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Abstract

We propose a new approach to laminated piezoelectric plates based on a refinement of the
electric potential as function of the thickness coordinate of the laminate and accounting for
shear effects. Moreover, the variation of the electric potential as function of the thickness
coordinate is modelled for each layer of the laminate. The equation for the laminated piezoe-
lectric plate are then obtained by using a variational formulation involving mechanical surface
loads or prescribed electric potential on the top and bottom faces of the plate. In addition to
the equations for the generalized stress resultants (due to the shear effects), the equation of
the electric charge conservation is also deduced for the 2D model.

Particular attention is devoted to the single piezoelectric plate and bimorph structure and
the through-thickness distribution of the displacements, electric potential as well as stresses are
given for different kinds of electromechanical loads. The results thus obtained are compared to
those provided by a finite element method performed for the full 3D model. A good agreement
is observed for plates made of layers of PZT-4 piezoelectric material. The comparison ascer-
tains the effectiveness of the present 2D approach to piezoelectric laminates. 2001 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Application of induced strain actuators are spreading widely in various fields of
engineering such as precise positioning, intelligent control of shapes and active
damping of vibrations [1–4]. Among the different types of actuators, thepiezoelectric
actuatorsare the most popular, probably because of their simple and versatile design.
The most simple piezoelectric actuator is usually made of single-component system
(for instance, a slab of piezoelectric material). Typically, such an actuator produces
displacements in the order of 10 to 100µm when applying an electric field of 2
kV/mm. To overcome this limitation, an actuator using flexural-extensional defor-
mation of the structure requires several components and it will be acomposite
material rather than a monolithic structure. One of the advantages of themultilayer
techniquewith piezoelectric materials is to induce strain of the order of 1200 ppm
by applying voltage less than 200 volts. In order to obtain large amplitude motions
in piezoelectric devices, abilayer or sandwich structureis commonly used in which
a piezoelectric layer, with its direction of polarization perpendicular to the layer
faces, is glued back to back with a strip of nonresponsive but elastic layer. The
contraction of the piezoelectric layer in response to an applied field will be hindered
by the elastic layer and the bilayer composite will bend. This is the reason for model-
ling and understanding composite structures made of a stacking of piezoelectric
plates.

Several versions of linear piezoelectric plate have been proposed by Tiersten [5],
Mindlin [6] and Lee [7]. A first approach is based usually on Love’s first-approxi-
mation including the Gauss equation for the electric charge and extended to laminated
plate using first-order shear deformation theory [8]. An interesting refined theory
of layerwise approach to the electric potential has been introduced by Reddy [9].
Nevertheless, most models are based on a classical laminated plate theory which
neglects the transverse shear effects. More refined and higher-order theories for pie-
zoelectric plates become a necessity to well understand strain sensing and actuating
in piezoelectric laminated plates.

In the present work, we intend to study a refined approach to piezoelectric lami-
nated plate involvingshear effectsandlayerwise descriptionof the electric potential.
The model examined here includes the charge equation, so that we do not consider
any hypothesis on the electric displacement. The shear distribution across the plate
thickness is approximated by a trigonometric function [10]. Our particular choice
for the approximation of the displacement field and electric potential must satisfy
the boundary conditions. Especially, the plate can be subject either to an applied
electric potential on the top and bottom faces of the plate or to a density of force
on the top face. However, the boundary conditions can be extended to applied electric
charge density as well. A variational formulation is considered to reduce the equa-
tions of the full 3D model to those of 2D for the piezoelectric plate. The variational
formulation is then generalized to plates made of piezoelectric layers and accounts
for the continuity conditions at the layer interfaces.

Section 2 is devoted to the variational formulation of piezoelectric media. The
approximation model is presented in Section 3. In Section 4, the equations for the
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piezoelectric plate are deduced from the variational formulation and some gen-
eralized stress resultants and electric charges are also defined. The boundary con-
ditions are discussed in Section 5. Special attention is addressed to a single piezoe-
lectric plate in Section 6. The full equations for the single piezoelectric plate are
investigated in Section 7 and the solution for piezoelectric plates in cylindrical bend-
ing is presented and the comparison to finite element simulations is also considered.
The bilayer structure is given in Section 8, the piezoelectric bimorph structure is
studied for different kinds of electromechanical loads. The comparison to numerics
by means of finite element method leads to a good accuracy of the present model.
At length, by way of conclusion, some extensions of the model and further works
are evoked in Section 9.

2. Reminder: variational formulation of piezoelectricity

In this section, we briefly recall all the requisites about piezoelectricity and the
associated variational formulation based on Hamilton’s principle. The advantage of
this method is that it accounts for both the mechanical and electrical aspects simul-
taneously. Moreover, the formulation considers the natural boundary conditions con-
nected with the mechanical and electrical quantities. The variational principle is
stated as [6]

dE
t2

t1

(L1W)dt5E
t2

t1

(dK2dU1dW)dt50, (1)

whereL is the Lagrangian,K is the kinetic energy,U is the potential energy andW
is the external work. For a piezoelectric medium the associated potential energy
density can be identified with the electric enthalpy density function which can be
expressed in terms of the strain and electric field as follows

U5H(eij ,Ei)51
2sijeij21

2DiEi, (2)

wheresij are the components of the stress tensor,eij are the components of the strain
tensor,Di is the electric displacement andEi is the electric field vector. The stress
tensor and the electric displacement vector are derived from the enthalpy

sij5
∂H
∂eij

, Di52
∂H
∂Ei

. (3)

The formulation must be completed with the use of the piezoelectric constitutive
equations. Here, the study is restricted to the classical linear piezoelectricity within
the electrostaticframework for which we haverot E=0 and the electric field is
derivable from an electric potentialf by

Ei52f,i. (4)
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On using the above definition and assuming there are no body forces the vari-
ational formulation takes on the following form

2E
t2

t1

E
V

(rüidui1sijdeij1Dj(df),j)dvdt1E
t2

t1

E
∂V

(Tidui1qdf)dSdt50. (5)

The second part of Eq. (5) represents the virtual external work involving the sur-
face tractionTi and applied surface electric chargeq on the domain boundary∂V.
The variational formulation will be applied to derive a set of approximate governing
equations for laminated piezoelectric plates by accounting for the approximation of
the displacement field and electric potential as functions of the thickness coordinate
of the plate. In Hamiltonian’s principle, it is assumed that the virtual displacements
and electric potential are zero att1 and t2. The coupled linear constitutive equations
for piezoelectric materials are given by [6]

Hsij=CE
ijklekl−ekijEk,

Di=eijkejk+cijEj,
(6)

where the straineij = u(i,j) = 1
2 (ui,j + uj,i) and u is the displacement vector. In Eq.

(6), CE is the fourth-order tensor of elasticity coefficients at zero electric field,e is
the third-order tensor of piezoelectricity coefficients andc is the second-order tensor
of dielectric constants at vanishing strain. In the following, we will focus our atten-
tion on materials which possess three mutually perpendicular planes of symmetry,
it is referred to as orthotropic. Therefore only the following material coefficients are
non zero (we use the Voigt notation with indices)

CE
ab={ CE

11,CE
12,CE

13,CE
22,CE

23,CE
33,CE

44,CE
55,CE

66},

eia={ e15,e24,e31,e32,e33},

cij={c11,c22,c33}.

If the material system has an axis of symmetry (hexagonal system) the number
of independant material coefficients is reduced according toCE

11=CE
22, CE

13=CE
23,

CE
44=CE

55 andCE
66=1

2(C
E
112CE

12), e31=e32, e15=e24, andc11=c22.

3. Approximation of the displacement field and electric potential

Most plate models consider an expansion of the displacements in power series of
the thickness coordinate. The level of truncation of the expansion leads to the order
of the plate theory. In the present model, the displacement field and electric potential
are assumed to be of the form
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5
ua(x,y,z,t)=Ua(x,y,t)−zw,a(x,y,t)+f(z)ga(x,y,t), aP{1,2},

u3(x,y,z,t)=w(x,y,t),

f(x,y,z,t)=f0(x,y,t)+zf1(x,y,t)+P(z)f2(x,y,t)+g(z)f3(x,y,t).

(7)

Some comments on the above expansions are in order, (i)f(z)=0, we recover the
classical Kirchhoff–Love thin plate theory [11], (ii) at the first order in the expansion
of f(z), f(z)=z we obtain the Mindlin–Reissner model [12] and (iii) the expansion of
f(z) to the third order leads to a refined model of the same order as that of Levinson
[13] and Reddy [14]. In the present approach, we have considered

f(z)5
h
p
sinSpzh D, g(z)5

h
p
cosSpzh D, P(z)5z22Sh

2D2

, (8)

where h is the plate thickness which is supposed to be uniform. The case of the
purely elastic plates has been extensively examined by Touratier [10] and extended
to elastic shells [15].

In the approximation of the electric potential, the first two terms, the linear part,
can be connected with the applied electric potential. The third term represents the
induced electric potential by material deformation through piezoelectric coupling.
Such a quadratic term has been suggested by Yang [16] and Rogacheva [17]. The
last term corresponds to the shearing effects approximated by the functionf(z) in
the displacement. Most theories of piezoelectric plate are limited to a classical Kirch-
hoff–Love model for the elastic part and to the linear approximation for the electric
potential. Some approaches are based on discrete layer approximation for the electric
potential using Lagrange interpolation functions [18]. They are equivalent to finite
element methods. In the present approach, we point out the usefulness of the refine-
ment introduced in the approximation of the elastic displacements and electric poten-
tial, especially if the plate is not really thin.

4. Boundary conditions

Two kinds of electromechanical boundary conditions are considered on the top
and bottom faces of the plate:

(a) an electric potential is applied on the plate faces, such as

f(x,y,z56h/2,t)5V±(x,y,t). (9)

SinceP(±h/2)=0 andg(±h/2)=0 (see Eq. (8)), the boundary conditions (Eq. (9))
yield
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f051
2(V

+1V−) andf15
1
h
(V+2V−). (10)

Accordingly, the functionsf0 and f1 are not arbitrary and they depend on the
applied electric potential. For the sake of simplicity, we takeV+=V andV2=2V so
that we havef0=0 andf1=2 V/h. Moreover, the applied electric potential is supposed
to be uniform.

(b) The second kind of boundary condition is a charge density of forcep per unit
area and perpendicular to the plate faces.

Remarks. The Maxwell equations for the electromagnetic fields lead to the associa-
ted boundary conditions [19], especially for the electric field (vEb×n=0), which
imposes the continuity of the tangential component of the electric field through the
interface. In order to apply the electric potential, the top and bottom faces of the
plate are coated with thin metallic electrodes of negligible thickness and playing no
role mechanically. Nevertheless, it is assumed that the stresses and displacements
are perfectly transmitted through the electrodes. Therefore, the potential is uniform
on the electrode. Since in a conductor the electric field is zero, the boundary condition
on the electric field can be written asE1=E2=0 on the top and bottom faces of the
plate. Lastly, it is worthwhile noting that electric charges can be imposed on the top
and bottom of the plate, in this situation the boundary conditions on the electric
displacement isvDb·n=q, which is, in our case, read asD3(±h/2)=q.

5. The plate equations

The variational formulation presented in Section 2 is used to derive atwo-dimen-
sional modelfrom the fully three-dimensional theory of piezoelectricity. By substitut-
ing the approximation made for the displacement field and electric potential as given
in Section 3, it is possible to eliminate the dependency of the field on the thickness
coordinatez. To obtain the equations and boundary conditions for the two-dimen-
sional model, displacement and electric potential approximations (see Eq. (7)) along
with the boundary conditions (Eq. (10)) are substituted into the variational principle
(Eq. (5)). The dependency onz is integrated out by introducing generalized stress
and electric charge resultants. The variational formulation can be written as

E
t2

t1

(2dU1dW11dW2)dt50. (11)

In the present study only static processes are investigated so that the kinetic energy
is dropped out. The first term in Eq. (11) is the variation of the internal force work

dU5E
S

{ Nab(dUa),b2Mab(dw),ab1M̂ab(dga),b1Q̂adga1D(2)
a (df2),a



9A. Fernandes, J. Pouget / Thin-Walled Structures 39 (2001) 3–22

1D(3)
a (df3),a1D(2)

3 df21D(3)
3 df3} dS. (12)

In the above variation we have introduced some stress and electric charge or induc-
tion resultants as follows

(Nab,Mab,M̂ab)5 E
1h/2

2h/2

(1,z,f(z))sabdz, (13)

Q̂a5 E
1h/2

2h/2

f 9(z)sa3dz, (14)

for a, b P {1,2} and f 9(z)=[df(z)/dz]. In addition, we have

(D(2)
a ,D(3)

a )5 E
1h/2

2h/2

(P(z),g(z))Dadz, (15)

(D(2)
3 ,D(3)

3 )5 E
1h/2

2h/2

(P9(z),g9(z))D3dz, (16)

with P9(z) = [dP(z)/dz] and g9(z) = [dg(z)/dz]. Finally, the last two terms in Eq. (11)
denote the variation of the works of applied forces and electric charges on the plate
boundary which is the sum of the works of the forces and electric charges applied
on the top and bottom faces of the plate and those of the same quantities applied
on the lateral boundary of the plate, namely

dW15E
S

(fadUa2pdw1m̂adga)dS, (17)

dW25E
C

(FadUa1Tdw1Cadga2Mf(dw),n)dl2O
p

Zpdwp. (18)

In Eq. (17),fa andp are densities of force per unit of area,m̂a is a surface moment
density. In Eq. (18),Fα and T are densities of force per unit of length,Mf and Ca
are lineic moment densities andZp are transverse forces applied at angular points of
the edge boundary contourC of the plate. In Eq. (18) (dw),n is the derivative of the
variationdw with respect to the normal direction to the boundary contour. The elec-
tric charges on the top and bottom faces of the plate do not appear explicitly in the
virtual works (they are cancelled out by integrating on the plate thickness).

In order to obtain the Euler–Lagrange equations from the variational formulation,
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we use integration by parts if needed and we collect the factors of the arbitrary
variations {dUa, dw, dga, df2, df3}. By assuming that the variational formulation
holds for any arbitrary variations, we obtain the following set of equations (for the
static case)

5
Nab,b+fa=0,

Mab,ab−p=0,

M̂ab,b−Q̂a+m̂a=0,

(19)

and

HD(2)
a,a−D(2)

3 =0,

D(3)
a,a−D(3)

3 =0.
(20)

The associated boundary conditions on the plate edgeC are given by

5
Fa=Nabnb or Ua given,

T=(taMabnb),s+naMab,b or w given,

Mf=naMabnb or w,n given,

Ca=M̂abnb or ga given,

D(A)
a na=0 (AP{2,3}) or fA given,

(21)

and at the angular pointsAp of the edge we writevtaMabnb2ZpbAp=0. In Eq. (21)
t is the tangent vector to the edge contourC.

The first two equations in Eq. (19) are strictly equivalent to those of the Kirchhoff–
Love model for the classical plate theory [12]. The third equation governs the shear-
ing effects. Eq. (20) is deduced from the electric charge balance law. Moreover, it
has been supposed there is no electric charge on the lateral edge of the plate contour
(no electrode), because the dielectric constant of the piezoelectric plate is much larger
than the dielectric constant of the outside air. Accordingly the left hand side of Eq.
(21) 5 is zero.

6. The plate constitutive laws

We consider theconstitutive laws for the linear piezoelectricity(see Eq. (6))
applied for an orthotropic symmetry. On using the stress and electric induction result-
ants defined by Eqs. (13)–(16), we are able to put the constitutive equations for the
generalized resultants in the matrix form
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3
N1

N2

N6
453

Q11 Q12 0

Q12 Q22 0

0 0 Q66
43

S(0)
1

S(0)
2

S(0)
6
413

e∗
31

e∗
32

0 42V, (22)

where we have setQab=hC∗
ab for (ab)P{(11),(22),(12),(66)} (the Voigt notation is

used for convenience) andC∗
ab are the modified modulus of elasticity due to the zero

normal shear stress hypothesis (s33 negligible), given byC∗
ab=CE

ab2CE
a3CE

3b/CE
33. We

have the same for the piezoelectric and dielectric coefficientse∗
ja=eja2ej3CE

a3/CE
33 and

c∗
ij =cij+ei3ej3/CE

33. We also have the following matrix form









M1

M2

M6

M̂1

M̂2

M̂6

D(2)
3

D(3)
3 







5









D11 D12 0 d11 d12 0 R31 r31

D22 0 d12 d22 0 R32 r32

D66 0 0 d66 0 0

D̂11 D̂12 0 R̂31 r̂31

D̂22 0 R̂32 r̂32

(sym.) D̂66 0 0

P33 P̄33

P̄̄33 

















S(1)
1

S(1)
2

S(1)
6

S(2)
1

S(2)
2

S(2)
6

f2

f3 







, (23)

3
Q̂1

Q̂2

D(2)
1

D(2)
2

D(3)
1

D(3)
2

453
Â55 0 L15 0 L̄15 0

Â44 0 L24 0 L̄24

B11 0 B̄11 0

(sym.) B22 0 B̄22

B̄̄11 0

B̄̄22

43
g1
g2
f2,1

f2,2

f3,1

f3,2

4, (24)

All the coefficients in Eqs. (23) and (24) are defined by

(Dab, dab, D̂ab)=S 1
12

,
2
p3,

1
2p2Dh3C∗

ab,

(R3a, r3a, R̂3a, r̂3a)=Sh
6
, −

2
p2,

4h
p3, −

1
2pDh2e∗

3a,

(P33, P̄33, P̄̄33)=S−
h2

3
,
4h
p2, −

1
2Dhc∗

33,

ÂMN =
h
2

C∗
MN,
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(LaN, L̄aN)=S−
4h
p2,

1
2Dh2

p
e∗
aN,

(Baa, B̄aa, B̄̄aa)=S−
h2

30
,
4h
p4, −

1
2p2Dh3c∗

aa,

with aP{1,2}, (MN)P{(44), (55)} and (aN)P{(24), (15)}. In addition, the strain
tensors which have been introduced in Eqs. (23) and (24) are defined by
S(0)
ab=U(a,b), S(1)

ab=2w,ab and S(2)
ab=g(a,b) and we use the appropriate Voigt notation,

next. It should be observed from the constitutive laws for the generalized resultants
that if an electric potential is applied on the top and bottom faces of the plate, an
elongation or compression only will be produced (see Eq. (22)).

7. Solution for piezoelectric plates in cylindrical bending

Now, we possess all the necessary ingredients to solve the plate problem. On
substituting the constitutive laws (Eqs. (22)–(24)) into the plate Eqs. (19) and (20),
we are able to write down the equations in terms of the unknown fields {U1, U2, w,
g1, g2, f2, f3}. Next, we consider asurface density of normal loadon the top face
andelectric potentialimposed on the top and bottom surfaces of the plate. The shear
traction is zero on the top and bottom faces (fa=0). In addition, there is no surface
moment density (m̂a=0). The simple support conditionsfor a rectangular plate of
length L are simulated by s11(0,z)=s11(L,z)=0, s13(0,z)=s13(L,z)=0 and
u3(0,z)=u3(L,z)=0 (Fig. 1). All stresses, strains, displacements, electric field and
potential do not depend on they variable and the displacementu2 plays any role in
the problem, it can be dropped out (u2=0, g2=0). The electromechanical load functions
can be expressed in the form of Fourier series as follows

(p(x),V(x))5O`
n51

(Sn,Vn)sinlnx, (25)

with

ln5np/L, Sn54S0/np, Vn54V0/np. (26)

Fig. 1. Piezoelectric plate on simple supports.
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The loads defined by Eq. (25) represent uniform applied surface density of forceS0

and electric potentialV0. A solution to Eqs. (19) and (20) along with the constitutive
equations (Eqs. (22)–(24)) which satisfies the boundary conditions of the cylindrical
bending of a plate simply supported takes on the form

(U1(x),g1(x))=O`
n51

(Un,Gn)coslnx,

(w(x),f2(x),f3(x))=O`
n51

(Wn,F2,n,F3,n)sinlnx.

(27)

The Fourier coefficients in the above series are determined by putting the solution
(Eq. (27)) into the plate equations and solving simultaneously a set of linear algebraic
equations for eachn. The set of linear algebraic equations takes on the matrix form

3
−l2

nQ11 0 0 0 0

−l4
nD11 l3

nd11 −l2
nR31 −l2

nr31

−(Â55+l2
nD̂11) ln(R̂31−L15) ln(r̂31−L̄15)

(sym.) −(P33+l2
nB11) −(P̄33+l2

nB̄11)

−(P̄̄33+l2
nB̄̄11)

4 3
Un

Wn

Gn

F2,n

F3,n

4 (28)

53
−2lne∗

31Vn

Sn

0

0

0

4.
The matrix possesses real elements and is symmetric. Now the resolution of the
problem consists of finding the Fourier coefficients by solving Eq. (28) and substitut-
ing the result into the Fourier series (Eq. (27)) to go back to the displacement field
and electric potential. Afterwards, the stresses and the normal component of the
electric displacement are also computed by using the constitutive equations (Eq. (6))
and taking the approximations defined by Eq. (7) into account.

Numerical results for the single plate problem

We apply the above results to a single plate made of PZT-4 ceramics, whose the
nonzero material constants are given in Table 1 [20]. The geometry of the plate is
L=0.1 m and the slenderness ratio isL/h=10. The resulting displacements, stresses
and electric potential are given in nondimensional unit as follows:

(i) for the density of normal forceS0Þ0 (S0=1000 N/m2), we set
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Table 1
Independent elastic, piezoelectric and dielectric constants of piezoelectric materials (transversely iso-
tropic symmetry)

CE
11 CE

12 CE
33 CE

13 CE
44 e31 e33 e15 c11 c33

(GPa) (C/m2) (nF/m)

PZT-4 139.0 77.8 115.0 74.3 25.6 25.2 15.1 12.7 13.06 11.51
ZnO 209.7 210.9 121.1 105.1 42.5 20.61 1.14 20.59 0.074 0.078

(U,W,F)5
C11

hS0
(u1,u3,f/E0), (Tij ,Dl)5

1
S0

(sij ,E0Dl),

(ii) for a uniform electric potentialV0Þ0 (V0=50 volts), we have

(U,W,F)5
E0

V0

(u1,u3,f/E0), (Tij ,Dl)5
hE0

C11V0

(sij ,E0Dl).

For the present numerical illustration we takeE0=1010 volts/m. Only 30 terms are
retained in series (Eq. (25)) for the applied force density and 50 terms for the applied
electric potential in order to ensure the convergence. The results obtained in the case
of a plate subject to a uniform normal loadS0 are presented in Fig. 2 in dimensionless

Fig. 2. Force density applied on the top face of a piezoelectric single plate 2D model (full line) and
finite element (small circles).
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variables. The plate, in this case, undergoes a bending. In Fig. 2(a), the displacement
U at x=0 is almost linear through the plate thickness. The flexural displacementW
at x=L/2 is given in Fig. 2(b), the straight line corresponds to the plate model, but
the discrepancy between the maximum value of the deflection for the 3D computation
and that of the 2D model is less than 1%. The most interesting curve is the electric
potential at the plate center given in Fig. 2(c), this is the induced electric potential
through the piezoelectric coupling by the elastic deformation. This ascertains the
existence of thef2 term in the electric potential expansion (Eq. (7)). The stress
componentT11 at x=L/2 is drawn in Fig. 2(d). We observe a pretty good agreement
with the results obtained withfinite element computations. The latter have been per-
formed with ABAQUS code using 8-node tetrahedral elements and 3600 elements
have been considered.

Regarding the case of an applied electric potential, the results are collected
together in Table 2 for the displacementU at x=L, the electric displacementD3 and
the stressT22 at the plate center. Note that, in this simple situation, there is no
deflection (W=0), an elongational deformation along thex-axis is only produced. In
this situation, a thickness deformation is obviously produced for the 3D plate problem
due to the piezoelectric constante33. The present plate approach does not account
for the thickness variation since the deflectionw is constant through the plate thick-
ness. In spite of this limitation, the thickness variation represents, however, less than
1% of the elongation or compression in the direction of the plate length. The deflec-
tion approximation could be improved by settingu3(x,y,z)=w(x,y)+h(z)w1(x,y) where
h(z) is an appropriate function which must satisfy some boundary conditions on the
top and bottom faces of the plate.

8. Bilayered piezoelectric structure

8.1. General formulation

Here, we are concerned with a plate made oftwo piezoelectric layersof different
thicknesses and materials. The main difficulty, in the model, is the interface conti-
nuity of certain mechanical and electrical quantities. In this situation, the present
approach combines anequivalent single-layertheory for the mechanical displace-
ments with alayerwise-type approximationfor the electric potential. Accordingly,

Table 2
Single piezoelectric plate, applied electric potential

2D model Finite element difference

U 216.2 216.42 1.4%
T22 21.477 21.447 2%
D3 223.42 222.96 2%



16 A. Fernandes, J. Pouget / Thin-Walled Structures 39 (2001) 3–22

the approximation for the elastic displacements defined by Eq. (7) is still valid while
the electric potential is assumed to be of the form

f(l)(x,y,z)5f(l)
0 (x,y)1zlf(l)

1 (x,y)1Pl(zl)f(l)
2 (x,y)1g(z)f(l)

3 (x,y), (29)

with l =1 or 2 corresponding to the lower or upper layer, respectively and where
Pl(z)=z22(hl/2)2 and g(z) is still defined by Eq. (8). The potential is defined in the
local coordinates of the layer wherezl is the thickness coordinate with respect to
the mid-plane of thelth layer whilez is the thickness coordinate measured from the
laminate geometric mid-plane (see Fig. 3).

The variable change is given by

z15z1h2/2 andz25z2h1/2.

Next, we discuss the continuity conditions. It is clear that the elastic displacements
are continuous atz=zI = 1

2 (h12h2). However, the continuity of the electric potential
as well as the normal component of the electric displacement must be imposed,
which can be written as

HA=f(1)(x,y,zI)−f(2)(x,y,zI)=0,

B=D(1)
3 (x,y,zI)−D(2)

3 (x,y,zI)=0.
(30)

Moreover, the boundary conditions for the electric potential on the top and bottom
faces of the plate must be satisfied and they are given by

5f
(1)(x,y,−h/2)=f(1)

0 −
h1

2
f(1)

1 =−V,

f(2)(x,y,+h/2)=f(2)
0 +

h2

2
f(2)

1 =+V.

(31)

Now, the study amount to finding the set of unknown functions {U1, w, g1, f(l)
1 ,

f(l)
2 , f(l)

3 ; lP{1, 2}} subject to the continuity conditions (Eq. (30)). In order to account

Fig. 3. Piezoelectric bilayer plate.
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for the conditions (Eq. (30)) in the variational formulation we introduceLagrange
multipliers l and m in the Hamilton principle. Then the virtual works due to the
continuity conditions

dE
t2

t1

E
S

(lA1mB)dSdt, (32)

must be added to the formulation (Eq. (11)). The variation of the Lagrange multi-
pliers leads to the conditions (Eq. (30)), but additional terms containing the Lagrange
multipliers appear in the plate equations. As a consequence, the Lagrange multiplers
are considered as unknown functions and a total of 11 unknown quantities should
be determined for the bilayer problem.

8.2. Numerical results for the piezoelectric bimorph

An interesting and practical situation can be considered [21]. In this situation,
both piezoelectric layer are made of identical material and have the same thicknesses,
however, the piezo-active axes are in opposite directions. When an electric potential
is then applied to the bimorph, one layer elongates while the other one shrinks,
resulting in a global bending of the plate. As in the single plate case, the bimorph
structure is assumed to be simply supported. The hypotheses for the single plate
hold in the present case. The same form for the electromechanical loads is considered
(see Eq. (25)) and solutions to the bimorph equations are searched for in the Fourier
series (see Eq. (27)).

The numerical results are collected in Fig. 4 in dimensionless variables as defined
in the single plate problem. In a first situation, the bimorph structure, composed of
PZT-4 material, undergoes an applied force density on the top face with the electric
potential and shear stresses at the top and bottom faces specified to be zero. The
elongational displacementU at x=0 is shown in Fig. 4(a). The flexural displacement
W at x=L/2 is presented in Fig. 4(b), as in the single plate case, the straight line
corresponds to the plate model, nevertheless the discrepancy between the maximum
values of the deflection, at the center of the plate, for the plate approximation and
the finite element computation for the 3D model is less than 1%. Fig. 4(c) provides
the through-thickness distribution of the induced electric potential atx=L/2, the latter
is very close to the 3D computation. Finally the stressT11 also atx=L/2 is plotted
in Fig. 4(d), exhibiting the usual discontinuity at the interface. A rather good accuracy
is observed for the present plate approach in comparison to the results obtained from
the finite element method.

A second series of results are presented in Fig. 5 for the case of an applied electric
potential at the top and bottom faces of the bimorph structure. Here, in Fig. 5(a) we
have the through-thickness distribution of the longitudinal displacementU at x=0
which is almost linear including small shear effects. The induced flexural displace-
mentW at the plate center is displayed in Fig. 5(b). The electric potential atx=L/2
is given in Fig. 5(c) and the stress componentT11 also atx=L/2 is plotted in Fig.
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Fig. 4. Force density applied on the top face of a piezoelectric bimorph 2D model (full line) and finite
element (small circles).

Fig. 5. Applied electric potential to a piezoelectric bimorph 2D model (full line) and finite element
(small circles).
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5(d). In this situation, we note a good agreement of the through-thickness distribution
with the corresponding results provided by the finite element computations. In dimen-
sional units, the deflection displacement produced by an applied electric potential of
100 volts is of the order 0.6µm at the plate center. Larger deflections can be obtained
with higher voltages and larger slenderness ratios.

8.3. Numerical results for the piezoelectric bilayer

Here, we briefly summerize the results for a plate made of two piezoelectric layers
of different materials and thicknesses. The lower layer is made of ZnO piezoelectric
crystal withh1=0.3h while the upper layer consists of PZT-4 piezoelectric material
with h2=0.7h. Two situations are considered. (i) Applied force density at the top
surface of the plate: the distributions of the elongational displacement atx=0, deflec-
tion displacement, electric potential and stress componentT11 at x=L/2 along the
plate thickness are presented in Fig. 6(a–d), respectively. (ii) Applied electric field
at the top and bottom faces of the plate: the induced elongational displacement at
x=0, electric potential, stress componentT11 and electric displacement component
D3 at x=L/2 are drawn in Fig. 7(a–d), respectively. It is worthwhile noting the rather
good accuracy of the results in comparison to those provided by the finite element
computation performed on the 3D piezoelectric body. An additional comparison can
be done to an exact solution for laminated piezoelectric plates in cylindrical bending
which is merely an extension of the Pagano’s works for elastic laminates [22] to
piezoelectric plates [23].

Fig. 6. Force density applied on the top face of a piezoelectric bilayer plate 2D model (full line) and
finite element (small circles).
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Fig. 7. Applied electric potential to a piezoelectric bilayer plate 2D model (full line) and finite element
(small circles).

9. Closing remarks

In this paper, an approximation theory for laminated plates including piezoelectric
layers is presented. The model is based on the combination of anequivalent single-
layer approachfor the mechanical displacement with alayerwise-type modellingfor
the electric potential. Moreover, the theory accounts for the shearing effects, which
play an important role in the accuracy of the results. The approach thus presented,
here, has been tested for two kinds of electromechanical loads (force density and
electric potential) applied on faces of the laminate. A complete set of coupled equa-
tions for the generalized stress resultants (membrane resultant and moments) and
electric inductions is obtained from a variational formulation accounting for the con-
tinuity conditions at the layer interfaces by means of Lagrange multipliers. The latter
procedure is more elegant than the use of the equations of continuity to reduce the
number of unknowns. In order to ascertain the validity of our piezoelectric plate
approach, we have considered some numerics for (i) a single piezoelectric plate, (ii)
a piezoelectric bimorph and (iii) a plate composed of two different piezoelectric
layers for an applied normal force density at the top surface of the plate and applied
electric potential at the top and bottom faces of the laminate. The results indicate
that the present model provides some interesting comparisons to the results obtained
from the finite element computations for the full 3D model. The through-thickness
distributions for the mechanical and electric quantities are computed with quite good
accuracy (discrepancy less than 2%). One of the limitations is that the averaged
transverse shear stress over the plate thickness can be only estimated in the frame-
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work of the present approach. Nevertheless, the model can be improved by introduc-
ing a layerwise approach for the mechanical quantities in order to ascertain the shear
stress continuity at the layer interfaces.

Finally, in view of these first results, we are encouraged to extend the present
approach to the study of vibrations of piezoelectric laminated plates [24]. Some other
boundary conditions can be considered, for instance, applied electric charges on the
plate faces or applied electric potential at the layer interfaces. The case of clamped
plates is also an interesting and practical situation to be examined. Some of these
extensions will be investigated in further works.
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