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Accurate modelling of piezoelectric plates:
single-layered plate

A. Fernandes, J. Pouget

Summary The paper presents an efficient two-dimensional approach to piezoelectric plates in
the framework of linear theory of piezoelectricity. The approximation of the through-the-
thickness variations accounts for the shear effects and a refinement of the electric potential.
Using a variational formalism, electromechanically coupled plate equations are obtained for the
generalized stress resultants as well as for the generalized electric inductions. The latter are
deduced from the conservative electric charge equation, which plays a crucial role in the
present model. Emphasis is placed on the boundary conditions at the plate faces. The model is
used to examine some problems for cylindrical bending of a single simply supported plate.
Number of situations are examined for a piezoelectric plate subject to (i) an applied electric
potential, (ii) a surface density of force, and (iii) a surface density of electric charge. The
through-thickness distributions of electromechanical quantities (displacements, stresses,
electric potential and displacement) are obtained, and compared with results provided by finite
element simulations and by a simplified plate model without shear effects. A good agreement is
observed between the results coming from the present plate model and finite element com-
putations, which ascertains the effectiveness of the proposed approach to piezoelectric plates.

Keywords Piezoelectricity, Plate, Variational Formulation, Finite element method

1
Introduction
The important economic and technical developments of piezoelectricity have attracted much
attention in the research of theoretical and computational models of piezoelectric composites.
Among interesting materials capable of being viable candidates for actuators or sensors, pi-
ezoelectric materials have received the most attention, [1]. One of the key factors for this choice
is that piezoelectric materials act either as actuators or as sensors, and relate electric signals
directly to material strains or stresses, and vice versa. Piezoelectric materials, and especially
piezoelectric composites, are used for multi-purpose devices or smart materials, and numerous
technological applications have been proposed, running from aerospace structures (shape
control of large space antennas, active control of vibrations), [2, 3], to miniature medical
apparatus (micro-robots, pumps, micro-positioning devices), [4]. Nevertheless, producing
practically meaningful actuation or sensing capabilities with piezoelectric materials should be
included into structures, in the form of laminated plates, e.g. bimorphs, piezoelectric layers
joined to nonpiezoelectric slabs, sandwich structures or even embedded piezoelectric patches
in elastic materials. A great deal of attention should be given to piezoelectric plates as basic
components of multi-layered structures. In the present work, special attention is devoted to
single piezoelectric plate formulation.

Although quite a number of recent studies have shown considerable progress toward es-
tablishing correct and efficient plate models along with corresponding equations, better
modelling of the electromechanical field through-the-thickness distribution becomes necessary
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in engineering. The objective of the present work is twofold: (i) to construct an accurate model
based on approximations of the elastic displacements and electric potential as functions of the
thickness coordinate of the plate, and (ii) to assess the capability of the model to describe the
global plate response, local variations of both mechanical and electric variables, stresses, as well
as the limitations of the model. We propose here an efficient plate model which accounts for
shearing effects of the “sine” type, satisfying the condition of vanishing shear stress at the faces
of the plate, [5]. Our piezoelectric plate approach is valid for all kinds of electromechanical
loads (surface density of force, electric potential or charges).

The present version of plate model is quite complete in comparison to the most piezoelectric
plate models considering only applied electric potential as load. A significant number of works
have been devoted to piezoelectric plates, attempting to incorporate various through-the-
thickness approximations of laminated piezoelectric beams, plates and shells, [6]. One of the
first piezoelectric plate approaches was given in [7], followed by [8] and [9]. The simplest
model is based on the kinematic assumptions of Love’s first approximation, including the
electric degree of freedom. Mindlin [8] has considered an expansion of the elastic displace-
ments and electric potential as polynomial functions, the level of truncation of the expansion
leading to the order of the plate theory. Governing plate equations [10] were derived using the
kinematic of the first-order shear deformation theory assumption developed by Reissner and
Mindlin for purely elastic plates. Some formulations of piezoelectric plates assume, a priori,
that the normal component of the electric displacement is constant through the thickness, [11].
As a consequence, the conservation law for electric charge or the Gauss equation drops out. It
turns out that such an assumption is not satisfied in most situations, and we must consider the
approximation of the electric charge equation. Due to the limitations of the standard plate
theory, it seems to be necessary to investigate a more refined and efficient approach to pi-
ezoelectric plates.

In the present study, we attempt to develop a consistent approach to piezoelectric plates
based on approximate equations deduced from a generalized variational formulation. The
latter involves electromechanical loads prescribed in a natural way on the plate boundary.
From the variational formulation are obtained equations for the generalized stress and
electric charge or induction resultants. The final set of two-dimensional effective equations
governs the extensional (or membrane), flexural and shear deformations, coupled to the
applied and induced electric potential. Various benchmark tests are then proposed in order to
validate the present approach. Especially, different situations with particular electrome-
chanical loads are regarded: (i) density of applied forces, (ii) applied electric potential on the
top and bottom faces of the plate, and (iii) applied surface density of electric charges on both
faces of the plate.

In order to draw attention to the capabilities of the model, some comparisons to finite
element (FE) computations for identical situations in 3D problems are proposed. In addition,
the results are compared to those coming from the classical plate model based on Love’s first
approximation (lacking shear effects). The practical example is the cylindrical bending of a
simply supported piezoelectric plate, for which solutions to the plate equations are looked for in
form of Fourier series.

The prerequisites of the piezoelectric formulation (the variational principle, equations of
conservation and constitutive laws) are briefly stated in the next section. The through-the-
thickness approximation of elastic displacements and electric potential is presented in Sec. 3,
together with some comments. The equations for the two-dimensional approach to a piezo-
electric plate as well as the associated mechanical and electric boundary conditions are pre-
sented in Sec. 4. The problem of a single piezoelectric plate under cylindrical bending is given
in Sec. 5 in the cases of an applied electric charge and applied electric potential. In Sec. 6, the
numerical results for different kinds of electromechanical loads and slenderness ratios are
discussed. The results are also compared to those provided by the FE simulations and by an
elementary plate model. Finally, Sec. 7 is devoted to the discussion of the results and extensions
of the model to piezoelectric laminated plates.

2

Formulation of piezoelectricity

In this section, we briefly recall the necessary ingredients of linear piezoelectricity and the
associated variational formulation based on the Hamilton’s principle. Assuming that the de-
formations are infinitesimal, and the electric field is small enough, and there are no body forces,
the Hamilton’s principle can be stated as follows:
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6//$dvdt+/5Wdt_0 . (1)
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Here, the Lagrangian functional is given by
I ..
gzipuiui_ (SljvE) ) (2)

where 1; is the displacement component, p is the mass density, H(Sj;, E;) is the electric enthalpy
density function, S; = u(;j = 1/2(u;; + u;;) is the linear part of the strain tensor component
and E; is the electric field vector. For the linear piezoelectricity, the enthalpy density function
takes on the form, [12],

1 1
H(Sij,Ei) = Eo,jsij — EDiEi . (3)

Here, 0;; and D; represent the components of the stress tensor and the electric displacement
vector, respectively. Furthermore, the virtual work of the prescribed mechanical and electric
quantities on the domain boundary is given in Eq. (1) by

oW = / TiéuidS+/Q(3q5dS . (4)
0Q oQ

The virtual work involves the surface traction vector T and applied surface density of electric
charge Q on the boundary 0Q. The quantity ¢ is the electric potential. A further step in the
simplification can be made by assuming a quasi electrostatic approximation, which allows for
the electric field to be derived from the electric potential

=—9,; . (5)

It is also supposed that the piezoelectric material is a perfect isolator (no volumic electric
charges) and that the magnetic field and magnetization have no influence. Using the integration
by parts and assuming the variations du; and d¢ are arbitrary throughout the domain Q, the
field equations in Q are

oijj = pii, Dij=0 . (6)
The associated boundary conditions read

ojnj=T; or wu;=1u; ondQ, Dn;=Q or p=¢ ondQ . (7)

The field equations are completed by the constitutive equations. The latter can be deduced for
the linear piezoelectricity from the following form for the enthalpy density function, [12]:

1
E S
(SU,E ) Clqusyqu — e,-pquSpq — EEijEiE]' y (8)

where Cgp o €ipg and efj are the elastic, piezoelectric and dielectric permittivity constants,
respectively. Accordingly, the constitutive laws for linear piezoelectricity are

OH
= eipqqu + 6;Ej . (9)
i

E
= C; Spq — elijEl, Di = _ﬁ

% = 3. S; i

The set of Egs. (5)-(7) and (9) are the essentially basic equations of linear piezoelectricity,
which are going to be used in the following.
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3

The plate approximation for displacement field and electric potential

An expansion of the displacement in power series of the thickness coordinate is commonly
considered in the plate theory. Different refined models can be introduced according to the
form of the expansion approximation. Other approaches to plates are based on an asymptotic
theory of the full 3D problem, [13]. In the present work, the displacement field and electric
potential are assumed to be of the form

Un(%,,2,t) = Un(x, 9, 1) — 2w a(x,3, 1) + f(2)7,(x,, 1), o € {1,2},
us(x,y,z,t) = w(x, y,t), (10)
d)(x?yv z, t) = d)o(x?y? t) + Z¢1(x7y7 t) + P(Z)d)Z('xaya t) +g(z)¢3(x7y7 t) .

It is important to discuss the above expansion in detail.

(i) In the case of purely elastic media, if f(z) = 0, we recover the classical theory of Love-
Kirchhoff for elastic thin plates, [14]. Particular forms of the function f(z) give rise to different
models which have been investigated by Reissner, [15], Ambartsumian, [16] and Reddy, [17], to
quote just the most known approaches. In Eq. (10), U, represents the middle plane displace-
ment components, w the deflection and y, is associated with the shearing effects. The subscript o
takes the value 1 or 2. All the functions are defined at the middle plane coordinate (x, y,0). In
the present model, the through-thickness distribution of the shearing effect is approximated by
a trigonometric function.

(ii) Insofar as the electric potential is concerned, the first two terms in Eq. (10) (linear part)
hold for the influence of the applied electric potential on the plate faces. The third term can be
referred to as the induced electric potential by the elastic deformation mediated by the pi-
ezoelectric coupling. The last term is due to the shearing effect through the piezoelectric
coupling. As a consequence, we adopt the following functions:

fz) = ﬁsin(%z), g(z) = %cos(%z), P(z) = 2> — (2)2 , (11)

T

where h is the plate thickness which is supposed to be uniform. The case of the purely elastic
plates has been examined in [5] for single and multi-layered plates. Extension to elastic shells
has been also considered, [18]. In the classical theory of piezoelectric plates, the shearing effect
is removed and the second-order term in the approximation of the electric potential is often
neglected. Nevertheless, most applications of the piezoelectric adaptive plates are based mainly
on the first-order shear deformation assumption, [10]. We are going to see the implications of
the present approximation in the plate equations.

Three kinds of electromechanical conditions are considered on the plate boundaries:

(a) The plate is loaded by a force density per unit area on the top face of the plate and
perpendicular to this face.

(b) An applied electric potential on the top and bottom faces of the plate is considered such

as
G(x,y,z=Fh/2,t) = VE(x,,t) . (12)
From Eq. (11), we note that P(£h/2) = 0 and g(+h/2) = 0. Then, we deduce that

Go=5 (V5 +V7) and ¢y = (VF-V) . (13)

Accordingly, the unknown functions ¢, and ¢, are no longer arbitrary, and they depend on the
applied electric potential. For practical cases, it is more convenient to take V* = +V and
V~ = —V, so that we have ¢, = 0 and ¢, =2V /h.

(c) Another possible electric boundary condition are electric charges imposed on the top and
bottom faces of the plates. In this situation, the electric boundary condition on the electric
displacement is given by

[Pl n=gq,

where n is the unit outward normal vector to the boundary and g is the surface density of
electric charge. In the case of a plate geometry, the condition reads as



D3(x,y,z - ih/Z, t) = Q(x,)’, t) : (14>

We should underline the boundary conditions associated with the electric field. The boundary
condition deduced from the formulation of the Maxwell equations reads as [E] x n = 0, which
means that the tangential components of the electric field must be continuous through the
interface, [19]. In order to apply an electric potential to the plate faces, the latter are coated with
thin metallic electrodes of negligible thickness and playing no role mechanically. Moreover, it is
assumed that the stresses and displacements are perfectly transmitted through the electrodes.
Since in a conductor the electric field is zero (or the electric potential is constant), the boundary
condition on the electric field can be written as E; = E, = 0 on the top and bottom faces of the
piezoelectric plate.

It is worthwhile specifying that the surface density of the electric charge —q is applied on the
bottom face, while we have +q on the top. Then, the boundary condition on the electric
displacement is —D; = —q at z = —h/2 and D; = +q at z = +h/2, whence Eq. (14).

4

Plate equations

Plate equations are deduced by using the variational formulation presented in Sec. 2. By
taking the approximation of the displacement field and electric potential as defined by

Eq. (10), the dependence of the field (u;, u,, us, ¢) upon the thickness coordinate z can be
cancelled out by integrating over the plate thickness. The procedure leads, in a natural way,
to the definition of the generalized stresses and electric charges or inductions. More precisely,
the equations of motion and the associated boundary conditions are obtained by, first,
substituting the approximation (10) into the variational principle (1)-(4) and, next, by
assuming independent variations of the unknown functions ((U,,w,y,, ¢4);o € {1,2},

A €{0,1,2,3}). After straightforward algebra, the Hamiltonian’s principle can be put in
the sum of integrals

)
/(5K—5U+5W1 +oWy)dt =0 . (15)
5]
The first part holds for the kinetic energy that we do not write down here, since we deal only

with static processes in the following. The second term in Eq. (15) is the variation of the
internal force work, defined on the middle plane surface X of the plate

oU = /{N‘Xﬁ(éUo'),ﬂ - M“ﬁ(éw)p“' + M&ﬁ(é’yo)’ﬁ + éqéh + Dgo) (5¢0)70, + Dgl)(é(j)l)’“
z

+ D (69,) , + DY (65) , + D5, + Do, + Do, s (16)

Here, the generalized stresses and electric inductions are computed using the three-dimen-
sional stresses g;; and electric displacement D;

+h/2
(NaﬁaMot/)'aMocﬁ) = / (l,z,f(z))aa/;dz ) (17)
—h/2
+hy2
Qo( = / fl(z)o-ot.’) dz ) (18)
—h/2
+h)2
(09.0.02,08) = [ (1,2.P(2),g(2))Ds (19)

—h/2
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+h/2

(DQ”,DQ”,DS’) - / (1,P(2),¢/(z))Ds dz | (20)

—h/2

with «, f € {1,2} and prime ' denoting the derivative.

The last two terms in Eq. (15) denote the variational work of the applied force densities and
electric charges applied on the upper and lower faces of the plate, as well as those applied to the
lateral boundary of the plate. These variational works take on the form

SW, = /(faéUa — pow + 1y, + q106,)dS | (21)
>

W, = / (F0U, + Tow + Cop, — My(ow), )t = > Zyom . (22)
Y p

Here, f, and p are the surface force densities, 71, is a surface moment density and g is the
surface electric charge density. In Eq. (22), F, and T are linear force densities, My and C, are
linear torque densities defined along the plate contour, Z, are transverse forces at the angular
points of the edge boundary % of the plate, n is the unit normal to %. It has been assumed that
there is no electric charge on the lateral plate boundary, because the dielectric constant of the
piezoelectric material is much larger than the dielectric constant of the surrounding air for
electric fields of the same order.

Let’s remark that in Eq. (21), concerning the applied electromechanical loads on the plate
faces, the electric charge density g; is considered only because other generalized electric
charges associated with the electric potential variations d¢, d¢, and d¢; disappear. Indeed,
these generalized electric charges can be connected with the electric boundary conditions on
the top and bottom faces through the integration over the plate thickness as follows:

(40, 1. d2.45) = [(1,2, P(2), g(2)) D3] 7}2 .

Owing to P(£h/2) = g(+h/2) = 0 and the boundary conditions (14), g; is the only nonva-
nishing electric charge.

Using the variational calculus arguments, Eq. (15) along with the variations (16), (21) and
(22) must be satisfied for arbitrary variations (6U,, dw, dy,,0¢,); o € {1,2}, A € {0,1,2,3}.
After some cumbersome but straightforward computations, we arrive (static case) at

Nogp+fo=0, Mupag—p=0, Myp—Q, +1i1, =0, (23)
and
DO =0, DY) ~D{ + g, =0, D2 ~DY =0, DE -DY =0 . (24)

The associated boundary conditions on the lateral plate contour % are

F, = N,gng or U, given,
T = (raMa/;nﬁ) .+ nyM,sp or w given,
My = n,M,gng or w, given, (25)

Cy = M,gng or v, given,
DWn,=0 (A€{0,1,2,3}) or ¢, given .

o
The vector 7 is the unit tangent vector to % and s is the curvilinear coordinate along the contour
%. In addition to Eq. (25), we have [t,M,gnp — Z,] 4, = 0, the condition at the angular points of
the contour. The last equation of Eq. (25) are the boundary conditions along % associated with
the electric quantities. In addition, the right-hand side of (25), is zero, according to the above
remarks. There is no electric charge and no electrode on the lateral surface of the plate.



The first two equations in Eq. (23) are similar to those of the Love-Kirchhoff first-order
theory of thin plates, and the third equation represents the equation of the shearing effects. The
set of Egs. (24) is, in fact, deduced from the conservation of the electric charge or the Gauss
equation. These equations govern the generalized electric displacements or electric charges
associated with the electric potential functions ¢, (A4 € {0,1,2,3}) introduced in the third
equation of the expansion (10). In the second equation of (24), we note the generalized electric
charge due to the surface density of electric charge applied to the top and bottom faces of the
plate.

In the case of an electric potential applied to the top and bottom faces of the plate, the
functions ¢, and ¢, are no longer unknown, but they are related to the applied electric
potential through (13). Therefore, the first two equations of Eq. (24) do not appear, and the
number of unknown functions as well as the equations are then reduced in this situation.

5
The plate constitutive laws

A. Applied electric charges

We restrict the study to constitutive laws for linear piezoelectricity, see Egs. (9), of materials
with orthotropic symmetry, [12, 20]. To this end, we compute the generalized stress and electric
inductions resultants defined by Egs. (17)-(20), by using the constitutive laws (9). The results
can be put in the matrix form

(0)

N Qi Qu 0 axn||$

No | _ | Q2 Q2 0 apn s\ (26)
Ne 0 0 Qs 0 ||s0|"

Dgl) ay;, axm 0 fi b,

The other constitutive laws take on the matrix form too:

_ _ _ - [T
M, Dy Dy 0 dn din 0 Rsy 13 3(11)
M, Dy, 0 dp dyp 0 Ry 13| |5
M D O 0 de 0 0 |[SV
M, _ Dy D 0 Ry 7:’31 ng) (27)
M, Dyy 0 Ry 13| |@
Néﬁ) (sym.) D¢ 0 0 sz)
D? ) P33 Ps3 (;
D¢ P33 2
- S - Lo
The shear and electric induction resultants are
[ Qi ] [A 0 Iis 0 L 0 Ls 0[]
Q 55 | 15 15 15 1
D(O) A44 0 124 0 L24 _O L24 VZ
%0> fu 0 Fu 0 Fy 0 $o.1
D%z) _ fo 0 Fn 0 Fy ) (28)
D, Bu 0 By 0 |]|®
pY? (sym.) By 0 By|| ¢
D(3) B;; O ¢3,1
1 _
_Dg3> | L Byl L 4)3,2 |
At last, we have as well
Dil) — bll 0 (nbl,l (29)
Dgl) 0 byl||f2]
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All the coefficients introduced in the matrices are defined in Appendix A. These coefficients
depend on the material constants of the piezoelectric plate and its thickness.

The strain tensors, which has been introduced in the constitutive laws (26)-(27), are defined
from Eq. (10) by

0 (1) @
Soc[f = U(a,/i)ﬂ Sac[f = Wb, S“ﬁ = Vap) - (30)

It is worthwhile observing that we have electromechanical couplings between some generalized
stress and electric induction resultants.

B. Applied electric potential

In the case of an applied electric potential, the functions ¢, and ¢, in the approximation (10)
are no longer arbitrary and are given by ¢, = 0 and ¢, = 2V /h. Consequently, the constitutive
law defined by Eq. (26) must be replaced by

N Qi Q2 O 350) €3
N | =[Q2 Q 0 s§°) + e |2V . (31)
N, 0 0 Qul|sO 0

The effective piezoelectric constants e}, and e}, are given in Appendix A. The constitutive law
(27) remains unchanged. However, in Eq. (28), the rows and columns corresponding to the

function ¢, disappear, and the matrix in Eq. (28) is of the 6 x 6 order; in addition, Eq. (29) is
not considered. We note that according to Eq. (31), if an electric potential is applied on the top
and bottom faces of the plate, only an elongation or compression of the plate will be produced.

6

Piezoelectric plate in cylindrical bending

Now, we intend to solve the problem of a piezoelectric plate undergoing applied surface force
density, surface electric charge or electric potential in the cylindrical bending configuration, i.e.
all the stresses, strains, displacements, electric field and potential do not depend on the y
variable. Displacement u, plays no role in the problem; it can be cancelled out and we set

uy = 0, y, = 0. The shear traction is zero on the plate faces, f, = 0, and there is no surface
moment density, m, = 0. The simple support conditions for a rectangular plate of length L are
given by (see Fig. 1)

O']](O,Z) = Gll(L,Z) = 0, 013(0,2) = 613(L,Z) = 0, ll3(0,Z) = l/l3(L,Z) =0 . (32)

It is noticed that the boundary conditions along the contour % are obviously satisfied in the
cylindrical bending configuration.

With a view toward satisfying the boundary conditions (32), the load functions are expanded
in a Fourier series over the segment [0, L]. Consequently, the surface density of force, surface

P

L

Fig. 1. Piezoelectric plate on simple supports



density of electric charge and electric potential applied to the plate faces can be expressed in the
form

8}

(p(x) Q(x Sn, Qu,V Sln InX (33)
n=1

with

, 4

An :%7 (SanaVn) :%(S(})QMVO) . (34)

Loads defined by the above equations represent uniform applied surface density of force Sy,
density of electric charge Qp and electric potential V, respectively. Because of the load func-
tions (33) and the boundary conditions (32), it is natural to search for a solution to the plate
problem given by Egs. (23)-(24), along with the constitutive laws (26)-(29), also as Fourier
series as follows:

o0

(U, (U,, Ty)cos Aux,
= (35)
(w(x), Po(x), dy (%), Dy (x), p3(x)) = Y (W, Do, Py, Pp i, 3 ) 8i0 A

Mz

n=1

We recall that, in the case of an applied electric potential, the number of unknown functions is
reduced; especially, ¢, and ¢, are not accounted for. In this situation, the applied electric
charge Q(x) is not considered as a load.

Now, we have all the ingredients in view of solving the cylindrical bending of a simply
supported piezoelectric plate. The Fourier coefficients in the series (35) are determined by first
substituting the solution (35) into the constitutive laws (26)-(29) and the results into the plate
equations (23)-(24). The Fourier coefficients are then the solution to a set of linear algebraic
equations for each n, which can be written in matrix form.

A. Applied surface density of force and/or electric charge
The set of linear equations for the Fourier coefficients takes on the form

A%2 = B2 | (36)

with the matrix and vectors

Q
An
[—Jic:, 0 0 0 In€l) 0 0 1
- 2o 2o, 22
—5Ch 1O 0 0 — % €31 €3
22
1 * Ay % 2), 4), * * 2 * *
_i(css +7Tgcll) el 0 (e tels)  —3z(es t+els)
22
2 Ay % ZA
= Zn€i1 0 — %€ e )
sy laer 0 0
€33 T3¢
22 2
1 * An % 4 * Ap %
(sym.) 5(633 +1_8€11) _?(633 +n_§€11)

2
1 * }'_n *
2 (633 +nz€11) i

[XS]T = (Un7 an Fn» (D(),na (1)17713 (DZA,na (D3,n)a

T
[BS] :(Ovsnaoaov_QmO;O) .

517



518

B. Applied surface density of force and/or electric potential
In this case, the set of linear algebraic equations is simpler since the number of equations is
reduced

A'X) =BV | (37)

with the matrix and vectors

__/lflC’lkl ‘9 ‘30 (2) 0 -
~1Ci #Ch -2 2:2 €5
12
Ay = HGrda) Blta) ke |
(sym.) Hes+ia) —2(a+5e)
%(‘5;3‘*'%6;1)

[Xr‘z/]T = (Una Wna Fna(DZ,nyq)?),n)a

BY]" = (—2/n€}, Vi, $4,0,0,0) .
In both cases, the matrices consist of real elements and are symmetric. Now the way of solving the
plate problem is straightforward: first solve Eq. (36) or (37), to find the Fourier coefficients, then
substitute the results into the Fourier series (35), go back to the displacement field and electric
potential by means of Eq. (10). Afterward, the stresses and electric displacement are computed
through the constitutive laws of linear piezoelectricity specialized for orthotropic materials.

7

Numerical investigations and comparisons

Numerical simulations of the present plate model are considered for a single plate made of
PZT-4 ceramics whose nonzero material constants are listed in Table 1, [20]. The geometry of
the plate is h = 0.001 m and two slenderness ratios L/h = 10 and L/h = 50 are considered. The
numerical results for the mechanical and electric quantities are given with the following di-
mensionless units:

(i) for the surface density of the normal force Sy # 0(S; = 1000 N/m?), we set

CE, ¢ 1
(U W (D) hS ul,u3,E0 (Tijw@l) :S—O(O'ij,Eng) s

(i) for the surface density of the electric charge Qy # 0(Qy = 10 C/m?), we set

CE
(U,w,0) =—4 <u1,us,§), (Ty, 21) =
0

1
EoQy (04, EoDy)

(iii) for the applied electric potential V, # 0(Vy, = 50 V), we have

Ey ¢ hEo
U, W, Ty, 2 EoDy) -
( ) VO (ul, u3,EO> s ( iy l) Cllgl Vo (O’z]a 0 l)

For the numerical simulations, we take E; = 10'° V/m. The number of terms retained in series
(35) are adjusted according to the slenderness ratios and electromechanical loads, then
considered in order to ensure the convergence. The finite element (FE) computations for

Table 1. Independent elastic, piezoelectric and dielectric constants of a piezoelectric material
(transversely isotropic symmetry)

Cfl sz Cf3 Cfg C4E4 €31 5 €33 eis €11 €33
(GPa) (C/m”) (nF/m)

PZT-4 139.0 77.8 115.0 74.3 25.6 =5.2 15.1 12.7 13.06 11.51




comparison are performed with ABAQUS code by using plane strain elements of 8-node bi-
quadratic type and 800 elements are considered for both L/h = 10 and L/h = 50.

Case la. Surface density of normal force applied to the top face of the plate, closed circuit
It means that V = 0. In the present situation, only the set of linear algebraic equations (37) is
considered. The through-thickness distributions for U, W, ® and T, are presented in Fig. 2 for
the ratio L/h = 10. The displacement U at x = 0 is plotted in Fig. 2a, and it is almost linear
through the plate thickness. The flexural displacement W at x = L/2 is given in Fig. 2b, the
straight line corresponds to the present plate approach, while the small circles are the FE
computations and the straight dashed-line is the result provided by the classical thin plate
theory based on the Love’s assumption (no shear correction, that is, f(z) = 0 and g(z) = 0 in
Eq. (10)). We observe that the discrepancy between the maximum values of the deflection (at
z = 0) for the 3D computation and that of the plate model is <0.02%, however, the difference
becomes bigger, about 3%, for the classical thin plate model. The most interesting result is the
electric potential at x = L/2 plotted in Fig. 2c. The electric potential is, in fact, induced by the
elastic deformation through the piezoelectric coupling. We first note a very good accuracy with
the finite element method (FEM). Next, the result ascertains the existence of the ¢, term in the
electric potential approximation (10). However, if the ¢, term is absent from the expansion
(10), there is no induced electric potential through the plate thickness. The shear stress T;3 at
x = L/4 is drawn in Fig. 2d. The identical simulations are performed with the slenderness ratio
L/h = 50, and the results are presented in Fig. 3 for the same electromechanical quantities as in
the previous figure. The difference between the results coming from the plate model and those
of the FE simulations are very small since we are closer to the thin plate assumption. Especially
the discrepancy between the maxima of the deflection displacement at the plate center for the
present plate model and FE results is now <0.01%, whereas this difference is about 0.1% for the
classical plate theory. Going back to the physical units, we have an estimate of 9 um for the
deflection at the plate center and the maximum of the induced electric potential is about 4.8 V
for the slenderness ratio L/h = 50.

Case 1b. Surface density of normal force applied to the top face of the plate, open circuit
In this situation, the algebraic equations are given by Eq. (36) with Sy # 0 and Qy = 0. The
electromechanical response of the piezoelectric plate is shown in Fig. 4 for the profiles of
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Fig. 2. Force density applied on the top face of a piezoelectric single plate in closed circuit for L/h = 10.

(d)

Plate model (full line), finite element (small circles) and simplified plate model (dashed-line)
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Fig. 3. Force density applied on the top face of a piezoelectric single plate in closed circuit for L/h = 50.
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Fig. 4. Force density applied on the top face of a piezoelectric single plate in open circuit for L/h = 10.
Plate model (full line), finite element (small circles) and simplified plate model (dashed-line)

U, W,® and 25 as functions of the thickness coordinate for the thickness aspect ratio

L/h = 10. Figure 4a presents the displacement U at x = 0. The deflection W at x = L/2 is given
in Fig. 4b. The difference between maxima of the deflection at the plate center for the present
plate approach (straight line) and FE simulation (small circles) is evaluated at 0.1%, whereas



the same comparison to the simplified plate theory (dashed-line curve) yields an error of 2.8%.
The induced electric potential at x = L/2 is plotted in Fig. 4c and the potential variation
possesses a parabolic profile. Finally, Fig. 4d shows the normal component of the electric
displacement or induction &5 at x = L/2. The comparison of the latter electrical quantity
particularly speaks for itself. Indeed, we have an excellent agreement with the FE results,
whereas the classical thin plate theory (dashed-line curve) does not give the correct through-
the-thickness profile. Similar results are presented in Fig. 5 for the same quantities with the
slenderness ratio L/h = 50. The present plate model gives accurate predictions for the different
electromechanical variables, displacements, stresses, electric potential and displacement. Es-
pecially, the estimate error between the deflection at the plate center for the FEM and our
improved plate model is about 0.01% and 0.1% for the simplified thin plate approach. The
comparison between the results provided by the FEM and those coming from the present model
illustrates the performance of the plate model and gives very good predictions with minor
differences. The comparison made with the classical thin plate theory (no shear effect) as-
certains the efficiency of our plate modelling.

Case 2. Applied electric potential

In this situation, the set of linear algebraic equations (37) is solved with V; # 0 and Sy = 0. The
results are collected together in Table 2 in dimensionless units for the displacement U at x = L,
stress Ty, at the plate center and the normal component of the electric displacement for two
slenderness ratios L/h = 10 and L/h = 50. Only an elongational deformation along the x-axis is
obviously produced, and, in this case, the shear effect does not play any role. A comparison is
done with the FE computations and the plate model, providing rather quite good estimates. We
note that the thickness aspect ratio has obviously no influence on the stress T, and the electric
displacement component ;. In addition, the electric potential is linear through the plate
thickness going from —V at z = —h/2 to +V at z = +h/2. The elongation of the plate pro-
duced by the applied electric potential is about 0.4 pum for the ratio L/h = 50.

Case 3. Applied electric charges
For this case, we solve the set of linear algebraic equations (36) with S = 0 and Qy # 0. As in
the problem of an applied electric potential, only elongational deformation is obtained. Table 3
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Fig. 5. Force density applied on the top face of a piezoelectric single plate in open circuit for L/h = 50.
Plate model (full line), finite element (small circles) and simplified plate model (dashed-line)
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Table 2. Single piezoelectric plate, applied electric potential

L/h=10 L/h =50

Plate Finite Error Plate Finite Error

model elements (%) model elements (%)
Uatx=1L 16.41 16.42 0.05 82.06 82.11 0.06
Ty, at x = L/2 —1.447 —1.446 0.09 —1.447 —1.446 0.09
95 at x = L/2 —22.96 —-22.94 0.08 —22.96 —-22.94 0.08

Table 3. Single piezoelectric plate, applied electric charges

L/h=10 L/h =50

Plate Finite Error Plate Finite Error

model elements (%) model elements (%)
Uatx=1L 0.6785 0.716 5.2 3.54 3.58 1.0
Ty, at x = L/2 0.063043 0.063044 0.001 0.063043 0.063044 0.001
O at x = L/Z 0.043597 0.0436 0.007 0.043597 0.0436 0.007

gives the essential numerical results in dimensionless units for U, T,; and the electric potential
® for two characteristic thickness aspect ratios L/h = 10 and L/h = 50. The comparison with
the FEM performed on the 3D problem shows a rather good accuracy of the present plate
model, except for the elongational displacement. As in the case of an applied electric potential,
the shear effect is obviouly zero and there is no difference with the simplified model (Love-
Kirchhoff approach).

In the case of an applied electric potential or charges on the plate faces, a thickness de-
formation is obviously produced for the real 3D plate. Such a thickness variation is not ac-
counted for in the present approach, since the deflection displacement w is constant through
the plate thickness, which explains the small discrepancy observed in the cases 2 and 3. In spite
of this limitation, the thickness variation represents, however, <1% of the elongation or
compression in the direction of the plate length.

Additional comparisons can be done to exact solutions for laminated piezoelectric plates in
cylindrical bending, which are merely an extension of the work for elastic laminates, [21], to
piezoelectric plates, [22].

8

Closing remarks and future directions

In the present work, we attempt to promote an efficient and interesting approach to piezo-
electric plates. The field approximation accounts for the shear effects modelled by a sine
function and a refined electric potential distribution through the plate thickness. First, some
comparative tests between our improved plate model and the FE computations and, next, the
classical thin plate theory allow us to ascertain the validity and the capability of the piezo-
electric plate model considered. Especially benchmark tests carried out for different kinds of
electromechanical loads: (i) normal force at the top surface of the plate, (ii) electric potential at
the top and bottom faces of the plate, and (iii) electric charges on both faces of the plate show
the advantages of the model. In the case of an applied normal force density for an open and
closed circuits, the through-thickness distributions of the most pertinent electromechanical
variables have been computed for the present model, and compared with the FE computations
for the 3D plate and with the simplified plate model. The comparisons yield an excellent
agreement of the present model with the FEM. The approach to piezolectric plates provides
very accurate predictions (error <0.1% for the deflection displacement), whereas the classical
thin plate theory gives less accurate results. It should be underlined (i) the influence of the shear
correction described by a sine function on the computation of the shear stress through the plate
thickness, (ii) the accurate approximation of the electric potential (see the third expansion in
Eq. (10)), giving rise to the induced electric potential, and (iii) the use of the approximate
charge equation for the generalized electric charges or inductions (see Eq. (24)), which avoids
assuming a constant electric displacement through the plate thickness.



An important extension of the present work concerns laminated piezoelectric plates, that is,
plates made of piezoelectric and purely elastic layers. In view of the results for the single-
layered plate, we are encouraged to study the vibrations of laminated piezoelectric plates [23-
26], which is particularly usefull for active or passive control of vibrations. At last, the edge
effects, such as electric field concentration, can be interesting to investigate, especially for
plates partly coated with piezoelectric slabs.

Appendix A
All coefficients introduced in the matrices (26)-(29) are defined by
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with the definitions (ab) € {(11), (22),(12),(66)}, a € {1,2}, (MN) € {(44), (55)} and

(aN) € {(24),(15)} (the Voigt notation is used for convenience). The modulus of elasticity due
to the normal shear stress hypothesis (o33 negligible in comparison to the other stress com-
ponents) are given by C:, = C5 — CE,CL, /Cl;. On using the same argument, we have the
effective piezoelectric and dielectric coefficients €}, = ejo — €j3Cl;/C3; and ¢ = ¢ + eisejs /CF;
(with a € {1,....,6}, je€{1,2,3}).
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