Lagrangian evolution of velocity gradients in turbulence and stochastic models

 

The statistics of the velocity gradient tensor in turbulent flows are of both theoretical and practical importance. The Lagrangian view provides a privileged perspective for studying the dynamics of turbulence in general, and of the velocity gradient tensor in particular. Stochastic models for the Lagrangian evolution of velocity gradients in isotropic turbulence, with closure models for the pressure Hesssian and viscous Laplacian, have been shown to reproduce important features such as non-Gaussian probability distributions, skewness and vorticity strain-rate alignments. The Recent Fluid Deformation (RFD) closure introduced the idea of mapping an isotropic Lagrangian pressure Hessian as upstream initial condition using the fluid deformation tensor. Recent work on a Gaussian fields closure, however, has shown that even Gaussian isotropic velocity fields contain significant anisotropy for the conditional pressure Hessian tensor due to the inherent velocity-pressure couplings, and that assuming an isotropic pressure Hessian as upstream condition may not be realistic. In this work, Gaussian isotropic field statistics are used to generate more physical upstream conditions for the recent fluid deformation mapping. A detailed comparison of results from the new model, referred to as the recent deformation of Gaussian fields (RDGF) closure, with existing models and DNS shows the improvements gained, especially in various single-time statistics of the velocity gradient tensor at moderate Reynolds numbers. Application to arbitrarily high Reynolds numbers remains an open challenge for this type of model, however.


We then also consider applications of such evolution models on predicting the fate of small particles in turbulent flows which depends strongly on the surrounding fluid’s velocity gradient properties such as rotation and strain-rates. For non-inertial (fluid) particles, the Restricted Euler model provides a simple, low-dimensional dynamical system representation of Lagrangian evolution of velocity gradients in fluid turbulence, at least for short times. We derive a new restricted Euler dynamical system for the velocity gradient evolution of inertial particles such as solid particles in a gas or droplets and bubbles in turbulent liquid flows. The model is derived in the limit of small (sub Kolmogorov scale) particles and low Stokes number. The system exhibits interesting fixed points, stability and invariant properties. Comparisons with data from Direct Numerical Simulations show that the model predicts realistic trends such as the tendency of increased straining over rotation along heavy particle trajectories and, for light particles such as bubbles, the tendency of reduced self-stretching of strain-rate.


This work is performed with Perry Johnson and supported by the National Science Foundation.