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Abstract

The present work proposes a new approach to laminated plates with piezoelectric layers based on a refinement of the
electric potential as function of the thickness coordinate and accounting for shearing correction of the elastic displacement. The
approach deals with the combination of an equivalent single-layer approach for the mechanical displacement with a layerwise-
type modelling of the electric potential considered as an additional degree of freedom. Such an approach offers flexibility
in accommodating electric conditions at the layer interfaces. The equations governing the force, moment and electric charge
resultants of the laminated piezoelectric plate are then deduced from a variational formulation involving mechanical surface
loads or prescribed electric potential on the top and bottom faces of the plate as well as at layer interfaces. A particular attention
is devoted to the interface conditions which are enforced by using Lagrange multipliers in the variational principle. Emphasis
is placed on the performances, advantages and limitations of the present approach. The quality of the predictions of the global
and local responses (the through-the-thickness variation of elastic displacements, stresses, electric potential and induction)
is quantified for particular structures of practical interest such as piezoelectric bimorph, bilayer structure and piezoelectric
sandwich undergoing applied density of force and electric potential. Moreover, comparisons of the results provided by the
refined approach to those of finite element computations and simplified model are also presented. The comparisons assess of
the effectiveness of the present laminated piezoelectric plate model that improves, in significant way, the predictions given by
a simplified approachi 2002 Editions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction

The analysis of piezoelectric composites such as laminated plates requires theories with efficiently accurate approximation of
bothsensorandactuator functionsThe study of novel materials consisting of composite structures equipped with piezoelectric
layers remains an active area of research and the succemfapfive devicehas attracted the attention of industry due
to numerous technological applications (Tani et al., 1998; Sunar and Rao, 1999). The most simple piezoelectric actuator is
usually made of single component system (for instance, a slab of piezoelectric ceramics). Typically, such an actuator produces
displacements in the order of few micro-meters when applying an electric field up tgrirkVTo overcome this limitation,
an actuator using flexural-extensional deformation of thin structures requires several components and it edlinipesite
material rather than a monolithic structure. One of the most popular multilayer piezoelectric composites commonly used is
the piezoelectric bimorptor bender The application of an electric field across the two layers of the bender causes one layer
to expand while the other one shrinks. The global result is a flexural deformation much greater than the length or thickness
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deformation of the individual layers. This is tlaetuatoror motor function and a magnification of the elastic displacement

by a factor of 100 is thus obtained. Conversely, when a piezoelectric bimorph or bi-layer is forced to flex, one layer will be

in tension while the other is in compression. The variation of stresses in each layer will produce electric (voltage and current)
outputs. Piezoelectric materials and especially piezoelectric composites open completely new possibilities in the design of
adaptive or smart structures and very interesting technological applications have been proposed, ranging from aeronautical and
automotive structures (shape control of large space antennas, active or passive control of vibrations, etc.) (Rao and Sunar, 1994;
Loewy, 1997; Hagood and Von Flotow, 1991; Yoon and Washington, 1998) to miniature positioning devices (micro-robots,
medical apparatus, micro-pumps, etc.) (Muralt et al., 1986) and other engineering applications.

It seems, therefore, that a coupled piezoelectric laminated plate approach tretcoaatelyand efficiently predict the
electromechanical statef thin and intermediary thick piezoelectric laminated composites requires a particular attention.
The importance of the challenging study of these models was recognized in the literature (Saravanos and Heyliger, 1999;
Gopinathan et al., 2000). The present work attempts to develop consistent, yet comprehensive approach to piezoelectric
plates made of a stack of piezoelectric or/and non-piezoelectric layers. Quite number of recent studies establishing correct
and efficient piezoelectric plate models has been reported (Saravanos and Heyliger, 1999; Wang and Yang, 2000). Here, we
propose an approach combining equivalent single-layetheory for the mechanical displacements includgtgar effects
with alayerwise-type approximatidior the electric potential. This approach is also an interesting feature because multilayered
piezoelectric structures are appropriate to accommodate multiple voltage actuator inputs and sensor outputs. Furthermore, the
present study is a continuation of a paper devoted to single-layered plate (Fernandes and Pouget, 2001-a, 2001-b).

A number of studies attempts to incorporate various representations of approximation through-the-thickness of laminated
piezoelectric plates with extensions to shells. Pioneer works on piezoelectric plates were proposed by H.F. Tiersten (1969),
R.D. Mindlin (1972) and more recently by C.K. Lee (Lee and Moon, 1989; Lee, 1990). Furthermore, various types of
piezoelectric laminates are classified according to the kinematic assumptions for approximating the through-the-thickness
variation of electromechanical variables, refinement of field approximations and the method of representation of piezoelectric
layer. The more common model is based on the elementary beam or plate theories using the kinematic assumption of the Love—
Kirchhoff’s theory. The simplest approach to piezoelectric beams and plates incorporate effectives forces and moments induced
by piezoelectric actuation on plate deformation, however the electric charge equation is not considered in the analysis. This
kind of approach is referred usually esluced strain modelsThe latter models have been presented in the works of B. Wang
and C.A. Rogers (1991), extensions to layerwise approach have been considered by P.F. Pai (1993) and D.H. Robbins and
J.N. Reddy (1993).

A large number of formulations assumes that piezoelectric laminate will deform as a single homogeneous layer and the
electric charge conservation equation or Gauss law is considered for the sensor function of the laminate. Such an approach,
namedequivalent single layer modéias been reported mainly by C.K. Lee and F.C. Moon (1989) and C.K. Lee (1990). Many
authors have considered single-layer theories for the analysis of active and sensor laminated plates and shells, based either on
the Love—Kirchhoff's assumption or on the first-order shear deformation approximation (Chandrashekhara and Donthireddy,
1997). The approach considers both direct and converse piezoelectric constitutive equations and provides two-dimensional
equations of motion for the resultants and effective electric charge equations. The latter equations are however used to compute
the electric outputs of the sensor function.

In order to remedy the limitation of the previous approach some attempts have been made to introduce the electric degrees
of freedom in addition to the elastic displacement as function of the thickness variable, effective charge equations are then
obtained and present the fully piezoelectric coupling effects. This kind of models are usually referrezbapléal single-
layer piezoelectric plate theorieEarlier works dealing with coupled single-layered approaches were reported by H.F. Tiersten
(1969) and R.D. Mindlin (1972). Nevertheless, they did not considered extension to multilayer theories. A number of consistent
coupled single-layer piezoelectric plate models were developed by J. Kim et al. (1997) and J. Wang and coworkers (1999)
leading also to finite element modelling of piezoelectric structures. J.A. Mitchell and J.N. Reddy (1995) propose a hybrid or
mixed approach to piezoelectric laminates using the equivalent single-layer assumption for the elastic displacements while the
electric potential is considered as discrete-layer approximation providing then excellent predictions of the laminate responses.

Nevertheless, the equivalent single-layer theory turns out to be insufficient in some utmost situations, for rather thick lam-
inates or plates with strong variations of elastic, piezoelectric and dielectric coeffidiagywise approacheare therefore
considered for which their kinematic and electric potential variations through the plate thickness is smooth enough within each
layer and the continuity conditions at the layer interface are also ascertained. Layerwise models incorporate the local electro-
mechanical responses of each layer of the laminate. Lot of works were reported on layerwise approach, among them, we quote
the works of E. Carrera (1997), P. Heyliger and D.A. Saravanos (1995), U. Icardi and M. Di Scuva (1996) and J.S. Yang (1999).
Some of them deal with layerwise approaches mostly dedicated to finite element formulation such as works of D.A. Savaranos
et al. (1997) or J. Kim and coworkers (1997). Extensions to piezoelectric multilayered shells have been proposed by H.S. Tzou
(1993) based either on Kirchhoff-Love’s hypothesis or on the first-order shear deformation theory.



A. Fernandes, J. Pouget / European Journal of Mechanics A/Solids 21 (2002) 629-651 631

Another efficient and interesting approach uses asymptotic techniques. The full three-dimensional electroelasticity solution
is researched for as asymptotic expansions with respect to a small parameter (tgpically., whereh is the plate thickness
andL is a characteristic transverse dimension). The solution is then obtained by solving the two-dimensional field equations at
successive orders (Maugin and Attou, 1990; Cheng and Batra, 2000; Cheng et al., 2000).

The approach to piezoelectric laminates proposed here includes shear effects approximated by trigonometric functions
(Fernandes and Pouget, 2001-a, 2001-b). This particular choice of approximation is motivated by the boundary conditions on
the top and bottom faces of the plate that must be satisfied by transverse shear components. In addition, the approach accounts
for the fully approximation of the charge equation or Gauss equation. As consequence, we do not consider any hypothesis on the
electric displacement or induction. The present consistent approach to piezoelectric laminates is performed in the framework
of generalized variational formulation for linear piezoelectric materials. The effective equations of motion for the generalized
stress and electric charge or induction resultants are then deduced from the variational formulation along with the corresponding
boundary conditions. Various situations are considered such as bimorph structure, bilayer piezoelectric plate and sandwich plate
undergoing different kinds of electromechanical loads:

(i) surface density of force applied to the upper face of the plate; and
(ii) applied electric potential on the top and bottom faces of the plate.

Various benchmark tests are then proposed for the cylindrical bending problem of a simply supported piezoelectric plate. With
the view of characterizing theerformanceand capabilitiesof the present approach but also the limitation of the model some
comparisons téinite element computatioperformed on the 3D problems are presented. Moreover, in order to showatigy
of predictionof the plate modelling, the results are compared to those coming from a simplified model based on the Kirchhoff—
Love's assumption (no shear effects). One of the key point of the study is to assess the capability of the present approach
to describe thglobal structural responsédeflection, elongation, electric potential or charge), as well agdhniation of the
electromechanical quantitiestresses, electric inductions through the laminated plate thickness for typical slenderness ratios.
The outline of the paper is organized as follows. The formulation of linear piezoelectricity, governing equations and
variational principle are briefly stated in Section 2. The field distribution through the thickness is discussed in Section 3,
the treatment of the boundary conditions on the plate faces and the interface continuity conditions are also underlined. The
governing equations for the plate approach along with the associated mechanical and electric boundary conditions on the plate
contour are given in Section 4. Section 5 is dedicated to the constitutive laws for the generalized forces and moments as well as
generalized electric charges. The study of a laminated piezoelectric plate under cylindrical bending is examined in Section 6 for
two types of electromechanical load: applied density of force and electric potential. Numerical results and comparisons to finite
element method and simplified plate theory and discussions for piezoelectric bimorph, bilayer structure and sandwich plate for
different materials and slenderness ratios are proposed in Section 7. At last, discussion on the most pertinent results, limitations
of the model and extensions are presented in Section 8.

2. Piezoelectricity: variational formulation and governing equations

In this section we summerize the necessary ingredients about piezoelectricity involved in the following sections. The
formulation is based omlamilton’s principle The advantage of this approach is that it accounts for both mechanical and
electric aspects simutaneously. The variational principle can be stated as

2 2
a//cdvdt+/avvdz=o, (1)
2 141

where/, is the density of the Lagrangian functional given by

L= 3pii; — H(Sjj. Ep), (2
where the first term in the right hand side of Eq. (2) is the kinetic energy densityuitie components of the displacement,
p is the mass density/ (S;;, E;) is called theelectric enthalpy density functiosith S;; = u(;, ;) = %(u,-,j +uj ;) the linear
part of the strain tensor component abidthe electric field vector. For the linear piezoelectricity the enthalpy density function
takes on the form (Maugin, 1985)

H(S;j, Ei) = 30i;Sij — 3 Di E;, 3
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whereo;; are the components of the stress tensorBpdepresents the electric displacement or induction vector. The last term
in Eq. (1) is the virtual work of the prescribed mechanical and electric quantities on the domain boundary given by

8W=/T,~5u,~ dS+/Q6¢dS. (4)
082 082

In Eq. (4), T represents the surface traction afids the surface density of electric charge, both applied on the domain bound-
ary 952. The scalar variable is the electric potential. We restrict ourselves to classical linear piezoelectricity within the
framework of thequasi electrostatic approximatiomhich allows for the electric field to be derived from the electric potential
as follows:
Ei=—¢;. (5)
Itis also observed that the piezoelectric material is a perfect isolator and dielectric. On using a classical argument of integration
by part, the field equations are (in absence of body force and density of free electric charge):
oij.j =piij,  Dj;=0. (6)
The associated boundary conditions read as
{U,‘jﬂj:T,‘ or u;=u; O0ONJL2, @
Dinj=Q or ¢=¢ O0nas.
The above equations must be completed by constitutive laws &mdD. The latter electromechanical quantities are derived
from the enthalpy density function
dH oH

ii=—, D;=— . 8
Ojj 8Sij i IE; 8

For linear piezoelectricity the enthalpy density function usually takes on the following form (Maugin, 1985; Ikeda, 1996):
H(S;j, Ej) = %Cgpqsijqu —e€ipgEiSpg — %GZEI'E]‘. 9)
It has been assumed isothermal processes, moreover the thermomechanical coupling and pyroelectricity effect have been
neglected. Consequently, the constitutive equations for linear piezolectricity are

Uijzcgpqqu_elijEl’ D,‘:E,‘pqqu +6i“S]‘<Ej. (20)

In Eq. (10)CE is the fourth-order tensor of elasticity coefficients measured in a constant electriefielthe third-order
tensor of piezoelectricity coefficients ard is the second-order tensor of dielectric coefficients measured in a constant strain.
In the following, we will focus our attention to materials which possess three mutually perpendicular planes of symmetry

(orthotropic symmetry). The matrix form of the constitutive equations (10) is given in Appendix A.

3. Approximation of the elastic displacement and electric potential

Along with the accepted kinematic assumptions for the displacement field in most plate theories (Reddy, 1984; Ochoa and
Reddy, 1992) we consider an expansion of the displacement as a series of the thickness coordinate. For the present approach,
the displacement field and electric potential are assumed to be of the form

ug(x,y,2,t) =Ug(x,y,1) —zw o (x,y, 1) + f(@Dya(x,y,1), aec{l?2},
uz(x,y,z,1) =wx, y, 1), (11)
O,y 2.0 =88 00, v, 1) + 2088 (e 3. 1) + PezodS) (x, v, 1) + 82095 (x, v, 1).

With ¢ € {1, ..., N} is the layer number. In the local expansion (11)s the thickness coordinate with respect to the mid-plane
of the ¢th layer (see Fig. 1).
Some comments on the above approximations are in order.

(i) The present approach combines aquivalent single-layetheory for the displacement field with layerwise-type
approximationfor the electric potential. The purely elastic plate problem has been extensively examined by M. Touratier
(1991). In Eq. (11),U, holds for themiddle plane displacement componemntis the deflectionand y, represents the
shearing functionAll the functions are defined at the mid-plane coordinatey, 0).
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Fig. 1. Piezoelectric multi-layered plate.

(ii) For the electric potential (Fernandes, 2000), the first two terms can be associated \ajiplied electric potentiabn the
plate faces or the continuity condition of the electric potential at the layer interface. The third term is referred as to the
induced electric potentidly elastic deformation in théth layer. The last term in Eq11)3 is connected with the shearing
deformation. In the present model, the through-the-thickness distribution of the shearing correction is approximated by
atrigonometric functionConsequently, we propose the following functions:

he\2 ho h ,
Pg(zg)=z§— (72) , f(z)=;sm<%>, g(z)=;cos(%>, 12)

where h is the plate thickness which is supposed to be uniform fands the thickness of théth layer andz, €
[—he/2,he/2].

(i) We notezy) the interface coordinate between lay&tsand (¢ 4 1) with respect to the plate mid-plane (see Fig. 1). We set

2N —ny2 andzgo) = —h/2 for a plate made o layers. Therefore, we haves [zgg_l), zy)]. It could be convenient to

define the following coordinate change:

0 Zéo)

4=z—2 © (Z_l)),

=3( +2 (13)

wherez@o) is the coordinate of théth layer mid-plane with respect to that of the plate.

4. Boundary and interface conditions

(i) Two kinds of boundary condition are considered on bottom and top faces of the plate.
(a) We consider a force density per unit area applied on the top face of the plate and perpendicular to this face.
(b) An electric potential is supposed to be applied on the top and bottom faces of the plate.
The latter condition can be written as

h _
oDy, —h/2.0) =9 (e y.1) = Zor7 oy ) = VG,

(14)
h
o™ (e yothy2.0 =96 (v + ot (v = VG ),
thanks toPy(—h1/2) =0, Py (+hy/2) =0 andg(4h/2) = 0. For the sake of simplicity, we takét =V andV— = -V

and the applied electric potential is supposed to be uniform on the plate faces.
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(i) Itis worthwhile discussing the continuity conditions at layer interfaces. Since the layers are perfectly bounded, it is clear
that the elastic displacements are continuous:atzge). However, the continuity of the electric potential as well as the

normal component of the electric induction must be satisfi&d@ty) (€ € {1, N — 1}). Therefore, we must write

A=V, y, —hey1/2) — 9O (x, y, +hy /2) =0,

(15)
By =D (x,y. ~hgy1/2) — DY (x.y. +he/2) =0,
where the normal component of the electric induction ofdtelayer is calculated from the constitutive Eq0)»:
¢ ¢ 0 .
DY =50 Sup — 55795, (16)

whereeggﬁ) andegg) are the effective piezoelectric and dielectric constants ot théayer (see Appendix E).

(i) The condition (15), is accounted for if no electric potential is applied at the interface, otherwise we must replace the
condition by the jump conditior[IDS]]Z_Zm = Q¢ where Q; is the surface density of electric charge at the interface
I

z=29.

(iv) At thils stage of the study, we can use thgv2— 1) conditions of continuity (15) to reduce the number of unknown
functions and consider the variational principle next. In the present work we consider an other way of solving the problem
by introducing the Lagrange multipliers associated with the continuity conditions (15).

(v) Another possible electric boundary conditioreigctric chargesapplied on the top and bottom faces of the plate. In this

case the boundary condition on the electric inductiofDg - n = Q, which, in our case, reads as
D3(x,y,z==%h/2,t) = Q(x,y,1).

In the present work such boundary conditions will not be envisaged.

5. Equationsof the plate model

The variational formulation stated in Section 2 is then used to derive the equationstewbtldénensional moddtom the
fully three-dimensional theory of piezoelectricity. By substituting the expansions defined in Eq. (11) for the elastic displacement
and the electric potential and integrating over the plate thickness we eliminate the dependency of the field on the thickness
coordinatez. Nevertheless, the continuity conditions (15) are then accounted for by introdusggngnge multiplierse, andvy
in the Hamiltonian principle. The variational principle takes on the new following form:
2

/(5K—8U+8W1+5W2+5A)dt=0. a7)

n
In the present work static processes are only investigated and the kinetic energy is not written down. The second term in Eq. (17)
is the variation of the internal force work

5U =/ {Namwa),,s — Map(Bw) op + Mo (3va) p + Qudre

z
u 3 0 (€ 3 k)(€) ¢, (L
+y { 3 DI Osppn + > DY sy )“ds. (18)
=1L m=0 k=1
We introduce the following stress and electric charge or induction resultants:
= {4
(Nop, Mop, Mop) = Z / 1z, f(z))a;; dz, (19)
Z=1 ([,1)
21
N 7
0u=Y [ fenfe (20)

=1 ,_
Z;@ 1)
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)
9
(D, pPO pPO pP©) = f (Lz—20. Po(z—29). 8(2) D& k. (21)
Zﬁzfl)
2
(OO 02000 0) = [ (@ rife- 9. )0 @
(-1)
21

with P’(z) =dP(z)/dz, f'(z) =df(z)/dz, andg’(z) = dg(z)/dz. The third and fourth terms in Eq. (17) represent the works of
applied forces and electric charges on the plate boundary which are the sum of works of the forces and electric charges applied
to the top and bottom faces of the plate and those of the same quantities on the lateral boundary of the plate, namely:

SWy =/ {faaUa PSW + g dya + Z Z a5 “)} ds, (23)
N
Wy =/ {FaaUa + Tow+ Cadya — My(6w)n+ Y Z fo)écb“)} ds— ) Zpdwp. (24)
c £=1m=0 p
In Eq. (23),f, andp are the densities of force per unit of arég, is a surface moment density. The generalized electric charges
(Z) are given by
0 W @ (¢ ¢
(a5 a1 a5 a5”) = [(1.2 = 0. Pe(= — ). 8(2)) DS o -y (25)
2y

In Eq. (24),F, andT are densities of force per unit of lengtit, and C,, are lineic moment densities aut), are transverse
forces applied at angular points of the edge boundary cortairthe plate. Finally(Sw) , is the derivative of the variation

Sw with respect to the normal direction of the boundary contour. The electric charges per unit of@,%)gﬁre supposed to
be zero (no electrode), because the dielectric constant of the piezoelectric material is much larger than that of the outside air.
Finally, the last term in Eq. (17) is the virtual work of forces due to Lagrangian multipliers and it reads as

sA= Z/ (16 Ag + pe(ey (9O = VD) +v5() Bz 5. (26)
d

where Sg(f) is the surface of the interface between ttl and (¢ + 1)th layers. In the formulation (26), the case where the
electric potential is applied to an interface through a metallic electrode has been considered. In E¢.)(26)he number of
the electroded interface for whiaf3 ;) = 0 ande(¢) is the interface number without electrode for whighy) = 0. In addition

veW® is the given electric potential on the interface numi@y. On taking into account Eq. (15), the constitutive law (16) and
approximation (11), straightforward algebra leads to the virtual work of the Lagrangian multipliers

SA = /{ aﬂ(‘SU“)/S A (8w) aﬂ+Aaﬂ(8ya)/5
X

-1 3
L {41 - L 0
+y [ S (A8t P + A V508)) + Agdie + Baeydvae) + (¢6° — VL(Z))Spe(g):|}dS, 27)
¢=1 Lm=0

where the coefficientﬂ;f with f € {u, w, y} depend on the material constants of the layers as well as their thicknesses. The
explicit forms of these coefficients are given in Appendix B.

On using integration by part if needed and collecting all the factors of the arbitrary variatiétlg ,—w, 84, 84;([)
Sitr, 8V3(r)s 8pe(ry Withm € {0,1,2,3}, £€{1,..., N} andr € {1,..., N — 1} — we reach the field equations (static process):

Nop.p+ fa =0,

Moapg.ap—p=0,

Map.p — Oa +iiiq =0,

DY@ —pymO L g —0, re(l,...,Nyandm e (0,1,23),

(28)
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where we have introduced the modified force, moment and electric charge resultants:
Nap = Nop — Agg:
Mog=Mypg — A

o (29)
Map = Myp — AL,

DY — pyW O 4O _ AP peqa,. L, Nyandm € (0, 1,2, 3).

In addition, we must seﬁf{,(o) = A,;(N) =0 and we havd)éo)(z) = 0. The variation of the Lagrangian multipliers yields the

continuity conditions given by Eq. (15)4 =0, Bz = 0 andg*(®) — v¢() = 0 on electroded interfaces= z‘}(z)).
The associated boundary conditions on the plate corit@ue:

Fy = Nygng or Uy given,

T = (ta Magng),s +naMqyg g OF w given,

My¢=nogMqgng orw , given, (30)
Ca = Mapng or y, given,

My, =0 or 'Y given,

with £ € {1,...,N} and m € {0,1,2, 3}, wheres is the curvilinear coordinate along the contdluurMoreover, we have
[ra Mapnpg — Zplla, = 0 at the angular pointa ,, of the plate contour where is the tangent vector to the contatr

Comments. (i) The first two Eq. (28) are similar to those of the Love—Kirchhoff first-order theory of elastic thin plates, the third
equation governs the shearing effects.

(ii) The set of equation$28)4 are deduced from the conservation law of the electric charge or the Gauss equation. It is
worthwhile noticing the presence, in EQ8)4, of the variation of surface density of electric chaqd@ between the interfaces
of the ¢th layer.

(iii) For an applied electric potential on the top and bottom faces of the plate, the conditions given by Eq. (14) must be
considered. Consequently, the variation of the unknown functixéHsandd;éN ) are no longer arbitrary, then Eq®8)4 for
m =0 and¢ =1 or N disappear.

6. Constitutiverelationsfor multilayered piezoelectric plates

We consider, here, the constitutive laws for the linear piezoelectricity as stated by Eq. (10) or (A.1). On using the stress and
electric induction resultants defined by Egs. (19)-(22) and integrating over the plate thickness we are able to put the constitutive
equations for the generalized resultants in the following matrix form:

N A B E P|[SO

M B DETP,||s®D

M|T|EE DP3||s® | (31)
T T pT

D3 P P} Pl W F1

where the block matrices are given in Appendix C and we have set the following vectors (we use the Voigt notation for sake of
convenience):

N1 M R %1
N=1| N |, M=| My |, M=| My |, (32)
Neg Me Mg

for the in-plane resultant, the moment resultant and moment resultant produced by shearing effect, respectively,

@)

. Sl.
s — Séj) i (33)

Séj)
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for the generalized strains defined by

©) &) @
Sep =U@.pys Sap =~Wap  Sep =V@p) (34)

with «, 8 € {1, 2} and the parentheses mean the symmetric part of the tensor.
In addition,D3 andF, are vectors of & dimension given by

DA /D) /(D) (DN) HN) HN)T
D3=[D3 7. D7 . D37, ... D7, D7 D37V, and (35)
1 A 1 N N N)T
Fi=[¢", o5 o ... o™ o5, g O]T. (36)
The second constitutive law has also the matrix form
0 R L L» G
Dy [=|L{ T1 O Fo1 |, (37)
D2 LT 0o T, | LFo2
with the vectors
G=[V1], o= &1, (38)
Y2 02
and
Dy = [Déo)(l), Dg,l)(l), Dth)(l), Dés)(l),...,Dg,O)(N), Dél)(N), DéZ)(N)’ Dg3)(N)]T’ (39)
1 @A 1 @A N N N N T
Fo=[o5, o, oY oD ... ol (M, gV o MTT, (40)

with « € {1, 2} andFq , holds for the derivative with respect tg. All the block matrices involved in Egs. (31) and (37) are
explicitly defined in Appendix C. The components of the matrices depend on the layer geometry (layer thickness and interface
coordinates) and material constants (elasticity, piezoelectricity and dielectric permittivity) and they are defined in Appendix D.
Some components of the above block matrices can be zero due to their particular form and the zero material constants.

Remarks. In the case of an electric potential applied to the bottom and top faces of the plate, the unknown fuﬁ@’?ions

and ¢(()N) depend on the function$il) and ¢iN) and also onV¥ through Eq. (14). Accordingly, the dimension of the

vectorFq 4 is reduced to & — 2. Moreover, the corresponding equations (see(BE8)4) for£=1,m=0and{ =N, m =0
disappear. The electric potentidf* is then considered as an applied field in the plate equations.

7. Laminated piezoelectric plate under cylindrical bending

One of most interesting situations is the study of the laminated piezoelectric plate undergaipplied surface force
densityor/andelectric potentialundercylindrical bending because the equations of piezoelectric plate can be easily solved
by means of Fourier series. Moreover, this situation can be compared to finite element method. It is assumed no shear traction
(f« = 0) and no surface moment densify = 0) on the plate faces. The simple support conditions for a rectangular plate of
length L and width! are given by

011(0,2) = 011(L, 2) =0,
013(0,2) =013(L,2) =0, (41)
u3(0,2) =u3(L,z)=0.

It is worthwhile noting that the boundary conditions along the contowiven by Eq. (30) are obviously satisfied for the
cylindrical bending configuration.

In addition, all stresses, strains, displacements, electric field and potential do not dependyovatiable, so that the
displacement:, plays no role in the study. As consequence, walget 0 andy, = 0. The electromechanical load functions
can be expressed in the form of Fourier series as follows:

o
(P(0), V(X)) =D (Sn, V) SINCpx), (42)
n=1
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with A, =nz/L and

{ Sy =48g/nm, V, =4Vg/nm, if nodd

Sp=0, Vy =0, if n even (43)

The loads defined by Egs. (42)-(43) represent uniform applied surface density offcane electric potentialp. A solution
to Egs. (28) along with the constitutive equations (31)—(40) which satisfies the boundary conditions of the cylindrical bending
of a plate simply supported takes on the form

o0
(U1(x), y1(0)) = Y (Un, T) COShn ), (44)
n=1
o0
(@) ¢ 0. 957 (). 85" (0,657 () = I (W @) @10, @51) @50 sinGn), (45)
n=1

and the same type of series holds for the Lagrange multipliers

00 —
(Lr Ve pery) = O (MY NS RED) sinGu), re (LN —1). (46)
n=1
The Fourier coefficients in the above series are determined by substituting the solution (44)—(46) into the plate equations and
constitutive equations, next solving simultaneously a set of linear algebraic equations for eaehe the right hand side
contains the electromechanical loads given by Eq. (42). The set of linear algebraic equations for the Fourier coefficients can be
taken on the form

Anxn = Bn,

whereA,, is a square matrix of 8 + 1 order in the case of the open circuit configuration andf61 order in closed-circuit
conditions or applied electric potential. The veckgr contains the Fourier coefficients

X = {Uns W, T, @50, MV NSO RED), me{0,1,2,3), e (LN, re(l,N—1).

The vectoiB,, contains the applied fields as function of the Fourier facfgrandV;,. The matrixA,, and vectoB,, are function
of 1,,, the layer geometry and material constants.

8. Numerical resultsand comparisons

This section attempts to quantitavely demonstrate the performance of the present approach to piezoelectric laminated plates.
Numerical simulations are performed for typical configurations and they are mostly used as benchmark tests. In addition, the
results are directly compared with those providedihite element formulatioand with solutions extracted from a simplified
theory (based on kinematic assumptions of Love—Kirchhoff’s theory keeping however quadratic terms in the expansion of the
electric potential) and they are presented in order to place the advantages and limitations of the refined approach in evidence.
Additional comparisons were considered to exact 3D solution to laminated plates which are merely extensions of the Pagano’s
work to piezoelectric laminated plates (Heyliger and Brook, 1996; Bisegna and Maceri, 1996; Fernandes, 2000). Nevertheless,
there is no noticeable discrepancies between the results coming from the finite element computations and those given by the
exact solutions (Fernandes, 2000). Two mechanical load configurations are considered corresponding to practical applications:

(i) sensor functionwvith a force density per unit area applied to the upper face; and
(ii) actuator functiorwith an electric potential applied to the top and bottom faces of the plate.

Attention will be focussed on particular structures undergoing cylindrical bending among them:

(i) piezoelectric bimorph;
(i) bi-layer structure made of a piezoelectric layer glued to a non-piezoelectric but elastic layer; and
(i) piezoelectric sandwich plate consisting of composite layer coated with two piezoelectric layers including the intermediary
electroded configuration.

The capability of the present approach is characterized by illustrating the local variation of electromechanical variables through-
the-thickness of the plate and global response such as deflection of the plate, the maximum of the induced electric potential and
stresses at layer interfaces. The material properties of the layers used for the numerical simulations are given in Tables 1 and 2.
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Table 1
Independent elastic, piezoelectric and dielectric constants of piezoelectric materials (transversally isotropic symmetry)
E E E E E
C11 Cro C33 Ci3 7} €31 €33 €15 €Iy 33
(GPa) (C/m?) (nF/m)
PZT-4 1390 778 1150 743 256 -52 151 127 1306 1151

Table 2

Independent elastic, piezoelectric and dielectric constants of a composite made of graphite fibexsditention in epoxy
s« CE._CE CE _cE cE _CE E_YcE _cEy .S __S

matrix, Cy5 = C1, C5p=C1y, Cgg=CosandCyy = 5(C35 — C3), €5, = €33

E E E E E
1y C1o 2 €3 Css €31 €33 €15 €11 €33
(GPa) (C/m?) (nF/m)
Composite 1386 51563 14352 71329 5654 0 0 0 0031 Q0266

The geometry of the plate i6 = 25 mm and = 125 mm and different slenderness ratios are considépgd= 5, 10 and 50
depending on the situation to be examined. Furthermore, the numerical results for the electromechanical variables are given
with the following dimensionless units

(i) for a density of force per unit aresg # 0 (Sg = 1000 N/m?) we set

ck 1
U W, ®)= -y u3,¢/Ep),  (T;j, D) = —(01j, EoDy),
hSo So

(ii) for an applied electric potentia¥g £ 0 (Vo = 50 V) we have

Eo hEQ
(U, W,P) = —(u1,us, ¢/Eo), (Tij» D) = ——~(0ij, EoDi),
Vo CooVo

for numerical convenience we tal&) = 1010 V/m andCqq is a reference elastic constant depending on the situation to be
examined. The number of terms in the series (42)—(46) are adjusted according to the slenderness ratios, electromechanical loads
and selection of materials thus considered in order to ascertain the series convergence. The finite element computations for
comparison are carried out with ABAQUS code by using plane strain elements of 8-node biquadratic type and 800 elements are
considered.

8.1. Piezoelectric bimorph

In this situation both piezoelectric layers are made of identical materials and have the same thickineksviever,
the piezo-active axes are in opposite directions (see Fig. 2). WeGgde- Cfl (PZT-4). Such a piezoelectric structure is
an excellent candidate to design versatile actuators and micro-positioning devices (Muralt et al., 1986; Smits et al., 1991).
In this problem, two Lagrangian multipliers are only necessary in order to enforce the continuity conditions on the electric
potential and normal component of the electric induction. The matfimssociated with the set of linear equations is a 11
matrix.

z px)

IR RN RN R R

-h/2

Fig. 2. Piezoelectric bimorph setting.



640 A. Fernandes, J. Pouget / European Journal of Mechanics A/Solids 21 (2002) 629-651

0,50 0,50
025 | 0.25
< 000 < 0,00
025 -0.25
-0,50 EE— . . -0,50 .
-1.0 -0.5 X .S 10 - -
(a) L (b) Tm

Fig. 3. Force density applied on the top face of a piezoelectric bimorph in closed circtif fo= 10. Plate model (full line), finite element
(small circles) and simplified plate model (dashed-line).

Table 3
Piezoelectric bimorph, applied density force
L/h  Approaches w Error ] Error T13 Error
(L/2,0) % (L/2,—h/4) % (L/4,0) %
50 F.E.M. —1.4286x% 10P 19.0 —1831
Present —1.4287x 10P 0.007 18986 Q007 —18.625 17
L.K. —1.4268x 10P 0.12 18986 Q007 Qo 1000
10 F.E.M. —23600 0.7925 —3.62
Present —235836 Q07 0775 215 —3.726 29
L.K. —228318 325 07574 443 00 1000
5 F.E.M. —1657 0.2234 —1.80
Present —161468 255 02063 764 —1.86 567
L.K. —14274 1385 0188 157 0.0 1000

8.1.1. Surface density force

The numerical results are collected in Fig. 3 in dimensionless units. In a first case, the piezoelectric bimorph, made of two
PZT-4 layers, suffers an applied force density normal to the top face with the electric potential specified to be=z€Xp (
The discrepancy between the maximum values of the deflection, at the plate center, for the present approach and finite element
computation for the full 3D model is given in Table 3. A comparison to the simplified model (no shearing correction) is also
presented in Table 3 for three typical aspect ratiosi{ = 5, 10 and 50). The induced electric potentiakat L /2 displaying
an asymmetric profile is plotted in Fig. 3(a). The normal shear stregsgomputed atc = L/4 is given in Fig. 3(b). It is
worthwhile noting the continuity of the normal shear through the interface between piezoelectric layers while it is identically
zero for the elementary approach based on the kinematic hypothesis of Love—Kirchhoff. Table 3 tells us that the discrepancy
for the deflection between the present approach and finite element results is #48atfor L/ = 50, Q07% for L/ h = 10
up to 25% for L/ h =5 (thick plate) while it is over 14% for the simplified model. The estimate of the maximum value of the
electric potential is also excellent, it is abou®07% forL/h = 50.

8.1.2. Applied electric potential

This situation concerns a piezoelectric bimorph subject to an electric potential applied to the top and bottom faces of the
structure £V atz = —h/2 and+V atz = +h/2 with p = 0). The deflection at the plate center is given in Table 4 in comparison
to those provided by the finite element computations and the simplified model. The error does not ové¥teoe 2/ 1 = 5, 10
and 50. ForL/ h = 50 with an applied electric potential of the order of 100 V, the bender produces a deflection of the order of
30 um. The deflection variations through-the-thickness at the plate center is presented in Figs. 4(a). At last, Fig. 4(b) shows an
interesting result for the componefy of the electric induction which is almost constant through the plate thickness. Table 4
also exhibits the errors in estimating the jump of the stiggsat the interface and the electric charge at the plate faces between
the three approaches according to the slenderness ratios. This shows the efficiency of our refined model to predict both local
states (profiles) and global responses for the actuator function of the piezoelectric bimorph.
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Table 4
Electric potential applied to a piezoelectric bimorph
L/h  Approaches w Error [T1111 Error D3 Error
(L/2,0) % (L/2,0) % (L/2,h/2) %
50 F.E.M. 2945 2431 —2194
Present 2943 0.02 2422 Q36 —2197 015
L.K. 29453 0.05 2413 a74 —2189 022
10 F.E.M. 1166 243 —2194
Present 116 0.5 2425 026 —21.995 Q025
L.K. 118.0 12 2412 Q78 —2188 027
5 F.E.M. 28296 243 —21.94
Present 2653 23 2425 026 —21.99 025
L.K. 29.651 48 2412 Q78 —2188 027
0,50 0,50
L o
o
025 | q 025 |
r o
S 0,00 < 0,00
L o ;
0,25 | 9 025 |
© :
L °
-0,50 1 . . ! . -0,50 L 1
114 116 118 24 -20
(a) w (b)

Fig. 4. Electric potential applied to a piezoelectric bimorph&gr: = 10.

8.2. Piezoelectric bi-layer

Now, we consider a more complex situation than that of the bimorph when both layers are made of different materials and
have different thicknesses. The lower layer is made of composite material, more precisely graphite fibers in an epoxy matrix
with #1 = 0.8k while the upper layer is an PZT-4 piezoelectric ceramics With= 0.2h. The composite is non-piezoelectric
but elastic and dielectric. The material coefficients are given in Tables 1 and 2 and V\Ed@aaaeifl (Composite). As in the
previous case we present the responses of the structure suffering two electromechanical loads. The electric potential is applied
to the piezoelectric layer using metallic electrodes at the interfacez() and at the top face of the plate<£ //2). A sketch
of the bi-layer configuration is depicted in Fig. 5. Then, the boundary conditions on the electric potential must be examined in
details, those are

¢Pe=4p=9Pc=+p=-v. ¢PG=+n/2=+v. (47)

with z; = (h1 — h2)/2. There is no electric potential imposed on the bottom face of the lower layer (no electrode), nevertheless,
it is assumed there is no density of electric charge, too. Then the boundary condition reads as

DM (z=—h/2)=0. (48)

It is obvious that the continuity of the electric potential at the layer interface is ascertained. As a consequence, there is no
continuity condition on the normal component of the electric induction and the Lagrangian multipliers associated with the

z P
o+V
o-V

Composite

Fig. 5. Piezoelectric bi-layered plate setting.
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Fig. 6. Force density applied on the top face of a piezoelectric bi-layer in closed circuif foe= 10.

equations of continuity are not considered. On using the conditions Eq. (47) the electric potential within each layer takes on the
form

, h
0@ =D 4 216D 4 Prapod 2(2) <V+¢(()1)+_1¢£1)>,
g(zy) 2 49)
@ _ @ 9220y, (2 @ ,8@ (2
¢ =¢g +2h2(v bp ) + P2(22)¢; 2 5%

with
z1=z+h2/2, z2=z—h1/2, P1(z1) =(z—z21) (2 +h/2), Py(z2) = (z—z1)(z—h/2),

andg(z) is the cosine function defined by Eq. (12). The number of unknown functions needed to solve the problem completely
is now 8, namely{U1, w, yl,qbél),(pil), ¢§1),¢62),¢£2)}. Regarding to the boundary condition Eq. (48), the latter is used for
computing the generalized electric charges in 8) 4 defined by Eq. (25). However, a density of electric charge does exist on
the layer interface at = z;. This density is then given byD3]l;=;, = Q. It should be noticed knowing that the lower layer is

not piezoelectric, thereforEél) = —e§é1)¢(§) where the electric potential is given by E49)1.

8.2.1. Applied surface density of force & 0)

The numerical results and comparisons are shown in Fig. 6 for the aspect fatie 10. The elongational displacement,
deflection, induced potential and longitudinal stress are plotted in Figs. 6(a)—-6(d), respectively. We observe that the through-the-
thickness distribution of the present plate model is very close to the results given by finite element computations. Conversely, the
prediction of the deflection and the induced electric potential given by the simplified model is less accurate. Some characteristic
values of electromechanical variables such as the maximum of the deflection at the plate center, the extremum of the electric
potential within the piezoelectric layer and the normal component of the electric induction at the upper face are presented in
Table 5 for the three slenderness ratios. We note the excellent results for the present model and the errors are 38g$dhan 0
L/h =50.

8.2.2. Applied electric potentiap(= 0)

The interesting situation is an electric potential applied to the piezoelectric layer. Here, when an electric potential is applied
to the active piezoelectric layer, the elongation or contraction of the piezoelectric layer is hindered by the non-responsive but
elastic layer and the bi-layer composite suffers a bending motion. Figure 7(a) shows the elongational deformation with a quasi-
linear variation through the plate thickness. Moreover, we observe that the piezoelectric bi-layer is subject to a deflection as
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Table 5
Piezoelectric bi-layer, applied density force
L/h  Approaches w Error ] Error D3 Error
(L/2,0) % (L/2,(h1—h2)/2) % (L/2,h/2) %
50 F.E.M. —1.15x 1P —2.4392 20700
Present —1.147x 10° 0.25 —2.4377 006 20717 0.082
L.K. —1.139x 108 0.92 —2.4249 058 20718 0.087
10 F.E.M. —222719 -0.1113 82241
Present —213122 43 —0.1098 13 82781 Q65
L.K. —1823086 181 —0.09696 128 82877 Q77
5 F.E.M. —234697 —0.0384 20328
Present —190442 188 —0.0371 338 20628 28
L.K. —113943 514 —0.0242 37 20724 33
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Fig. 7. Electric potential applied to piezoelectric bi-layer foth = 10.
Table 6
Piezoelectric bi-layer, applied electric potential
L/h  Approaches w Error U Error
(L/2,0) % (0,0 %
50 F.E.M. 41485 —241222
Present 414397 Q025 —233155 33
L.K. 4143585 Q064 —232869 35
10 F.E.M. 16822 —53.4888
Present 16867 Qa5 —47.2719 116
L.K. 165.743 15 —46.5741 130
5 F.E.M. 438665 —29.9969
Present 43617 183 —24.0863 197
L.K. 41.4359 554 —23.2873 224
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depicted in Fig. 7(b). The elongational stress and the normal electric induction are shown in Figs. 7(c) and 7(d), respectively.
A particularly interesting result is that, in this case, we do not have a pure deflection of the plate, in fact, it is accompanied by
a small global elongation of the plate as depicted in Fig. (& (= 0, z = 0) # 0). Our laminated plate model provides a good
prediction for both local and global responses in comparison to the results coming from the simplified model. The errors are
presented in Table 6 for the three characteristic slenderness ratios. The results agree very well with those predicted by the finite
element computations. The discrepancy for the deflection is ab@26% forL /h =50, Q5% for L/ h = 10 and itis less than

2% for a rather thick plate.

8.3. Piezoelectric sandwich plate

In this part we consider a three-layered plate made of a composite layer (graphite fibres in an epoxy matrix) sandwiched
with two piezoelectric layers (PZT-4 ceramics. It has beenCegt= Cfl (Composite).). The top and bottom faces of both
piezoelectric layers are recovered with conducting electrodes as depicted in Fig. 8. The boundary conditions for the electric
potentials for the layers are:

¢V =-h/2)=+V

¢V z=—z2)=¢@P@=-z))=-V,
pP =4z =@ =4z =~V
¢ (z=+h/2) =

with, in the present case,; = hy/2. The continuity conditions on the electric potential at the interfaces are obviously
ascertained. Moreover, there is no continuity condition on the normal electric induction component and the Lagrangian

multipliers therefore disappear. Owing that the middle layer is a non piezoelectric material th¢ﬁélded¢(z) are dropped
out. Accounting for the boundary and continuity conditions Eq. (50), the electric potential for the three layers can be written as

(50)

oM = ¢(1)+2 (¢(1) V) + Piz 1)¢(1) g(z) ¢(1)
g(z )0
9@ =-v, (51)
with
a=z+3(h1+hy), z3=2—3(h1+h), 27 =hy/2,

P1(z1) = (2 +2z1)(z+h/2), P3(z3) = (z —z27)(z — h/2),

and g(z) is still given by Eq. (12). The number of unknown functions is mostly reduced and the problem involved finally 7

unknown functions, namelyU1, w, y1, d)(l) ¢(l) ¢(3) ¢(3)} Two kinds of electromechanical loads are considered for the
numerical simulations as in the previous cases.

8.3.1. Surface density of force

In this case the applied electric potential is set to zero (closed cifcuit,0) and a density of force per area is applied
to the top face of the sandwich plate. From Fig. 9, we see the variation of the longitudinal displacement, deflection, induced
electric potential and electric inductidRz as function of the thickness coordinate. It turns out, once more, that the refined
model including shearing correction improves the prediction in a significant way. We note the difference with the simplified

z pXx)
+h/2} v o0+V
2
, Composite — X
21 I’
-h/2 PZ14 o+V

0V

Fig. 8. Piezoelectric sandwich plate with intermediate electrodes.



A. Fernandes, J. Pouget / European Journal of Mechanics A/Solids 21 (2002) 629-651 645

0,50 0,50
o)
o
........ Do S P S
0,25 0,25 Q
Q
L Q
3
S 000 S 000 | S
Q
8
-0,25 -0,25 Q s
________ _G__________-----_-_-_-_
L Q :
»0’50 _0’50 1 1 Q 1 1 L 1 1 1
- - -2700 -2520 -2340 -2160 -1980
(a) U (b) w
0,50 S
) 025 " TTTTTTTTTTTT T
£ 000 |
-0,25 S S
-0, 1 1 1 _0350 1 1 1 1 1
-0,15  -0,12  -0,09 -0,06 -0,03 0,00 -100 -50 0 50 100
© @ (d) 5

Fig. 9. Force density applied on the top face of a piezoelectric sandwich plate in closed ciréyitifer 10.

Table 7
Piezoelectric sandwich plate, applied density force
L/h  Approaches w Error (] Error [7T1111 Error
(L/2,0) % (L/2,(hy + h3)/2) % (L/2,z1) %
50 FEM. -1.321x 10° —2.807 5326
Present —1.319x 10° 0.12 —2.805 Q08 50819 458
L.K. —1.312x 10° 0.6 —2.793 Q48 50815 46
10 F.E.M. —24910 —0.1255 2073
Present —237297 474 —0.1231 19 2036 176
L.K. —210014 157 —-0.1117 11 285 18

model especially for the deflection. The error is clearly increased when the slenderness haisogetting smaller as shown

in Table 7. The interesting picture is the profile of the electric potential, the latter does not have linear variation it is, instead,
piecewise parabolic within the piezoelectric layers. The higher-order terms in the expansi&i)gglay a crucial role in the

prediction of the local response. Fby h = 50 the maximum value of the induced electric potential is abdup V. The profile

plotted in Fig. 9(d) shows very distinctly the jump B at the layer interface. This means that a surface density of electric
charge is produced on the interfaces and on the top and bottom faces of the sandwich plate. The electric charge thus produced
on the interface electrodes is of the order df £ 10~2 C/m?.

8.3.2. Applied electric potential

The through-the-thickness profiles of electromechanical quantities produced by an applied electric potential are shown in
Fig. 10. The longitudinal displacement (see Fig. 10(a)) has a linear variation leading to a global bending deformation of the
sandwich plate. In Fig. 10(b) the straight line corresponds to the deflection given by the present plate model. We note that the
result provided by the simplified model is less accurate. The variation of the electric potential (see Fig. 10(c)) is well described
by the expansions Eq. (51), the profile is linear in the piezoelectric layers while it is constant through the dielectric part. The
variation of the longitudinal stress is shown in Fig. 10(d), the profile exhibits very clearly the jump at the layer interfaces.
The discrepancies between the present model, the simplified model and finite element simulations are presented in Table 8
for two slenderness ratias/h = 10 andL/h = 50 for the maximum of the deflection at the plate center, the longitudinal
displacement at the top face and the jump of the electric induction compbaexitthe upper interface & z;). It is worthwhile
noting that, once again, our approach leads to excellent results less.#8arfdk L/ 2 = 50. Although the simplified model
provides rather correct predictions, itis less than the refined model. From the practical point of view, the piezoelectric sandwich
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Fig. 10. Electric potential applied to a piezoelectric sandwich platé. fér = 10.
Table 8
Piezoelectric sandwich plate, applied electric potential
L/h  Approaches w Error U Error D31l Error
(L/2,0) % (0,h/2) % (L/2,zy) %
50 F.E.M. 8940 —3605 —11270
Present 894609 Q005 —3555 138 —111345 120
L.K. 8943508 Q04 —354.95 154 —111367 118
10 F.E.M. 3608 —743 —-1127
Present 3606 013 —7238 257 —111356 12
L.K. 357.74 071 —-710 4.44 —111385 117

(L/h =50) produces a maximum deflection of the order of®®for an applied potential of 100 V. The surface density of the
electric charge produced at the interface electrodes is given by the jump of the electric influiibn.;, = O and we have
Q~3x102 C/m2. Such a structure is an excellent candidate to design performant actuators. This piezoelectric structure has
been particularly studied leading to more or less similar predictions with various approaches among them we quote (Zhang and
Sun, 1996; Benjeddou et al., 2000; Vinhas-Bertolini, 2001).

9. Concludingremarks

A new refined approach to piezoelectric laminated plates is presented and analyzed in details displaying its performances
and efficiency. The theory is mainly based on the principle of linear piezoelectricity in the framework of the quasi electrostatic
hypothesis. It turns out that the present laminated plate model improves the performance of responses of piezoelectric
components involved in smart structures. The model thus proposed seems to be a simple compromise between response accuracy
and computational and analytical efficiency. More precisely the model is based on the combinatioeqofvafent single-
layer approach for the mechanical displacements withy&rwise-type modellinpr the electric potential considered as an
additional degree of freedom. Furthermore, the present approach accounts for the shearing effects, which plays a crucial role in
the accuracy of the results. The layerwise modelling enables us a better description of the variations of electric field through-
the-thickness of the laminated plate. Then such an approach can incorporate the local electromechanical response of each layer.
Especially, the layerwise approach becomes a necessity when electric potentials are applied to electrodes at layer interfaces.
This theory is particularly efficient for strong variations in piezoelectric and dielectric properties of the layers.
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The refined piezoelectric plate modelling has been tested for simply supported laminated plates under cylindrical bending
undergoing electromechanical loads (force density and electric potential). The complete set of governing equations for the
piezoelectric composites is derived from the Hamiltonian variational principle using expansions of the elastic displacement and
electric potential as function of the thickness coordinate as defined by Eq. (11) along with the boundary conditions around the
plate contour. The variational formulation accounts for the continuity conditions on the electric potential and normal component
of the electric induction at the layer interfaces by employing Lagrange multipliers. A Fourier series solution to plate equations
is then considered to compute the field variations through the plate thickness. A number of numerical examples is presented
for piezoelectric structures of practical interest such as piezoelectric bimorph, bilayer and piezoelectric sandwich for three
characteristic aspect ratios, namélysz =5, 10 and 50.

Itis observed that the refined model leads to excellent predictions of the local variations of the electromechanical variables.
The error in estimating the global responses is overall within a range-a#4 with respect to results obtained from finite
element method for the full 3D model. Nevertheless, the limitations of the present approach concerns the estimation of the
transverse shear stress over the plate thickness. The shear stress cannot be estimated correctly (except for the piezoelectric
bimorph) in the framework of the present model anflilhlayerwise approactshould be required, which is envisaged in a
further study. Furthermore, in view of the these results concerning sensor and actuator functions of piezoelectric laminated
composites, we are strongly encouraged to extend the present study to the investigation of vibrations of laminated piezoelectric
plates (Heyliger and Saravanos, 1995) yielding the concept of passive or active control of vibrations (Anderson and Hagood,
1994; Saravanos, 1999). This will be presented in a future work.

Appendix A. Matrix form of constitutive equationsfor linear piezoelectricity

The constitutive equations (10) can be written in the following matrix form for materials possessing three mutually
perpendicular planes of symmetmyrihotropic symmetry) (we use the Voigt notation with indices):

[o1] [cEcEcE,b 0 0 0 0 0 —esi|[S2
o2 cEcEck, 0 0 0 0 0 —ep || S2
o3 chclhbck, 0 0 0 0 0 —esz|| S3
o4 0 0 0CE O 0 0 —e4 O Sa
o5 |=| 0 0 0 0CE 0 —ei5 0 0O S5 |. (A.1)
o6 0 0 0 0 0cf o o0 0O Se
Dy 0 0 0O O0es5 0 €; 0 0 Ep
D> 0 0 0 e O 0O 0 &, 0O Eo
| D3| | es1 ez e33 0 0 0 0 0 € || E3]

If the material system has an axis of symmetry (transversally isotropic) the number of independant material coefficients is
; E_cE cE _cE (E _(cE (cE _1.cE E _ _ S _ .S
reduced according t07; = C55, Cia= C53, Cyy= Cgs, Cgg= 5(C1q — C1p), €31 = €32, 15 = eg4 andey; = €5,.

Appendix B. Coefficients of Lagrange multipliers
The coefficients of the arbitrary variations in unknown functions introduced in the virtual work associated with Lagrange

multipliers (see Eq. (27)) are computed from continuity conditions Eq. (15) using Eq. (16) and the approximations defined by
Eq. (11) starting from Eq. (26). They depend on the Lagrange multipliers and can be put in the following form:

+1 4
b= (s — i) vect)s (B.1)
=1
o ern a0
*(0+ *
8= D71 (€p  — Caap)Veco): (B.2)
=1

N-1
4 £+1 4
Apg = Zzl £ (5™ = ehig)vecors (B.3)
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AT®

=g, (B.4)
450 =, (8.5)
¢ 1 0+1
Air( )= —<§he+1ﬂe + Ezé * )Vé(£)>» (B.6)
—(©) 1 k0
Ay = hele — €33 ve )- (B.7)
¢
A;r( ) =h 163é + )Ve(é); (BS)
-t {4
AZ( ) = h[€3g )Ve(Z)» (Bg)
¢ ¢ ¢ +1
A3 = g(@ e + 7 f( ezs ey, (B.10)
(L {4 {4 {4
A3 = =g (=)o - —f( 1)ess veco- (B.11)
where the effective piezoelectric and dielectric constants oinﬂndﬁyere;i% ande*(e) are given in Appendix E. We have set

Qg = tte — Pe(e)-

Appendix C. Matrix components of constitutive relations

The present appendix provides one with the components of the matrices introduced in Section 6 in the constitutive equations
for the generalized resultants of the plate model (Moigt notation has been considered).

¢ The matricesd, B, D, E, E andD are 3x 3 matrices defined as follows:
#(0) *(Z)
N Cll C 0

(AB,D,E,E D)= (ar, by, ce,ar, B, ¢0) | Cp3 c*<‘> o | (C.1)

=1 0 0 C*(e)

Py = [IP(l) .. IF’(N)] k€ {1,2,3},is a3x 3N matrix made ofV blocks of 3x 3 matnces]P g|ven by

0 o0 o 0 x(t T ™ ™ ™
E" PO, PY) =[5, é(z),o] ([az,O,—zae], [bz,—de,—zﬁz} [W’_Z(SZ’_ZQD' (C2)

His a 3V x 3N matrix made ofV blocks of 3x 3 matrices in its diagonal

o —a 0 %‘;‘f

H T

_ . . 0) _  _*(0) e

H_[ "HW)} with H® =35 0 2 70 |- (C.3)
4 7t2 ]T2
W TRt et

R is a 2x 2 matrix defined by

Y o
R= Cc4
Z W2 Q 0 C*(z) (C.49)
e L, is a matrix made oV blocks of 2x 4 matrices given by

Ly =LY, .., LMY], aei12), (C.5)

with

L0 L) = T (00 0.0 x |, 3bebe . ©6)
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e T, isa 4N x 4N matrix consisting ofV blocks of 4x 4 matrices in its diagonal:

ag 0 dy oy

1 dg T -
T 0o % o Zg,

To=| . - with T = i 2 2| (€.7)
™ d 0 fi &

oy lg[ S &t
2h

Remark. For transversally isotropic material the above matrices can be reduced due to material symmetry. Then, in this case,

in the bIock]P’,(f) we haveeg(lg) = 63(242)_ The matrixR is a diagonal matrix witlfzgf) = C;g). In addition, we havelL)q #0,

*

(L1)2 =0, (L)1 = 0 and(LLy)5 # 0. At last, sinc&ﬁg) = ezg), this yieldsT; = T».

Appendix D. Coefficients of the matrix components

The different coefficients introduced in the definitions of the matrix components (see Appendix C) are only functions of the
layer thickness and interface coordinates:

a=z" =27, ©.1)
b= 51" - 6] ©02)
co=5lE") - 7)) 03)
b= =3[0~ 9
fi=ggl? =0T ©s5)
o == [olef”) ) )
o=t 2060 - - () — e ), ©.7)
b= L)~ 1G-S 0] ©9
= a7 1= F L) ) - o)) ©9
ae= L7 - 16 (0.10)
5= 3| 2Ll - e N+ 87 - N + ) 1
b= a4 ) T )0 - el ) 0.2

Appendix E. Effective elastic, piezoelectric and dielectric constants

The effective modulus of elasticity due to the normal shear stress hypothesis for elastic thin qgtesgligeable in
comparison to the other stress components, it ig:¢t.)3 order) are given by

cH =cE (E.2)
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On using the same argument, we have the effective piezoelectric coefficients

E
¢;j3C,3
€ja=€ja = =L (E.2)
33
and the effective dielectric constants
o s | €i3¢;3 (E.3)

T o

respectively, withu, b € {1, ..., 6}, i, j € {1, 2, 3} when using the Voigt notation for convenience.
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