B. Audoly and Y. Pomeau

Elasticity and Geometry

Oxford University Press (2010)


1 Introduction1 

1.1 Outline 1 

1.2 Notations and conventions 3 

1.3 Mathematical background 10 


2 Three-dimensional elasticity 18 

2.1 Introduction 18 

2.2 Strain 19 

2.3 Stress 35 

2.4 Hookean elasticity 45 

2.5 Stress and strain for finite displacements 50 

2.6 Conclusion 59


PART I RODS 


3 Equations for elastic rods 65 

3.1 Introduction 65 

3.2 Geometry of a deformed rod, Darboux vector 67 

3.3 Flexion 69 

3.4 Twist 80 

3.5 Energy 86 

3.6 Equilibrium: Kirchho equations 89 

3.7 Inextensibility, validity of Kirchho model 98 

3.8 Mathematical analogy with the spinning top 100 

3.9 The localized helix: an explicit solution 104 

3.10 Conclusion 109


4 Mechanics of the human hair 113 

4.1 Dimensional analysis 114 

4.2 Equilibrium equations 117 

4.3 Weak gravity 120 

4.4 Strong gravity 122 

4.5 Extensions of the model 133 

4.6 Conclusion 137 


5 Rippled leaves, uncoiled springs 141 

5.1 Introduction 141 

5.2 Governing equations 150 

5.3 Helical solutions 153 

5.4 Godet solutions 157 

5.5 Conclusion 163


PART II PLATES 


6 The equations for elastic plates 169 

6.1 Bending versus stretching energy 170 

6.2 Gauss’ Theorema egregium 173 

6.3 Developable surfaces 188 

6.4 Membranes: stretching energy 196 

6.5 Equilibrium: the F¨oppl–von K´arm´an equations 205 

6.6 Elastic energy 212 

6.7 Narrow plates: consistency with the theory of rods 218 

6.8 Discussion 223 

6.9 Conclusion 226


7 End eects in plate buckling 228 

7.1 A historical background on end eects 228 

7.2 Geometry 229 

7.3 Governing equations 231 

7.4 Linear stability analysis 236 

7.5 Buckling amplitude near threshold 239 

7.6 Wavenumber selection by end eects 246 

7.7 Experiments 263 

7.8 Conclusion 265


8 Finite amplitude buckling of a strip 267 

8.1 A short review on buckling 268 

8.2 The experiments 269 

8.3 Equations for the compressed strip 272 

8.4 Linear stability 276 

8.5 The Euler column, an exact solution 282 

8.6 Transition from finite to infinite wavelengths 289 

8.7 Linear stability of the Euler column 299 

8.8 Extension of the diagram 314 

8.9 Comparison with buckling experiments 329 

8.10 Application: interpretation of delamination patterns 332 

8.11 Limitations and extensions of the model 336 

8.12 Conclusion 339


9 Crumpled paper 344 

9.1 Introduction 344 

9.2 Conical singularities 345 

9.3 Ridge singularities 370 

9.4 Conclusion 387


10 Fractal buckling near edges 390 

10.1 Case of residual stress near a free edge 392 

10.2 Case of a clamped edge 406 

10.3 Summary and conclusion 420


PART III SHELLS 


11 Geometric rigidity of surfaces 425 

11.1 Introduction 426 

11.2 Infinitesimal bendings of a weakly curved surface 428 

11.3 Infinitesimal bendings: an intrinsic approach 430 

11.4 Minimal surfaces, Weierstrass transform 437 

11.5 Surfaces of revolution 438 

11.6 Crowns: interpretation of rigidity, extension to arbitrary surfaces 452 

11.7 Conclusion 455


12 Shells of revolution 458 

12.1 Geometry 459 

12.2 Constitutive relations 465 

12.3 Equilibrium of membranes 467 

12.4 Equilibrium of shells 471 

12.5 Conclusion, extensions 475


13 The elastic torus 478 

13.1 Introduction 478 

13.2 Mechanical problem 481 

13.3 Linearized membrane theory 484 

13.4 Boundary layer equations 489 

13.5 The curious case of pressurized circular toroidal shells 496 

13.6 Boundary layer solution for moderate nonlinearity 497 

13.7 Boundary layer solution for weak nonlinearity 500 

13.8 Boundary layer solution for strong nonlinearity 511 

13.9 Conclusion 513


14 Spherical shell pushed by a wall 516 

14.1 Introduction 516 

14.2 A short account of Hertz’ contact theory 518 

14.3 Point-like force on a spherical shell (Pogorelov) 520 

14.4 Spherical shell pushed by a plane: overview 524 

14.5 Equation for spherical shells 529 

14.6 Spherical shell pushed by a plane: disc-like contact 537 

14.7 Spherical shell pushed by a plane: circular contact 548 

14.8 Stability of disk-like contact, transition to circularcontact 559


Appendix A Calculus of variations: a worked example 574 

A.1 Model problem: the Elastica 574 

A.2 Discretization of energy using a Riemann sum 576 

A.3 Calculus of variations: the Euler-Lagrange method 577 

A.4 Handling additional constraints 579 

A.5 Linear stability analysis 580 

A.6 Exact solution 581


Appendix B Boundary and interior layers 586 

B.1 Layer at an interior point 586 

B.2 Layers near a boundary 594 References 596 


Appendix C The geometry of helices 597 


Appendix D Derivation of the plate equations by formal expansion from 3D elasticity 599 

D.1 Introduction 599 

D.2 Scaling assumptions 601 

D.3 Basic equations 602 

D.4 Expansion of the basic quantities 603 

D.5 Solution at leading order 604 

D.6 Conclusion 609


Index 611