoelectricity in the framework of the quasi electrostatic
hypothesis. It turns out that the present laminated plate model improves the performance of responses of piezoelectric
components involved in smart structures. The model thus proposed seems to be a simple compromise between response accuracy
and computational and analytical efficiency. More precisely the model is based on the combination of anequivalent single-
layer approach for the mechanical displacements with alayerwise-type modellingfor the electric potential considered as an
additional degree of freedom. Furthermore, the present approach accounts for the shearing effects, which plays a crucial role in
the accuracy of the results. The layerwise modelling enables us a better description of the variations of electric field through-
the-thickness of the laminated plate. Then such an approach can incorporate the local electromechanical response of each layer.
Especially, the layerwise approach becomes a necessity when electric potentials are applied to electrodes at layer interfaces.
This theory is particularly efficient for strong variations in piezoelectric and dielectric properties of the layers.
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The refined piezoelectric plate modelling has been tested for simply supported laminated plates under cylindrical bending
undergoing electromechanical loads (force density and electric potential). The complete set of governing equations for the
piezoelectric composites is derived from the Hamiltonian variational principle using expansions of the elastic displacement and
electric potential as function of the thickness coordinate as defined by Eq. (11) along with the boundary conditions around the
plate contour. The variational formulation accounts for the continuity conditions on the electric potential and normal component
of the electric induction at the layer interfaces by employing Lagrange multipliers. A Fourier series solution to plate equations
is then considered to compute the field variations through the plate thickness. A number of numerical examples is presented
for piezoelectric structures of practical interest such as piezoelectric bimorph, bilayer and piezoelectric sandwich for three
characteristic aspect ratios, namelyL/h = 5, 10 and 50.

It is observed that the refined model leads to excellent predictions of the local variations of the electromechanical variables.
The error in estimating the global responses is overall within a range of 1−2% with respect to results obtained from finite
element method for the full 3D model. Nevertheless, the limitations of the present approach concerns the estimation of the
transverse shear stress over the plate thickness. The shear stress cannot be estimated correctly (except for the piezoelectric
bimorph) in the framework of the present model and afull layerwise approachshould be required, which is envisaged in a
further study. Furthermore, in view of the these results concerning sensor and actuator functions of piezoelectric laminated
composites, we are strongly encouraged to extend the present study to the investigation of vibrations of laminated piezoelectric
plates (Heyliger and Saravanos, 1995) yielding the concept of passive or active control of vibrations (Anderson and Hagood,
1994; Saravanos, 1999). This will be presented in a future work.

Appendix A. Matrix form of constitutive equations for linear piezoelectricity

The constitutive equations (10) can be written in the following matrix form for materials possessing three mutually
perpendicular planes of symmetry (orthotropicsymmetry) (we use the Voigt notation with indices):

σ1

σ2

σ3

σ4

σ5

σ6

D1

D2

D3



=



CE
11 CE

12 CE
13 0 0 0 0 0 −e31

CE
12 CE

22 CE
23 0 0 0 0 0 −e32

CE
13 CE

23 CE
33 0 0 0 0 0 −e33

0 0 0 CE
44 0 0 0 −e24 0

0 0 0 0 CE
55 0 −e15 0 0

0 0 0 0 0 CE
66 0 0 0

0 0 0 0 e15 0 εS11 0 0

0 0 0 e24 0 0 0 εS22 0

e31 e32 e33 0 0 0 0 0 εS33





S1

S2

S3

S4

S5

S6

E1

E2

E3



. (A.1)

If the material system has an axis of symmetry (transversally isotropic) the number of independant material coefficients is
reduced according toCE

11 = CE
22, CE

13 = CE
23, CE

44 = CE
55, CE

66 = 1
2(C

E
11 −CE

12), e31 = e32, e15 = e24 andεS11 = εS22.

Appendix B. Coefficients of Lagrange multipliers

The coefficients of the arbitrary variations in unknown functions introduced in the virtual work associated with Lagrange
multipliers (see Eq. (27)) are computed from continuity conditions Eq. (15) using Eq. (16) and the approximations defined by
Eq. (11) starting from Eq. (26). They depend on the Lagrange multipliers and can be put in the following form:

Au
αβ =

N−1∑
*=1

(
e
∗(*+1)
3αβ − e

∗(*)
3αβ

)
νē(*), (B.1)

Aw
αβ =

N−1∑
*=1

z
(*)
I

(
e
∗(*+1)
3αβ − e

∗(*)
3αβ

)
νē(*), (B.2)

A
γ
αβ =

N−1∑
*=1

f
(
z
(*)
I

)(
e
∗(*+1)
3αβ − e

∗(*)
3αβ

)
νē(*), (B.3)
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A
+(*)
0 = µ*, (B.4)

A
−(*)
0 = −µ̂*, (B.5)

A
+(*)
1 = −

(
1

2
h*+1µ* + ε

∗(*+1)
33 νē(*)

)
, (B.6)

A
−(*)
1 = −

(
1

2
h*µ̂* − ε

∗(*)
33 νē(*)

)
, (B.7)

A
+(*)
2 = h*+1ε

∗(*+1)
33 νē(*), (B.8)

A
−(*)
2 = h*ε

∗(*)
33 νē(*), (B.9)

A
+(*)
3 = g

(
z
(*)
I

)
µ* + π

h
f

(
z
(*)
I

)
ε
∗(*+1)
33 νē(*), (B.10)

A
−(*)
3 = −g

(
z
(*)
I

)
µ̂* − π

h
f

(
z
(*)
I

)
ε
∗(*)
33 νē(*), (B.11)

where the effective piezoelectric and dielectric constants of the*th layere∗(*)3αβ andε
∗(*)
33 are given in Appendix E. We have set

µ̂* = µ* − ρe(*).

Appendix C. Matrix components of constitutive relations

The present appendix provides one with the components of the matrices introduced in Section 6 in the constitutive equations
for the generalized resultants of the plate model (Voigt notation has been considered).

• The matricesA,B,D,E, Ê andD̂ are 3× 3 matrices defined as follows:

(
A,B,D,E, Ê, D̂

) =
N∑

*=1

(a*, b*, c*,α*,β*, ζ*)


C

∗(*)
11 C

∗(*)
12 0

C
∗(*)
12 C

∗(*)
22 0

0 0 C
∗(*)
66

 . (C.1)

• Pk = [P(1)
k

, . . . ,P
(N)
k

], k ∈ {1,2,3}, is a 3× 3N matrix made ofN blocks of 3× 3 matricesP(*)
k

given by

(
P
(*)
1 ,P

(*)
2 ,P

(*)
3

) = [
e
∗(*)
31 , e

∗(*)
32 ,0

]T ×
([

a*,0,−π

h
α*

]
,

[
b*,−d*,−π

h
β*

]
,

[
α*,−π

h
δ*,−π

h
ζ*

])
. (C.2)

• H is a 3N × 3N matrix made ofN blocks of 3× 3 matrices in its diagonal

H =
[

H
(1)

. . .
H

(N)

]
with H

(*) = ε
∗(*)
33


−a* 0

π

h
α*

0 2d* −π2

h2
δ*

π

h
α* −π2

h2
δ* −π2

h2
ζ*

 . (C.3)

• R is a 2× 2 matrix defined by

R =
N∑

*=1

π2

h2
ζ̄*

[
C

∗(*)
55 0

0 C
∗(*)
44

]
. (C.4)

• Lα is a matrix made ofN blocks of 2× 4 matrices given by

Lα = [
L
(1)
α , . . . ,L

(N)
α

]
, α ∈ {1,2}, (C.5)

with (
L
(*)
1 ,L

(*)
2

) = π

h

([
e
∗(*)
15 ,0

]T
,
[
0, e∗(*)24

]T) ×
[
ᾱ*,

π

2h
δ̄*, δ*, ζ̄*

]
. (C.6)
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• Tα is a 4N × 4N matrix consisting ofN blocks of 4× 4 matrices in its diagonal:

Tα =
 T

(1)
α . . .

T
(N)
α

 with T
(*)
α = −ε

∗(*)
αα



a* 0 d* ᾱ*

0 −d*

2
0

π

2h
δ̄*

d* 0 f* δ*

ᾱ*
π

2h
δ̄* δ* ζ̄*

 . (C.7)

Remark. For transversally isotropic material the above matrices can be reduced due to material symmetry. Then, in this case,

in the blockP
(*)
k

we havee∗(*)31 = e
∗(*)
32 . The matrixR is a diagonal matrix withC∗(*)

44 = C
∗(*)
55 . In addition, we have(L1)1 �= 0,

(L1)2 = 0, (L2)1 = 0 and(L2)2 �= 0. At last, sinceε∗(*)
11 = ε

∗(*)
22 , this yieldsT1 = T2.

Appendix D. Coefficients of the matrix components

The different coefficients introduced in the definitions of the matrix components (see Appendix C) are only functions of the
layer thickness and interface coordinates:

a* = z
(*)
I

− z
(*−1)
I

, (D.1)

b* = 1

2

[(
z
(*)
I

)2 − (
z
(*−1)
I

)2]
, (D.2)

c* = 1

3

[(
z
(*)
I

)3 − (
z
(*−1)
I

)3]
, (D.3)

d* = −1

6

[
z
(*)
I

− z
(*−1)
I

]3
, (D.4)

f* = 1

30

[
z
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I

]5
, (D.5)
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Appendix E. Effective elastic, piezoelectric and dielectric constants

The effective modulus of elasticity due to the normal shear stress hypothesis for elastic thin plates (σ33 negligeable in
comparison to the other stress components, it is of(h/L)3 order) are given by

C∗
ab = CE

ab − CE
a3C

E
3b

CE
33

. (E.1)
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On using the same argument, we have the effective piezoelectric coefficients

e∗ja = eja − ej3C
E
a3

CE
33

(E.2)

and the effective dielectric constants

ε∗
ij = εSij + ei3ej3

CE
33

, (E.3)

respectively, witha, b ∈ {1, . . . ,6}, i, j ∈ {1,2,3} when using the Voigt notation for convenience.
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