Élasticité et géométrie : de la rigidité des surfaces à la délamination en fil de téléphone (B. Audoly)

Thèse de doctorat de l'Université Paris VI soutenue le 6 janvier 2000

Effectuée au Laboratoire de physique statistique de l'École normale supérieure sous la direction d'Yves Pomeau

Télécharger au format PDF (3,5 Mo) avec liens hypertextes
Download in PDF format (3.5 Mb) with hypertext links.

Sommaire

Résumé
Mots-clé
Abstract
Keywords
Références bibliographiques
Bibliographic references

Résumé

Cette thèse porte sur l'élasticité des corps minces bidimensionnels. Nous insistons sur les rapports entre les équations de l'élasticité et la géométrie.

Nous envisageons tout d'abord le cas des coques, qui sont définies comme les corps élastiques minces possédant une courbure au repos. On sait que le comportement élastique d'une coque est largement conditionné par la rigidité infinitésimale de sa surface moyenne : selon qu'il est possible ou non de déformer cette surface tout en conservant les longueurs de toutes les courbes inscrites, on dira que la coque est isométriquement déformable, ou inhibée. Nous interprétons la classification des surfaces de révolution due à Cohn-Vossen, et la généralisons aux surfaces quelconques. Nous mettons en évidence des courbes rigidifiantes.

Nous considérons ensuite la délamination des films minces comprimés~: sous certaines conditions mécaniques, ces films se décollent du substrat auxquels ils adhéraient. Nous étudions la fracture de l'interface film/substrat au moyen d'un modèle de fissure avec frottement de Coulomb entre les lèvres.

Des motifs de délamination en forme de fil de téléphone ont été largement observés expérimentalement. Nous les interprétons comme le résultat d'un flambage élastique secondaire dans les équations de Föppl-von Karman. Enfin, nous montrons que la structure des équations de Föppl-von Karman d'une part, et les propriétés de la fissure interfaciale d'autre part, permettent d'expliquer la stabilité des cloques de délamination.

Mots-clé

Élasticité. Rigidité géométrique. Fracture interfaciale. Frottement. Ténacité dépendante de mode. Délamination. Motifs de délamination. Équations de Föppl-von Karman. Flambage élastique.

Abstract

This thesis deals with the elasticity of thin (2D) elastic materials. The connection between geometry and the theory of elasticity is emphasised.

We first study shells, which are defined as thin elastic materials having some curvature at rest. It is known that the elastic behaviour of a shell depends to a large extent on the infinitesimal rigidity of its mean surface~: if this surface can be deformed without stretching, the shell is said to be bendable. If, contrarily, any deformation of the shell involves some extension of the mean surface, it is said to be infinitesimally rigid. The classification of shells of revolution by Cohn-Vossen is interpreted, and extended to arbitrary surfaces. Rigidifying curves are pointed out.

We also consider the delamination of compressed thin films. Under certain mechanical conditions, these films lift off the substrate to which they were bound. The fracture of the film/substrate interface is studied using a model of interfacial crack with Coulomb friction between the lips.

Delamination patterns looking like telephone cord have been widely observed in experiments. They are interpreted as the result of a secondary bifurcation in the FvK equations. Finally, it is shown that the stability of delamination blisters can be understood from the structure of the FvK equations and from the properties of the interfacial crack.

Keywords

Elasticity. Geometric rigidity. Interfacial cracks. Friction. Mode-dependent toughness. Delamination. Delamination patterns. Föppl-von Karman equations. Elastic buckling.

Références bibliographiques

[1] M. ADDA-BEDIA,R.ARIAS,M.B.AMAR,F.LUND. Dynamic instability of brittle fracture. Phys. Rev. Lett. 82 2314 (1999).
[2] M. ADDA-BEDIA,Y.POMEAU. Instability of a heated glass strip. Physical Review E 52 4105 (1995).
[3] A. D. ALEXANDROV. On a class of closed surfaces. Recueil Math. (Moscou) 4 69 (1938).
[4] A. S. ARGON,V.GUPTA,H.LANDIS,J.A.CORNIE. Intrinsic toughness of interfaces between SiC coatings and substrates of Si or C fibre. Journal of material science 24 1207 (1989).
[5] B. AUDOLY. Asymptotic study of the interfacial crack with friction (1999). À paraître dans J. Mech. Phys. Sol.
[6] B. AUDOLY. Mode dependent toughness and the delamination of compressed thin films (1999). À paraître dans J. Mech. Phys. Sol.
[7] B. AUDOLY. Stability of straight delamination blisters. Physical Review Letters 83 4124 (1999).
[8] B. AUDOLY,M.BEN AMAR,Y.POMEAU. Elasticity and geometry. À paraître chez Oxford University Press.
[9] G. I. BARENBLATT. The mathematical theory of equilibrium cracks in brittle fracture. Advanves in Applied Mechanics 7 55 (1963).
[10] M. BOUCIF,J.E.WESFREID,E.GUYON. Experimental study of wavelength selection in the elastic buckling instability of thin plates. European Journal of Mechanics, A/Solids 10 641 (1991).
[11] E. CERDA,S.CHAIEB,F.MELO,L.MAHADEVAN. Conical dislocations in crumpling. Nature 401 46 (1999).
[12] H. CHAI,C.D.BABCOCK,W.G.KNAUSS. One dimensional modelling of failure in laminated plates by delamination buckling. Int. J. Solids Structures 17 1069 (1981).
[13] D. CHOÏ. Sur la rigidité géométrique des surfaces. Application à la théorie des coques élastiques minces.Thèse de doctorat, Université Pierre et Marie Curie, Paris VI (1995). [14] P. G. CIARLET. A justification of the von Kármán equations. Arch. Rat. Mech. Analysis 73 349 (1980).
[15] P. G. CIARLET. Introduction to Linear Shell Theory. Series in applied ma-thematics. Elsevier (1998).
[16] S. COHN-VOSSEN. Unstarre geschlossene Flächen. Math. Annalen 102 10 (1929).
[17] M. COMNINOU. Interface crack with friction in the contact zone. Journal of applied mechanics, Transactions of the ASME 44 780 (1977).
[18] M. COMNINOU,J.DUNDURS. An example for frictional slip progressing into a contact zone of a crack. Engineering Fracture Mechanics 12 191 (1979).
[19] M. COMNINOU,J.DUNDURS. Effect of friction on the interface crack loaded in shear. Journal of Elasticity 10 203 (1980).
[20] M. COMNINOU,J.DUNDURS. On the behaviour of interface cracks. Res Mechanica 1 249 (1980).
[21] K. M. CROSBY,R.M.BRADLEY. Pattern formation during delamination and buckling of thin films. Phys. Rev. E 59 R2542 (1999).
[22] X. DENG. An asymptotic analysis of stationary and moving cracks with fric-tional contact along bimaterial interfaces and in homogeneous solids. Inter-national of Solids and Structures 31 2407 (1994).
[23] X. DENG. A note on interface cracks with and without friction in contact zone. Transactions of the ASME. Journal of Applied Mechanics 61 994 (1994).
[24] J. DUNDURS,M.COMNINOU. Some consequences of the inequality condi-tions in contact and crack problems. Journal of Elasticity 9 71 (1979).
[25] A. G. EVANS,J.W.HUTCHINSON. On the mechanics of delamination and spalling in compressed films. Int. J. Solids Structures 20 455 (1984).
[26] A. G. EVANS,J.W.HUTCHINSON. Effects of non-planarity on the mixed mode fracture resistance of bimaterial interfaces. Acta metall. 37 909 (1989).
[27] A. G. EVANS,M.RÜHLE,B.J.DALGLEISH,P.G.CHARALAMBIDES. The fracture energy of bimaterial interfaces. Material Science and Engineering A 126 53 (1990).
[28] É.G.H.BANCROFT,réd. Trans. of the Ninth National Symp. of the Amer. Vacuum Soc. Mac-Millan (1962).
[29] G. GILLE,B.RAU. Buckling instability and adhesion of carbon layers. Thin Solid Films 120 109 (1984).
[30] G. GIOIA,M.ORTIZ. Delamination of compressed thin films. Adv. Appl. Mech. 33 119 (1997).
[31] L. E. GOODMAN. Contact stress analysis of normally loaded rough spheres. Journal of applied mechanics 29 515 (1962).
[32] M.-Y. HE,J.W.HUTCHINSON. Crack deflection at an interface between dissimilar elastic materials. International Journal of Solids and Structures 25 1053 (1989).
[33] J. W. HUTCHINSON,Z.SUO. Mixed mode cracking in layered materials. Advances in Applied Mechanics 29 63 (1991).
[34] J. W. HUTCHINSON,M.D.TOUGHLESS,E.G.LINIGER. Growth and configurational stability of circular, buckling-driven film delaminations. Acta metall. mater. 40 295 (1992).
[35] J. H. JELLET. On the properties of inextensible surfaces. Transactions of the royal Irish academy, Part V (science) 22 343 (1853).
[36] W. KILLING. Die nicht-euklikischen Raumformen in analytisher Behand-lung. G. B. Teubner (1885).
[37] L. D. LANDAU,E.M.LIFSCHITZ. Fluid mechanics. Pergamon Press, Ox-ford (1986).
[38] L. D. LANDAU,E.M.LIFSCHITZ. Theory of Elasticity. Pergamon Press, New York (1986).
[39] J.-B. LEBLOND. Mécanique de la rupture fragile. École Polytechnique, Département de mécanique (1992).
[40] D. LEGUILLON. Interface crack tip singularity with contact and friction. Comptes-rendus de l’académie des sciences de Paris 327 II b 437 (1999).
[41] D. LEGUILLON. Mode mixity for an interface crack and related problems of contact and friction. Dans Proceedings of the international conference on multifield Problems (Univ. of Stuttgart, Oct 1999) (2000).
[42] K. M. LIECHTI, Y.-S. CHAI. Asymmetric shielding in interfacial fracture under inplane shear. J. Applied Mech. 59 294 (1992).
[43] J. L. LIONS, É.SANCHEZ-PALENCIA. Problèmes aux limites sensitifs.C. R. Acad. Sci. Paris I 319 1021 (1994).
[44] J. L. LIONS, É.SANCHEZ-PALENCIA. Example of sensitivity in shells with edges. Dans M. BERNADOU,réd., Shells, modelling and Scientific compu-ting, pp. 151–154. Univ. Santiago de Compostela (1997).
[45] A. E. LOBKOVSKY. Boundary layer analysis of the ridge singularity in a thin plate. Phys. Rev. E 53 3750 (1996).
[46] B. M. MALYSHEV,R.L.SALGANIK. The strength of adhesive joints using the theory of cracks. Inter. J. Frac. Mech. 1 114 (1965).
[47] G. A. MAUGIN. On the j-integral and energy-release rates in dynamical fracture. Acta Mechanica 105 33 (1994).
[48] N. I. MUSKHELISHVILI. Some basic problems of the mathematical theory of elasticity : fundamental equations, plane theory of elasticity, torsion, and bending. P. Noordhoff (1953).
[49] F. I. NIORDSON. Shell theory, tome 29 de North-Holland series in applied mathematics and mechanics. North-Holland (1985).
[50] D. NIR. Stress relief forms of diamond-like carbon thin films under internal compressive stress. Thin solid films 112 41 (1984).
[51] L. NIRENBERG. Rigidity of a class of closed surfaces. Dans Nonlinear problems (Proc. Sympos., Madison, Wis., 1962), pp. 177–193. Univ. of Wis-consin Press, Madison, Wis. (1963).
[52] P. PATRICIO. Instabilités géométriques en élasticité.Thèse de doctorat, Uni-versité Paris VII (1998).
[53] P. PATRICIO,W.KRAUTH. Numerical solutions of the von Karman equations for a thin plate. International Journal of Modern Physics C 8 427 (1997).
[54] L. PAUCHARD,Y.POMEAU,S.RICA. La physique non linéaire des balles de ping-pong. Bulletin de la Société Française de Physique 119 (1999).
[55] L. PAUCHARD,S.RICA. Contact and compression of elastic spherical shells : the physics of a “ping-pong” ball. Philosophical Magazine 78 235 (1998).
[56] A. V. POGORELOV. Bendings of surfaces and stability of shells, tome 72 de Translation of mathematical monographs. American Mathematical Society (1988).
[57] Y. POMEAU,M.BEN AMAR. Crumpled paper. Proceedings of the Royal Society A 453 729 (1997).
[58] J. W. S. RAYLEIGH. The theory of sound. Dover publications, New York (1945).
[59] J. R. RICE. Fracture : an advanced treatise, tome 2, pp. 191–311. Liebowtiz, H. (editor), Academic press (1968).
[60] J. R. RICE. A path independent integral and the approximate analysis of strain concentration by notches and cracks. J. Appl. Mech. 35 379 (1968).
[61] J. R. RICE. Elastic fracture mechanics concepts for interfacial cracks. Jour-nal of Applied Mechanics 110 98 (1988).
[62] B. ROMAN,A.POCHEAU. Buckling cascade of thin plates : forms, constraints and similarity. Europhysics Letters 46 602 (1999).
[63] I. KH.SABITOV. Local theory of bendings of surfaces, tome 48, chapitre 3, pp. 179–256. Springer (1992).
[64] É.SANCHEZ-PALENCIA. Passage à la limite de l’élasticité tridimensionnelle à la théorie asymptotique des coques minces. Comptes-rendus de l’académie des sciences de Paris II 311 909 (1990).
[65] É.SANCHEZ-PALENCIA. Surfaces et coques élastiques minces : problèmes et défis. La vie des sciences 12 239 (1995).
[66] C. F. SHIH,R.J.ASARO. Elastic-plastic analysis of cracks on bimaterial interfaces. ASME Journal of Applied Mechanics 58 450 (1991).
[67] M. SPIVAK. Differential geometry, tome 5. Publish or Perish Inc. (1979).
[68] R. G. STRINGFELLOW,L.B.FREUND. The effect of interfacial friction on the buckle-driven spontaneous delamination of a compressed thin film. Int. J. Solids Structures 30 1379 (1993).
[69] D. J. STRUIK. Lectures on classical differential geometry. Addison-Wesley, 2 e édition (1961).
[70] Z. SUO,J.W.HUTCHINSON. Interface crack between two elastic layers. Int. J. Frac. 43 1 (1990).
[71] J. G. SWADENER,K.M.LIECHTI. Asymmetric shielding mechanisms in the mixed-mode fracture of glass/epoxy interface. Journal of applied mechanics-Transactions of the ASME 65 25 (1998).
[72] S. TIMOSHENKO,J.M.GERE. Theory of Elastic Stability. MacGraw Hill, New York, 2 e édition (1961).
[73] R. M. WALD. General Relativity. University of Chicago Press (1984).
[74] J.-S. WANG. Interfacial fracture toughness of a copper/alumina system and the effect of the loading phase angle. Mechanics of materials 20 251 (1995).
[75] J. S. WANG,Z.SUO. Experimental determination of interfacial toughness using brazil-nut-sandwhich. Acta Met. 38 1279 (1990).
[76] J. D. WHITCOMB. Parametric analytical study of instability-related delami-nation growth. Compos. Sci. Technol. 25 19 (1986).
[77] N. YAMAKI. Elastic stability of circular cylindrical shells, tome 27 de North-Holland series in applied mathematics and mechanics. North-Holland (1984).
[78] H. Y. YU,C.KIM,S.C.SANDAY. Buckle formation in vacuum-deposited
thin films. Thin Solid Films 196 229 (1991).


Basile Audoly
Laboratoire de modélisation en mécanique
Université Pierre et Marie Curie