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Abstract

We study a model of interface crack in which contact of the crack faces obeys

a Coulomb law of friction. For such cracks, the possibility that the stress has a

stronger singularity than r
�1=2 near the tip has been reported. In this paper, we

demonstrate that these strong singularities can in fact be discarded, because they

would suppose a backward propagation of the crack. In passing, we prove that near-

tip slip is possible in one direction only, which is imposed by the sign of the elastic

mismatch. The locking of the stress intensity factor during a non-monotonic cycle

of loading is pointed out, as well as the formation of a bubble near the tip under

certain loading conditions.
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1 Introduction

The understanding of the mechanical properties of layered materials is a chal-

lenge with many potential applications. These materials are nowadays widely

used in the industry, and their structural performances are limited by a variety

of mechanisms. Among them is the propagation of interfacial cracks, to which

we restrict our attention. As for cracks in homogeneous media, the propaga-

tion of interface cracks is believed to depend on the asymptotic expansion

of the stress near the crack tip. In this paper, we study the structure of the

singularity of the stress at the tip.

We consider a crack propagating quasi-statically at the interface between dis-

similar materials. Because of the elastic mismatch of the materials joining
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Fig. 1. Asymptotic problem near the tip of a interface crack with friction. Slip can

occur in either direction, and stick is also possible.

at the interface, a contact region behind the crack tip must be considered

(Comninou and Dundurs, 1980b). This contact region avoids inconsisten-

cies in the model, such as the overlap of the crack faces in the form of micro-

scopic oscillations (Rice, 1988). Moreover, this contact zone is macroscopic

under certain loading conditions, and its role in the debonding of the inter-

face has been pointed out by Stringfellow and Freund (1993). The tip is

surrounded by the bound interface on one side, and by a contact zone on the

other side (see �gure 1).

We neglect transverse (mode III) forces, and the equations of bidimensional

elasticity are used. Let (x; y) be the coordinate in the materials, T the crack tip

with coordinates (xtip; 0), (ux; uy) the displacement vector, ��� the bidimen-

sional stress tensor. Index 1 and 2 label the materials. We de�ne the relative

shift of the materials along the contact region, s(x) = u
2
x(x; 0) � u

1
x(x; 0) for

x < xtip. The elastic mismatch between the materials is taken into account,

and we introduce the second Dundurs mismatch parameter, �, de�ned as:

� =
�2(�1 � 1)� �1(�2 � 1)

�2(�1 + 1) + �1(�2 + 1)
, (1)

where �, � denote respectively the shear modulus and the Poisson ratio of the

materials, and � = (3�4�) for plane strain, and (3��)=(1+�) for plane stress.

We assume that the materials have mismatching elastic properties: � 6= 0.

FollowingComninou andDundurs (1977), we model the contact of the crack
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Fig. 2. Path of integration used to calculate the dissipation of the energy release

rate, G, for a �xed, arbitrary, external loading (bold arrows).

faces by a Coulomb law of friction. The corresponding boundary conditions are

shown in �gure 1. In the contact zone, three regimes are possible: the crack

faces can slip in either direction, or stick. One of the boundary conditions

changes accordingly. Since we make an asymptotic analysis near the crack

tip, we shall not be concerned with the possibility that several stick and slip

zones coexist along the interface (Comninou and Dundurs, 1979): we only

consider the region touching the crack tip.

Before mentioning important results obtained by Comninou and Dundurs for

this model of crack, we present simple arguments showing that interfacial

friction near the crack tip yields singular e�ects. Our point is to show that,

because of friction, our model cannot be approached by conventional crack

analysis.

1.1 Interfacial friction as a singular perturbation

We consider a bimaterial with a partially cracked interface. A �xed, arbitrary,

external loading is applied on the sample. For sake of simplicity, we assume

that the interface is fully closed, and that slip takes place near the tip (this

assumption is not essential). We study the dependence of the energy release

rate (Malyshev and Salganik, 1965) at the tip, Gtip, on the friction coeÆ-

cient, f , for this �xed external loading (see �gure 2). We make a perturbation

analysis, and we seek and expansion of Gtip(f) in powers of f . At zeroth order,

there is no dissipation (f = 0); by conservation of the Rice integral (Rice,

1968a{b), the energy release rate at the tip is then given by the external load-

ing: G
[0]

tip = Gext. When friction is turned on, the energy release rate becomes

contour dependent. By a straightforward use of the Rice integral on the con-

tour depicted in �gure 2, the frictional dissipation of the energy release rate
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in the contact zone [DT ] reads:

Gext �Gtip =
Z

[DT ]

(��xy)
@s(x)

@x
jdxj, (2)

where we remind that s is the relative shift across the interface. By the

Coulomb law of friction, the contact shear stress is proportional to the con-

tact pressure: �xy = �f�yy, with a sign that depends on the direction of

slip. The previous equation therefore leads to the �rst order expansion of

Gtip(f) = G
[0]

tip + f G
[1]

tip + : : : with:

G
[1]

tip = �

Z
[DT ]

�
[0]
yy (x)

@s
[0](x)

@x
jdxj, (3)

where the quantities appearing in the r.h.s. member must be evaluated in the

absence of friction.

We now perform a dimensional analysis of the integrand: let r = jx� xtipj be

the distance to the tip along the interface. In the absence of friction, conser-

vation of the J-integral near the tip imposes the scaling law: �[0]
yy (r) / r

�1=2,

from which s[0](r) / r
1=2 can be derived. The integrand in the last equation

therefore scales like (x� xtip)
�1 near the tip, and the integral (3) giving G

[1]

tip

diverges logarithmically near the tip: the expansion of the energy release rate

at the tip in powers of f is singular. This result indicates that interfacial

friction can have strong e�ects near the crack tip. Indeed, the conventional

crack theory does not apply to our problem: we shall see below that the stress

divergence near the crack tip does not satisfy the usual scaling law: � / r
�1=2.

1.2 Expansions obtained by Comninou and Dundurs

We now turn to the direct study of the stress singularity near the tip when

interfacial friction is considered, and no longer consider expansions in small

f . We present results obtained by Comninou and Dundurs (1979).

Comninou and Dundurs have solved the static linear 2D elasticity equations

near the tip of a closed interfacial crack; they consider slip of the crack faces

against each other. They obtain a full expansion for the near-tip stress in the

materials, the leading term of which reads (Comninou and Dundurs, 1977,

1980b):

�ij(r; �) = C �ij(�) r
��, (4)

4



where (r; �) are polar coordinates with origin T , �ij(�) are universal functions

of � given by Comninou and Dundurs (1980b). C is a stress intensity factor

which depends on the external loading. As shown in �gure 1, the coeÆcient

of friction, f > 0, comes in the equations with a sign that depends on the

direction of slip, (sgn _s), and they indeed propose that the exponent � should

be determined by:

cot�� = sgn( _s)�f with 0 < � < 1. (5)

For � � 1, the elastic energy stored near the crack tip would be in�nite: the

proposed range for �, 0 < � < 1, therefore corresponds to the most diverging

term in the expansion compatible with a �nite energy. The fact that � is

generically di�erent from 1

2
can be understood in the light of x1.1.

The relationship between the quantities s and � is complex. On one hand,

� obviously depends on the direction of slip, (sgn _s), through equation (5).

On the other hand, from equation (4) or [(3.18), Dundurs and Comninou,

1979], the near-tip expansion of s has a leading term s / (xtip� x)1��; there-

fore, s and (sgn _s) in turn depend on �. The quantities (sgn _s) and � are thus

self-referencing. As a result, it is possible that (sgn _s) and � depend not only on

the current loading, but also on the crack history: they should be determined

by successive attempts to make the equations self-consistent (Comninou and

Dundurs, 1980b; Deng, 1994). For certain loading histories of the interfa-

cial crack, it has been observed (Dundurs and Comninou, 1979) that the

singularity of the stress is smoother than r�1=2 (� � 1

2
). On the other hand,

the possibility that 1

2
< � < 1 in equation (5) is problematic (p. 79, Dundurs

and Comninou, 1979); this eventuality, although not exempli�ed so far, has

not been shown inconsistent either.

2 Singularity of the stress near the tip

In this section, we present new results about the singularity of the stress in

the presence of friction. First, we prove that � in fact cannot be larger than 1

2
.

This is consistent with the intuition that friction tends to make the stress less

divergent near the crack tip (as noted above, � = 1

2
in the absence of friction);

moreover, in�nite energy 
ow towards the crack tip, which would occur for

� >
1
2
, are removed from the theory. Secondly, we show that � is actually

independent of the loading history, and that equation (5) can be replaced by

a simpler one:

cot�� = j�jf with 0 < � <
1

2
. (6)
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We shall note �0 the unique solution of this equation, which is now history

independent: �0 is a function of the materials constants only. Thanks to this

result, the asymptotic study of a closed crack will be greatly simpli�ed because

equations (4) and (6) are no longer self-referencing: �, as determined from

equation (6), should simply be put into equation (4). The location of stick

and slip zones along the interface, and the stress intensity factor C, however,

remain history dependent.

2.1 The stress is less singular than r�
1

2

If the lips are slipping ( _s(x�tip) 6= 0), the expansion of the stress near the tip

of a closed crack reads (Dundurs and Comninou, 1979):

�ij(r; �)=C1a�
1a
ij (�)r

�1+�0 + C1b�
1b
ij (�)r

��0 + C1c�
1c
ij (�)r

0 +

C2a�
2a
ij (�)r

+�0 + C2b�
2b
ij (�)r

1��0 + C2c�
2c
ij (�)r

1 + : : : (7)

This is the same expansion as in equation (4) with terms added beyond the

dominant order. We also have used a trick to suppress arti�cially the time-

dependence of the exponent in equation (4): from equation (5), the dominant

exponent for the stress is � = �0 or 1 � �0, depending on sgn(� _s). Both

expansions have been written in the above equation, with the convention that

one of these vanishes:

if � _s > 0 at x = (xtip)
�

; C1a = C2a = : : : = 0 (8-a)

if � _s < 0 at x = (xtip)
�

; C1b = C2b = : : : = 0. (8-b)

This convention expresses equation (5).

In the following, it will be convenient to introduce the index d, which we de�ne

as b if � _s > 0 or a if � _s < 0: among the a and b terms in equation (7), only

the d terms are non vanishing. We also de�ne �1a = 1 � �0 and �1b = �0 for

obvious reasons. �d = �1a or �1b is in the range 0 < �d < 1.

As explained above, Comninou and Dundurs have found solutions to the equa-

tions of linear elasticity near the crack tip, T . In particular, they have given

the asymptotic expression for the relative shift, s, and for the normal stress

at the interface, N , in the slip zone [(3.18{19), Dundurs and Comninou,

1979]:

s(x; t)=�
1

��
C1d (xtip � x)1��d sin�0� + : : : (9-a)

N(x; t)=� C1d (xtip � x)��d sin �0� + : : : , (9-b)
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where ��(�2; �1; �2; �1; �) is a combination of the elastic modulus of the mate-

rials and � is the mismatch parameter de�ned in (1).

Consistency requires that the normal stress along the slipping part of the in-

terface, N(x) = �yy(x; y = 0), be compressive (N(x) � 0), so that the lips are

pressed one against the other. This yields [(3.40), Dundurs and Comninou,

1979]:

� C1d � 0. (10)

We shall consider that this condition is automatically satis�ed. Indeed, a ten-

sile contact pressure N > 0 would indicate that the crack is open near the tip,

which, again, is not possible when � 6= 0. N � 0 is in fact guaranteed by the

tuning of the size of the contact region with the applied loading (Audoly,

1999).

We consider the possibility that the crack advances quasi-statically: the crack

tip is at xtip(t) at time t, and, we shall call vtip(t) = _xtip(t) the instantaneous

crack tip velocity. The sign of (� _s) needed in equations (8-a) and (8-b) can be

obtained as follows; derivation of equation (9-a) with respect to time yields:

� _s = �

� C1d

��
sin�0�

 
_C1d

C1d
+ (1 � �d)

vtip

xtip � x

!
(xtip � x)1��d. (11)

�
� is positive [(3.21), Dundurs and Comninou, 1979] and �C1d is negative

from equation (10); the sign of (� _s) near the tip in the last equation is thus

given by the bracketed term:

sgn(� _s)jx=x�
tip

=sgn

 
d

dt
ln jC1dj+ (1� �d)

vtip

xtip � x

!

=

8><
>:
+ if vtip > 0,

sgn
�

d
dt
ln jC1dj

�
if vtip = 0,

(12)

where we have used �d < 1. Equation (12) holds under the conditions that

C1d 6= 0 and that the lips are slipping in the vicinity of the crack tip (� _s 6= 0).

At this point, we recover the fact that singularities stronger than r
�1=2 are

absent when the crack propagates (Deng, 1994): then, � _s > 0 from the

equation above, and equation (5) shows that � � 1

2
.

We shall now review all the possible motions of the lips near the crack tip

(slip in either direction, stick), and study the corresponding dynamics of C1a.

Let us �rst assume C1a 6= 0 and that the lips are slipping in such a direction
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that � _s < 0; then d = a and equation (12) shows that:

if � _s(xtip
�) < 0 and C1a 6= 0; then vtip = 0 and

d

dt
ln jC1aj < 0. (13-a)

If the lips are slipping in the other direction, it follows from equation (8-a)

that:

if � _s(x�tip) > 0; then C1a = 0. (13-b)

Finally, if the lips are sticking near the crack tip, the expansion (7) is no

longer valid. However, in this case, the relative slip displacement of the lips,

s, is frozen to s = sstick. Furthermore, if sstick of the form (9-a) with d = a and

C1a 6= 0 is put in the stick problem in �gure 1 as a boundary condition, it is

clear that the leading order of the stress remains given by equation (7). For

this reason, the stress intensity factor C1a is also frozen by the stick zone:

if � _s(x�tip) = 0 and C1a 6= 0; then C1a is constant in time. (13-c)

Since we consider only quasi-static propagation of the cracks, all displace-

ments are continuous functions of time, and C1a(t) is continuous. Collecting

equations (13-a){(13-c), one shows that jC1a(t)j decreases at all times. The

only assumption that we now make on the crack history is very weak: we as-

sume that the crack was not loaded sometime in the past. This is true, for

example, if the sample was initially free of loads, as happens in most practical

situations (note that we do not require that the loading has been turned on

monotonically, like in (Comninou and Dundurs, 1980a); this would be a

much stronger assumption). In the case of delamination of thin �lms obtained

by vapor deposition, for example, the mismatch strain which loads the inter-

face crack appears progressively when the sample cools down after high tem-

perature deposition (Hutchinson and Suo, 1991), hence C1a(t = �1) = 0.

Under the assumption stated above, C1a vanishes at all times, and divergences

of the stress stronger than the usual inverse square root law are removed from

the theory. This result is based on the irreversibility of the crack opening: in

the preceding proof, a key argument was that the crack can only propagate

forward|see equation (12).

2.2 The dominant exponent � is not history dependent

Let us now review the possible stick or slip states of the interface near the tip

(at x = x
�

tip). We shall write that there is near-tip stick when _s(x�tip) = 0, and

8



that there is positive near-tip slip when � _s(x�tip) > 0, and negative near-tip

slip when � _s(x�tip) < 0. The near-tip slip direction determines the near-tip

stress divergence: for positive near-tip slip, the stress intensity factor C1b is

generically non-vanishing (we remind that C1a vanishes from x2.1); for nega-

tive near-tip slip, however, the near-tip stress divergence shall be suppressed

because C1b = 0 from equation (8-b). We note that, by the same arguments

as those used to derive equation (13-c), C1b(t), which is now the leading stress

intensity factor, is a continuous function of time and is conserved during near-

tip stick. Below, we establish that near-tip negative slip is not possible; this

result will permit a de�nitive answer to the question of the history dependence

of the exponent �.

Assume, �rst, that positive near-tip slip takes place sometime in the crack

history, and lasts until time t = t0. At time t0, the crack lips can a priori

either start to stick near the tip, or to slip in the negative direction (� _s < 0).

According to Comninou and Dundurs, this change can be traced in the equa-

tions as follow: if the assumption � _s(x�tip) > 0 is used at times later than t0,

either equation (10) or (12) becomes inconsistent (Dundurs and Comninou,

1979). We have mentioned that equation (10) is automatically satis�ed; there-

fore, equation (12) must become inconsistent with � _s(x�tip) > 0 at time t0. As

a result, vtip(t0) = 0 and the stress intensity factor jCerr
1b j, calculated under the

(erroneous) assumption � _s(x�tip) > 0, is strictly decreasing at times just after

t0 (see �gure 3). We shall label by \err" all quantities calculated under this

erroneous assumption at times later than t0.

That jCerr
1b j strictly decreases just after t0 obviously implies jCerr

1b (t
+
0 )j > 0.

Since C1b(t) is a continuous function of time, the actual stress intensity factor

C1b satis�es: jC1b(t
+
0 )j = jC1b(t

�

0 )j = jC
err
1b (t

+
0 )j > 0 and, by continuity, C1b

remains nonzero during a time interval �t > 0 after time t0. Using equa-

tion (8-b), � _s(x�tip) � 0 on this �nite interval t 2 [t0; t0+�t]. By assumption,

positive slip ends at time t0, hence stick starting at time t0. Therefore, we have

proved that when the crack faces stop slipping in the direction � _s(x�tip) > 0

near the tip, a stick zone develops from the tip; moreover, this stick zone will

continue to exist near the tip for a �nite time interval before negative slip can

eventually be reached (�t > 0).

We can now examine what happens when this stick zone disappears, say, at

time t00. We remind that C1b has been conserved during near-tip stick (see

�gure 3). Moreover, C1b was non-vanishing when the stick zone appeared (see

previous paragraph). Therefore, C1b(t), which, again, is continuous in time, is

non-vanishing at times just after t00. From equation (8-b), negative near-tip

slip cannot take place just after time t00, and the interface necessarily goes

back to positive near-tip slip.

Finally, we use again the assumption that the crack was not loaded sometime
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in the past: C1b was then vanishing, and jC1bj has necessarily started to increase

as the loading has been turned on. Equation (12) shows that the system has

then entered either state: _s(x�tip) = 0 (stick near the tip), or � _s(x�tip) > 0

(slip in the positive direction near the tip). At subsequent times, the system

eventually goes from one state to the other, but slip in the forbidden direction,

� _s(x�tip) < 0, can never be reached: at all times,

� _sjx=x�
tip

� 0. (14)

As a result, the dependence of � on (sgn _s) in equation (5) is made-up, and

it is much easier to determine the exponent � using equation (6). We hereby

have proved the important result: the exponent of the divergent term in the

stress expansion near the tip is ��0 � �
1

2
, and it does not depend on the load-

ing history. It would be history-dependent only if the crack could propagate

backwards.

3 Prevention of slip in the forbidden direction

In the previous section, we have established a striking property of the interface

crack with friction: in the vicinity of the tip, slip can take place in one direction

only, which depends on the sign of the elastic mismatch. Below, we point out

two mechanisms that prevent slip in the opposite direction.

From equation (14), the applied loading tends to induce slip in the forbidden

direction when the stress intensity factor obtained from the conventional crack

analysis satis�es: sgn d
dt
KII = sgn(��). This can happen in two situations:

�rst, when applied shear stress is compatible with the authorized slip direc-

tion (sgnKII = sgn �), but is decreasing in magnitude (djKII j =dt < 0). This

situation is typically encountered during cyclic loading sequences; it is studied

in x3.1. The second situation is when the applied shear stress is opposite the

intrinsic slip direction (sgnKII = � sgn �), and increasing (djKII j =dt > 0): in

x3.2, we study the e�ect of an applied shear con
icting with the intrinsic slip

direction.

3.1 Locking of the stress intensity factor

We consider a bimaterial with a partially cracked interface, submitted to a

non monotonic sequence of loading, as in �gure 3. For sake of de�niteness, we

consider the case � > 0, so that the slip direction near the crack tip imposed

by equation (14) is _s > 0. The loading is assumed to be compatible with the
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(a)
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0

0

(b)
C1b

loading

loading

C
err
1b

(c)

t0

C1b

t

Fig. 3. Locking of the stress intensity factor C1b during a non-monotonic variation of

the loading, when imposed loading complies with the intrinsic slip direction. Crack

is assumed not to propagate (vtip = 0). C1b is proportional to loading as long as

the loading is monotonic (a); at time t0, the loading starts decreasing, and C1b is

locked by a stick zone near the tip (b). As the loading is increased again, the size

of the stick zone decreases, and it disappears at time t00 when the loading reaches

again the same value as at time t0 (c).

intrinsic slip direction: it induces a stress intensity factor KII > 0. The crack

is assumed not to propagate (vtip = 0).

From the results of x2.2, the stress intensity factor C1b increases proportionally

to the loading, as long as the loads are increased monotonically; at time t0,

when the loading starts decreasing, Cerr
1b , which is proportional to loading, also

decreases; equations (12) and (14) then becomes inconsistent. This indicates

that a stick zone develops near the crack tip. As the loading is being decreased

more and more, it is reasonable to expect that the stick zone spreads outwards

from the crack tip. Similarly, it can be expected that this stick zone will shrink

when the loading is increased again. We remind that C1b is frozen as long as

a stick zone exists near the tip. At time t00, when the loading comes back to

the same level as at time t0, the system is in the same state as at time t0, and

the near-tip stick zone disappears. C1b then again follows the applied loading.

In �gure 3, the stress intensity factor C1b is seen to increase irreversibly. Using

equations (12) and (14), it can indeed be seen that jC1bj increases as long as

the crack does not advance. During decrease of the loads, a decrease of the

stress intensity factor C1b is prevented by the formation of a stick zone at the

crack tip (see �gure 3). This irreversible increase of the stress intensity factor

is an example of memory e�ects in cracks. It may be relevant in the study of

fatigue.
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Fig. 4. Formation of a bubble near the crack tip when the loading is opposite the

intrinsic slip direction of the interface. Macroscopic interpenetration is obtained in

the conventional crack analysis (a). Interpenetration is forbidden in our model, and

a bubble is formed near the tip (b). Very close to the tip, the crack closes again,

and the intrinsic slip direction of the interface is recovered (c).

3.2 Formation of a bubble near the crack tip

We shall now discuss the state of the system when the imposed loading is

opposite the intrinsic slip direction (sgnKII = � sgn �). Again, we consider

a partially cracked bimaterial. Integration of equation (14) with respect to

time is possible, because the crack remains closed near the tip at all times;

assuming moreover, as in x2.1, that the crack was initially free of load, one

obtains: � s(x; t) � 0 at all times in the left vicinity of the crack tip, hence

equation (15-a) below. We impose a loading such that sgnKII = � sgn �;

then, the induced slip direction at the interface can be expected to be: sgn s =

sgnKII , hence equation (15-b).

sgn s = sgn(+�) imposed by near-tip analysis (15-a)

sgn s = sgn(��) imposed by external loading. (15-b)

In these conditions, the direction of slip imposed by the material constant

on one hand, and by the external loading on the other hand, are indeed in

con
ict.

Noticing that equation (15-a) applies at microscopic scales near the tip, while

equation (15-b) has a macroscopic origin (the loading), one can solve the con-

tradiction as follow: the materials contact along two di�erent regions separated

by a bubble (see �gure 4). One region, [ED0], is macroscopic; the other one,

[DT ], touches the crack tip T and has microscopic extent. In the macroscopic

contact zone, [ED0], the direction of slip is imposed by the loading, and satis�es

12



sgn s = sgnKII = sgn(��). In the microscopic contact region near the crack

tip, the slip direction is imposed by the materials constants: sgn s = sgn �.

The bubble can therefore be seen as a transition between a region where the

slip direction is imposed by the loading, as in equation (15-b), to a region

where the slip direction is imposed by the properties of the interface, as in

equation (15-a), when these directions are incompatible.

In �gure 4, a bubble has been represented. For sake of simplicity, we take

the material #2, above, in�nitely rigid (� > 0). Then, the authorized slip

direction near the crack tip is � _s > 0, and the loading is assumed to impose

KII < 0, hence the direction of the applied force on the picture. We note that

in this geometry, macroscopic interpenetration of the materials is obtained

in the conventional crack analysis: KI < 0 (Suo and Hutchinson, 1990).

Consideration of the interfacial contact is therefore essential. For the geometry

in �gure 4 (KII < 0), a bubble has indeed been observed numerically by

Stringfellow and Freund (1993) when � > 0. Our analysis o�ers a simple

interpretation to the apparition of this bubble.

An equivalent picture to the formation of the bubble can be given. In the

conventional analysis of interface cracks, where contact of the crack lips is not

considered, the stress intensity factors KI and KII are scale dependent in the

presence of elastic mismatch (Rice, 1988):

(KI + {KII)jl� = (KI + {KII)jl

 
l
�

l

!{"

, (16)

where " = ln((1 � �)=(1 + �))=2� is a mismatch parameter, and l and l� are

two di�erent lengthscales at which the stress intensity factor are evaluated.

The parameter " is numerically small for a variety of interfaces, and this scale

dependence can often be neglected (Rice, 1988); this is why we have intro-

duced stress intensity factors without mention to any lengthscale elsewhere

in this paper. Assume that, for some given external loading, the crack closes

at a macroscopic scale l: KI jl = 0. Using the equation above, and noticing

that sgn " = sgn(��), it is easily seen that KI jl� becomes positive at length-

scales l� smaller than l if sgn KII jl = sgn(��). That KI becomes positive at

small scales means that the crack reopens, hence the formation of a bubble for

sgnKII = � sgn �. Contrarily, KI jl� becomes negative at small scales l� when

sgn KII jl = sgn �, which indicates that the crack is fully closed.

The formation of a bubble near the tip has important consequences for the in-

terfacial crack: because a bubble is present only for a de�nite sign of KII ,

sgnKII = sgn(��), the geometry of the contact regions at the interface

strongly depends on this sign. As a result, the apparent toughness of the inter-

face �( ) resulting from frictional screening of the external loads (Stringfellow

and Freund, 1993) should be asymmetric (Audoly, 1999).

13



4 Summary and conclusion

We have studied the concentration of stress near the tip of an interface crack

with friction. We have shown that the dominant term in the expansion of the

stress is given by equation (4), where the exponent � is smaller than 1

2
: di-

vergences stronger than in the conventional crack analysis (� / r
�1=2) have

therefore been removed from the theory. In contrast to what had been pos-

tulated (Comninou and Dundurs, 1980b; Deng, 1994), this exponent is

history independent. Moreover, we have shown that the near-tip slip can oc-

cur in one direction only; this direction in imposed by the properties of the

materials|see equation (14). All these results derive from the fact that the

crack can only propagate forward. Two mechanisms prevent slip in the forbid-

den direction. First, a stick zone spreads outwards from the crack tip when a

non monotonic cycle of loading is applied. Secondly, a bubble is nucleated near

the tip when the imposed loading would induce slip in the forbidden direction.

A memory e�ect at the crack tip has been discussed: the crack tip retains

the highest value of the stress intensity factor ever reached since the crack

is arrested. It has also been pointed out that the formation of a bubble at

the crack tip should make the e�ective toughness of the interface asymmetric.

Finally, our analysis allows an approach of the interfacial crack with friction

using the concept of energy release rate: in�nite 
ows of energy towards the

crack tip have been ruled out from the theory. In a subsequent paper (Audoly,

1999), the interface toughness induced by friction is investigated on the basis

of the present analysis.
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