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Furrow constriction in animal cell cytokinesis
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ABSTRACT Cytokinesis is the process of physical cleavage at the end of cell division; it proceeds by ingression of an ac-
tomyosin furrow at the equator of the cell. Its failure leads to multinucleated cells and is a possible cause of tumorigenesis.
Here, we calculate the full dynamics of furrow ingression and predict cytokinesis completion above a well-defined threshold
of equatorial contractility. The cortical actomyosin is identified as the main source of mechanical dissipation and active forces.
Thereupon, we propose a viscous active non-linear membrane theory of the cortex that explicitly includes actin turnover and
where the active RhoA signal leads to an equatorial band of myosin overactivity. The resulting cortex deformation is calculated
numerically and reproduces well the features of cytokinesis such as cell shape and cortical flows toward the equator. Our theory
gives a physical explanation of the independence of cytokinesis duration on cell size in embryos. It also predicts a critical role
of turnover on the rate and success of furrow constriction. Scaling arguments allow for a simple interpretation of the numerical
results and unveil the key mechanism that generates the threshold for cytokinesis completion: cytoplasmic incompressibility
results in a competition between the furrow line tension and the cell poles surface tension.
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INTRODUCTION

Cytokinesis is one of the most striking hallmarks of cell
division but its precise description and understanding have
been challenging biologists and physicists for more than fifty
years. Significant progress has been achieved during the last
decade with advances in genomics, molecular biology and
imaging techniques, which allowed to identify more than
hundred proteins (1) implicated in this highly complex cellu-
lar process. Its tight regulation is as critical for cell division
success as chromosome replication and separation: its fail-
ure leads generally to aberrant ploidy, which can ultimately
cause cancer (2). The features and molecular processes in-
volved in cytokinesis are remarkably similar among animal
organisms (3), which suggests the existence of a common
fundamental mechanism.

Mechanical engineers and physicists tried early to ad-
dress the drastic cell deformation occuring during cytoki-
nesis. Continuous elastic, viscous, analytical and computa-
tional models of the entire cell surface have been proposed
(4–7) to account for early experimental observations and
force measurements performed on sea-urchin eggs (8). By
contrast, most of the recent theoretical work is focused on the
so-called contractile ring, based on coarse-grained descrip-
tions (9, 10) or microscopic models for motor-filament inter-
actions (11, 12). In our approach, the cell surface is viewed
as a continuum, in the spirit of earlier work (4, 5, 7), but
it is treated using recent active-gel models for actomyosin
rheology (14). Adhesive forces have been proposed to con-
tribute to furrow constriction in non-animal D. discoideum
cells (13). We do not consider here cell-cell nor cell-substrate
adhesion. Recent experimental studies have highlighted that
tight regulation of the contractility at the cell poles is essen-

tial for cell shape stability (15, 16). Here, we show that the
contractility, but also the dissipation at cell poles are limiting
factors controlling first and foremost the constriction of the
cleavage furrow.

MODEL

The acto-myosin cortex: main source of active forces and
dissipation
The cell is actively shaped by cytoskeleton elements, es-
sentially the microtubules and the actomyosin cortex (17).
Whereas an intact and functionnal actomyosin cortex is nec-
essary for furrowing (18–20) it has been shown that micro-
tubules need not be in contact with the cell surface for proper
constriction (21); they therefore do not shape the cell surface
directly, but they are nevertheless responsible for positioning
the cleavage furrow by delivering the biochemical signal that
activates locally contractile forces in the cortex (22–24), as
suggested by Rappaport’s early experiments (25).

In animal cells the typical plasma membrane tension is
one order of magnitude smaller than the typical active ten-
sion developped by the actomyosin cortex (26). In addi-
tion, the plasma membrane does not prevent cell surface
expansion, as several regulatory mechanisms ensure perma-
nent plasma membrane surface availability, including disas-
sembly of caveloae on shorter time scales (27) and mem-
brane trafficking on longer time scales (28). The mechani-
cal role of the plasma membrane can therefore be neglected.
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It has been proposed that abrupt detachments of plasma
membrane from the cortex, called blebs, can act locally as
cytoplasmic pressure valves in specific cells (15, 16). How-
ever their stochastic nature at the scale of the cell still chal-
lenges efficient modeling and we therefore restrict the ap-
plication of our current model to non-blebbing cells such as
eggs and embryos.

The cytoplasm is squeezed toward polar regions by the
furrow constriction, as reported in early experiments of Hi-
ramoto (8). It can also be advected along the cortex by cor-
tical flows. The cytoplasmic pressure associated with these
flows has been measured to relax within a few seconds (29),
whereas in cytokinesis, the cortical deformation occurs in
several minutes. On this slower timescale, the response of
the cytoplasm can therefore be captured by a uniform pres-
sure. Viscous dissipation in the cytoplasm can be neglected,
as it is much lower than that in the cortex (see Supporting
Material).

A non-linear visco-active membrane model for the acto-
myosin cortex
The response of the actomyosin cortex is well captured by
the Maxwell viscoelastic model: elastic at short time scale,
viscous at longer times. Since the elastic stress is released
upon renewal of the layer, the visco-elastic relaxation time
of the material must be smaller than the typical time for
turnover. The latter has been found to be of the order of
a few tens of seconds based on fluorescence recovery after
photobleaching (FRAP) experiments in polar and equatorial
cortices (30–32). This is much shorter than the typical cy-
tokinesis duration, which is in the range of 5 to 30 minutes.
The cortex can therefore be viewed as a purely viscous fluid
during constriction. Inertial effects are also completely neg-
ligible (33) .

Given that the cortex is thin relative to the cell radius, the
cortical layer is represented by a thin shell model (34). As
long as the stress tangent to the cell surface remains tensile,
no buckling occurs and one can ignore the small bending
moments: this is the so-called membrane theory in mechan-
ics (35), (not to be confused with the plasma membrane). We
formulate here a visco-active membrane theory of the cortex
and solve it numerically for large deformations.

We use a Lagrangian description (see Supporting Mate-
rial), which makes the numerical implementation easier. The
reference configuration is an initial spherical shape (Fig. 1,
t0) that corresponds to the metaphase round cell (36). As
suggested by observation, we assume that the cell remains
axisymmetric (see Fig. S1 A and Movie S5): a section plane
(ez, er) of the cell is shown in Fig. 1. The membrane tension
is therefore a diagonal tensor (see Supporting Material) in
the curvilinear frame (t, eϕ) (Fig. 1 t0). It involves axial and
azimuthal components, which are denoted by Ns and Nϕ
respectively. The membrane tension is proportionnal to the
cortical thickness e and is the sum of a viscous and an active

contribution. Viscous tensions are proportional to the viscos-
ity η, and to the axial and azimuthal strain-rates, which are
defined as the symmetric part of the membrane velocity gra-
dient and denoted respectively by ds and dϕ. Active tensions
originate from molecular motors that steadily consume free
energy coming from the hydrolysis of AdenosineTriPhos-
phate (ATP) molecules to produce work. The actomyosin
layer consists of a meshwork of semi-flexible actin filaments
suspended in the cytoplasmic fluid and myosin motors which
bind to the filaments to exert contractile internal stresses. We
use the active-gel theory of (14) to describe the rheology of
this material (see Supporting Material): we neglect the po-
larity of actin filaments so that the active stress whithin the
cortex results in an isotropic active tension in the membrane,
proportionnal to the local activity ζ > 0 of myosin motors
and to the chemical free energy ∆µ of hydrolysis of one ATP
molecule. The membrane tensions finally read

Ns =
e

2
ζ∆µ+ 2 η e (2 ds + dϕ) , (1a)

Nϕ =
e

2
ζ∆µ+ 2 η e (ds + 2 dϕ) . (1b)

ζ is proportional to the myosin phosphorylation, which is lo-
cally and temporally regulated by the active form of the pro-
tein RhoA (RhoA·GTP) via its effector ROCK (20, 37, 38).
Precise measurements of the spatio-temporal localization
of RhoA·GTP in several animal embryos have revealed an
equatorial ring of active RhoA that positions the cleavage
furrow (22): at onset of anaphase active RhoA accumulates
at the equator and forms along the actomyosin cortex a Gaus-
sian band of overactivity that causes cortical actin redistribu-
tion and furrowing. We mimic this active RhoA spatial zone
by imposing along the membrane a Gaussian distribution of
contractile overactivity δζ∞ centered at equator

ζ(s, t) = ζ0 + δζ∞ I(t) exp

(
−1

2

[ s
w

]2)
. (2)

where s is the curvilinear length from the equator along the
membrane (see Supporting Material), ζ0 is the basal con-
tractile activity in the membrane, responsible for cell poles
contractility, w is the signal width, δζ∞ the amplitude of
the overactivity and I(t) a function of time varying from 0
to 1. The analysis of the RhoA·GTP signal measurements
performed in (22) shows that the signal amplitude increases
rapidly at anaphase onset and saturates over the rest of fur-
row ingression. Although the precise form of the the function
I(t) may depend on the organism and conditions, we choose
for Figs. 1, 2 and Movies S1, S5 (see Supporting Material) a
sigmoidal increase in time (Fig. 2 Inset) that fits reasonably
well experimental results.

Polar actin filaments undergo permanent assembly and
disassembly, preferentially polymerizing at their plus end
and depolymerizing at their minus end. At the scale of the
cortex there is therefore a permanent actomyosin turnover,
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FIGURE 1 (Left) Numerical cell shape and cortex thickness evolution: (t0) Initial spherical cortex of radius R0 and main ingredients of the
model. The membrane is axisymmetric around the axis ez and is subjected to internal tensions Ns and Nϕ in its axial t and azimuthal eϕ
principal directions, and to the cytoplasmic pressure P along its normal n. The actomyosin layer of initial thickness e0 undergoes permanent
turnover. About hundred Lagrangian nodes are represented to follow the tangential membrane deformation over time (not all simulations
nodes are shown). (t1, t2 and t3) Cell cortex snaphots at successive times of constriction, in response to the rescaled myosin activity signal
ζ/ζmax illustrated by the color shading. rf is the furrow radius and Lp is the half pole-to-pole distance. Cortical flows along the membrane are
represented by arrows of size proportionnal to the local tangent velocity. (Right) DIC microscopy images of a sand-dollar zygote (dendraster)
deprived of its hyaline layer and jelly coat at four equivalent times of furrow constriction. The cell is not flattened and scale bar is 20µm. (Credits:
G. Von Dassow)
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measured by FRAP. Actin polymerization nucleators are lo-
cated in the vicinity of the plasma membrane, whereas the
depolymerization acts in the bulk. We describe this mate-
rial dynamics by a depolymerization rate kd within the layer
thickness and a polymerization velocity vp from the plasma
membrane surface. We consider an element of cortical layer
of surface a and thickness e. Incompressibility of the gel and
polymerization/depolymerization processes are captured by
the following Lagrangian rate of cortical volume change

d (a e)

dt
= −kd a e+ vp a . (3)

The stationnary thickness at zero surface deformation is
given by the ratio of the polymerization velocity and depoly-
merization rate: e0 ≡ vp/kd, as proposed in (39).

Measurements show that the cytoplasmic volume is nearly
conserved throughout cytokinesis (16, 40). The cytoplasm is
implemented here as a weakly compressible fluid with neg-
ligible viscosity. It applies therefore a uniform hydrostatic
pressure onto the membrane

P = −K (V − V0) , (4)

where V0 ≡ 4
3πR

3
0 is the initial cell volume. We use a value

of the bulk modulus K large enough (Table S2) to keep the
volume change |V − V0| /V0 below 0.1% in all our simula-
tions (see Fig. S4 A). The force balance of the membrane
tensions and the cytoplasmic pressure reads

div (Ns, Nϕ) + P n = 0 , (5)

where the divergence operator depends non-linearly on the
actual configuration of the membrane. Its expression is pro-
vided in the Supporting Material.

NUMERICAL RESULTS

The above equations are discretized in space by extending
the method of (41) to an axisymmetric geometry, as ex-
plained in the Supporting Material. At every time step, the
thickness and shape of the membrane are known; the un-
known is the velocity field. The strain rates (ds, dϕ) are ex-
pressed in terms of this velocity and the tension is calculated
by inserting the prescribed activity (Eq. 2) into Eq. 1. The
balance of forces (Eq. 5) is solved for the velocity. By ad-
vecting the points of the membrane using this velocity field,
we update its shape; the cortex thickness update follows from
Eq. 3. To solve this set of dynamics equations (Eq. 1 to
Eq. 5), we adapted a preexisting C++ code (41) to the case of
axisymmetric membranes. We analysed and plotted numeri-
cal data using Mathematica.

In the initial state of the simulation, the membrane is a
sphere with radius R0 and uniform stationnary thickness
e0 = vp/kd. It is subject to a uniform contractile activity ζ0.
We note that the initial contractile stress (ζ0 ∆µ/2) defines

an active time-scale when balanced with the viscous stress,

Ta ≡
2η

ζ0∆µ
. (6)

Typical numerical values for these parameters are picked
from experimental references and summarized in Table S1.

Four phases of furrow constriction
An equatorial gaussian band of overactivity δζ∞ = 75 is
progressively established according to the time profile I(t)
plotted in Fig. 2 (Inset). The evolution of the shape and thick-
ness of the cell cortex is shown in Fig. 1 (left) (see also
Movies S1 and S5): the four snapshots illustrate four distinct
phases of constriction. The time evolution of the furrow ra-
dius rf/R0 and pole-to-pole distance Lp/R0 (see definition
in Fig. 1) are qualitatively different during each of the four
phases, as shown in Fig. 2. Numerical results are compared
in Fig. 1 to DIC microscopy images of a sand-dollar zygote
under cytokinesis and show very good agreement. Experi-
mental time is rescaled by an active time-scale Ta of value
468s ≈ 8min to match successfully experimental furrow
radius and pole-to-pole distance evolutions with numerical
results in Fig. 2. This time-scale is perfectly consistent with
the model approximations.

Phase 0: No overactivity The initial spherical cell, shown
at time t0 = 0 in Fig. 1, is a stable equilibrium and verifies
Laplace’s law P = e0ζ0∆µ/R0.

Phase 1: Activity increase at equator Following the in-
crease of myosin activity (Inset in Fig. 2 and color shading
in Fig. 1), the equatorial region becomes more contractile. It
triggers a cortical flow toward the equator, as shown by the
arrows at time t1 = 0.50Ta in Fig. 1. This actin accumu-
lation forms an annular bundle, thereby reproducing the ob-
served formation of the contractile ring (42). This increase
in thickness (see Fig. S2 B in the Supporting Material) re-
sults from the competition between cortical flow and actin
turnover. The contractile ring starts to pinch the cell, increas-
ing the cytoplasmic pressure (see Fig. S4 B); the pole-to-pole
distance increases rapidly (Fig. 2 up) and the cell adopts a
prolate like shape (Fig. 1 and Movies S1 and S5 at time
t1 = 0.50Ta), consistent with the so-called anaphase cell
elongation (43).

Phase 2: Plateau of activity at equator The amplitude
of overactivity starts to saturate after a time interval of
about 0.75Ta (Fig. 2 Inset). The furrow adopts a constric-
tion regime that is almost linear in time (Fig. 2 bottom). The
poles’s stretch is revealed by the increase in the gaps between
the simulation nodes on snapshot t2 = 1.25Ta in Fig. 1. The
two future daughter cells become increasingly non-spherical,
especially in the furrow region (see Movie S5). There, both
the deformation and the tension are strongly anistropic (see
Figs. S3 C and D in the Supporting Material), leading to
widely different radii of curvature in the axial and azimuthal
directions.
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Phase 3: Constriction slowing-down When the furrow ra-
dius approaches zero, the pole-to-pole distance reaches a rel-
ative plateau (Fig. 2 up). The constriction starts slowing
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FIGURE 2 Furrow constriction dynamics: Time evolution of the fur-
row radius (rf/R0), and pole-to-pole half distance (Lp/R0). Numer-
ical results (line) are compared to experimental measurements of
a sand dollar zygote (points, data from the same DIC microscopy
images of Fig. 1). Vertical dashed lines delimit the four phases of
constriction described in the text and numbered from 0 to 3. (Inset)
Equatorial signal I(t) applied as a function of time.

down exponentially (Fig. 2 bottom), because viscous dissi-
pation due to the constriction of the furrow increases as its
radius decreases (see Fig. 7 D and Fig. S5 B in the Support-
ing Material). A significant cortical flow persists from the
poles toward the equator as long as the equatorial signal is
maintained (time t3 = 2.00Ta in Fig. 1). As this flow is
balanced by turnover, the shape and surface of the polar re-
gions no longer evolve significantly with time (see Movies
S1, S4 and Fig. S4 C in the Supporting Material). If, on the
contrary, the signal at equator is significantly decreased after
cytokinesis completion, the daughter cells adopt a spherical
shape (see Movie S3 left in the Supporting Material). This
behavior is classically observed in zygotes (deprived of the

external shell) when cell-cell adhesion is artificially lowered.

A threshold for complete furrow constriction

We plot in Fig. 3 B the furrow ingression as a function of
time for six values of the equatorial overactivity δζ∞/ζ0 be-
tween 10 and 100. For δζ∞/ζ0 > 40 the furrow fully con-
stricts (Í, Î, Ï), but slows down when the equatorial signal
is decreased. For δζ∞/ζ0 6 40 the furrow radius reaches a
plateau (Ê, Ë, Ì). Full constriction therefore requires that
the overactivity at the equator exceeds a threshold, and the
rate of constriction is dose-dependent, consistently with ob-
servations reported in (44). The final stationnary furrow ra-
dius r∞f is plotted as a function of the overactivity amplitude
δζ∞/ζ0 in Fig. 3 A. The diagram displays a saddle-node
bifurcation near δζ∞ ≈ 40. The longer delay required to
complete ingression around threshold (Fig. 3 B Í) is there-
fore interpreted as a critical slowing down. Shape evolutions
leading to constriction failure and completion are compared
in Movie S2 in the Supporting Material (left: Ë, right: Î).

The bifurcation diagram in Fig. 3 A reveals furthermore
a noticeable hysteretic behavior, represented by the arrows.
If one starts from a fully constricted state at the end of cy-
tokinesis (rf ≈ 0 and δζ∞/ζ0 > 40) and decreases the
equatorial overactivity under the threshold δζ∞/ζ0 < 40,
the cell stays divided (unless the signal is decreased down
to zero). As long as some slight equatorial tension is main-
tained, the divided state is therefore mechanically stable,
which may prevent the furrow to regress erroneously dur-
ing the midbody formation (45). On the contrary if the sig-
nal is decreased prematurely in the course of ingression (for
rf/R0 > 0.6), the furrow regresses and cytokinesis fails,
as presumably happens in (46). A tight synchronization be-
tween the signaling machinery and the furrow constriction is
therefore essential. The two scenarii are compared in Movie
S3 with experiments.

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Time t!Ta

Fu
rr
ow
ra
di
us
r f
!R 0!

!
!
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

!
!
!
!
!
!

!
!
! ! ! !

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !0 10 20 30 40 50 60 70 800
0.2
0.4
0.6
0.8
1

Signal amplitude ∆Ζ #!Ζ0

Fi
na
lr
ad
iu
s
r f#
!R 0A B

!0.5 0 0.5
1

25

50

75

100

Contour length s!L

Si
gn
al
Ζ

�

�
�

�

� �

�
�
�
�

�

� � �

�

�

�

FIGURE 3 Constriction completion and failure: (A) Bifurcation diagram representing the final furrow radius r∞f /R0 as a function of the ampli-
tude of equatorial overactivity δζ∞/ζ0. The diagram displays a jump from constriction failure to completion for a critical amplitude δζ∞/ζ0 ≈ 40.
Final cell shape are plotted for the six activity signals ζ, of amplitudes δζ∞/ζ0 = 10 (Ê), 25 (Ë), 40 (Ì), 50 (Í), 75 (Î) and 100 (Ï) as rep-
resented in (Inset) as function of the contour length from equator s/L along the membrane (of length L). Arrows illustrate an hysteresis loop:
starting from a divided state above the threshold (Í for example), we decrease the equatorial signal: the cell remains divided, unless the signal
is dropped down to zero, point where it goes back to the spherical state. (B) Furrow radius evolution rf/R0 as a function of time t/Ta for the
six signals ζ represented in (Inset) of (A).
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FIGURE 4 Influence of turnover on constriction: Furrow radius
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Corresponding steady-state membrane thickness e∞/e0 along the
rescaled contour length s/L from equator (L is the total membrane
midline length).

Constriction dynamics depends on turnover

In Fig. 4 and Movie S4 (see Supporting Material) we com-
pare the constriction dynamics for three different turnover
rates kdTa = 30 (À), kdTa = 40 (Á) and kdTa = 80 (Â)
while keeping e0 = vp/kd and δζ∞/ζ0 = 75 constant. The
stationnary thickness e∞f in the furrow results from a com-
petition between incoming cortical flows and turnover, and
therefore decreases at higher turnover rates (Fig. 4 Inset).
The active tension in the furrow is proportional to the local
thickness (Eq. 1) and therefore decreases at high turnover
rates, which lowers the rate of furrow ingression as shown on
Fig. 4. We expect a large increase of turnover to impair the
completion of the furrow ingression if the equatorial signal
is close to the constriction threshold. Actin turnover is there-
fore a critical variable for cytokinesis completion; it has to
be tightly regulated by the cell directly via depolymerization
and polymerization and indirectly via active cortical flows.

Cytokinesis duration is independent of initial cell size

The duration of cytokinesis has been recently reported to be
independent of cell initial size in C. Elegans embryos (47).
This remarkable property ensures the tight synchronization
of daugther cells development during embryogenesis. We
performed numerical constrictions with various initial cell
size radiiR0 between 0.5 and 4. Measurements peformed on
embryos of several organisms (22) revealed the existence of
a linear relationship between the initial cell size R0 and the
width w of the Gaussian RhoA-GTP zone: we thus choose w
proportionally to R0, keeping all the other parameters con-
stant (see Table S1). The evolution of the furrow radius with
time is plotted in Fig. 5 for four different values ofR0 andw.
We observe that the duration of furrow constriction is inde-
pendent of R0 provided that w ∝ R0. Our model reproduces
this robust feature of cytokinesis.
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FIGURE 5 Cytokinesis duration is independent of initial cell size:
Furrow radius rf as a function of time t/Ta for four initial cell radii
R0 = 0.5, 1, 2 and 4. (Inset) Corresponding Gaussian activity signals
of width w proportional to R0, plotted as a function of the membrane
midline contour length s.

SCALING MODEL

The numerical results can be interpreted in terms of scaling
arguments based on a minimal geometry sketched in Fig. 6
A, that was proposed by M. Yoneda and K. Dan in 1970 (48).
The cell poles are represented by two portions of sphere of
radius R under constant active tension Na

0 = e0ζ0∆µ/2
and are connected by a ring of radius rf and width w.
The contractile ring is submitted to an active line tension
γ ≈ w

(
Na
f −Na

0

)
, where Na

f is the mean contractile sur-
face tension in the furrow. The competition with cortical ten-
sion at cell poles is measured by the dimensionless parameter
κ = γ

2R0Na
0
≈ w

2R0

(
Na
f −Na

0

)
/Na

0 . The opening angle θ
defined in Fig. 6 A is a measure of the constriction state of
the cell.

Cytokinesis completion is controlled by the difference of
contractility between the contractile ring and the poles
The polar contractility tends to reduce the surface Ap =
2πR2 (1 + cos θ) of the cell poles, whereas the line ten-
sion tends to reduce the contractile ring circumference rf =
R sin θ. These effects are captured by a simple mechanical
energy E = 2π rfγ + 2ApN

a
0 . Cytoplasmic volume con-

servation can be written as R = R0 F (θ)1/3, where F (θ) is
a smooth function of θ defined in the Supporting Material.
The mechanical energy, rescaled by E0 = 4πR2

0N
a
0 for a

spherical cell, depends only on κ and θ and reads

E
E0

=
κ sin θ

F (θ)1/3
+

1 + cos θ

F (θ)2/3
. (7)

We plotted in Fig. 6 B the mechanical energy E/E0 as a
function of θ for various values of κ. The minima of E/E0
are the local equilibrium states of the cell. Starting from a
spherical cell at θ = π

2 , the final shape is reached at the
first local minimum of energy. For κ = 0 (red curve), in
absence of any contractile ring, the spherical cell θ = π

2
is the minimum of energy. As the control parameter κ in-
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creases, i.e. the contractile ring line tension increases, the
first local minimum of E shifts towards a more constricted
state (θ < π

2 ), but the constriction is still incomplete. For
κ & 0.4 the local minimum disappears at the benefit of a sin-
gle global minimum, corresponding to the fully constricted
state θ = 0 (green curve): constriction succeeds. This simple
energetic approach of the constriction completion uncovers
the fundamental mechanism of cytokinesis: cell volume con-
servation enforces a competition between the line tension of
the ring, that tends to minimize its circumference, and the
contractility of the poles that resists the associated cell sur-
face increase. This competition drives a first-order transition
from cytokinesis failure to constriction completion. We plot
alternately in Fig. 6 C the bifurcation diagram of the final
constriction state r∞f (corresponding to the first minimum
of energy in Fig. 6 B) as a function of the control parame-
ter κ. Similarly to the numerical results (Fig. 3 A), scaling
arguments reveal a jump from partial to complete constric-
tion above a critical threshold of the difference of contrac-
tility between the furrow and the poles, of value κc ≈ 0.4
(see Supporting Material). The energy plot in Fig. 6 B shows
clearly that θ = 0 is a possible local energy minimum for
κ > 0, and therefore that the divided state is mechanically
stable, which clarifies the origin of the hysteresis behavior,
illustrated by arrows on Fig. 6 C.

The contractility difference between the contractile ring
and poles also controls the dynamics of constriction
The mechanical power of active effects (Eq. 7) is exactly dis-
sipated by viscous cell deformations (see numerical results
in Fig. S5 A in the Supporting Material). The viscous dissipa-
tion is made of two contributions, the stretching of the poles
and the constriction of the ring, which we estimate in scal-
ing. The volume of actomyosin in the poles is Vp = 2Ap ep
and in the ring Vf = 2πrf wef , where w and ef are the
width and thickness of the contractile ring. According to the
numerical results (see Fig. S2 D in the Supporting Material),
the thickness of the actin layer at poles does not vary appre-
ciably ep ≈ e0 and the ring thickness ef reaches a steady-
state value that depends on turnover. This yields the viscous
dissipated power

Pd =
1

2
η

[
Vp

(
1

R

drf
dt

)2

+ Vf

(
1

rf

drf
dt

)2
]

(8)

From the balance of mechanical and dissipated powers dE
dt +

Pd = 0 we calculate the rate of furrow constriction as a pos-
itive functionH of θ, κ and λ only (see Supporting Material)

Ta
drf
dt

= −R0H(θ, κ, λ) , with λ ≡ ef
e0

w

2R0
(9)

From Eq. 9, we can solve for the furrow radius rf as a func-
tion of time and conclude that:

• The constriction time-scale is set by Ta = η e0
Na

0
, as de-

fined in Eq. 6, which measures the typical active time of
viscous stretching of the poles.
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FIGURE 6 Scaling model: (A) Sketch of the minimal geometry pro-
posed by Yoneda and Dan (48): Two portions of sphere of surfaceAp
and surface tension Na

0 are pinched by an equatorial ring of radius
rf , of width w and of line tension γ. The opening angle θ charac-
terizes the constriction state of the cell and the cytoplasmic volume
enclosed V0 is conserved. (B) Mechanical energy profile E/E0 as a
function of the constriction state θ for four values of κ = γ/2R0Na

0 .
Local minima of the energy correspond to equilibrium states and
are illustrated by darker points, above which are plotted the corre-
sponding cell shapes. (C) Bifurcation diagram representing the fi-
nal furrow radius r∞f /R0 as a function of the control parameter κ.
The upper branch and the branch rf = 0 are the stable branches
whereas the dotdashed branch is unstable. The critical point is a
saddle-node, and the bifurcation classically exhibits an hysteresis il-
lustrated by the arrows. Final cell shapes, starting from a spherical
cell, are plotted for the six following values of the control parameter
κ = 0, 0.1, 0.25, 0.4, 0.5, and 0.75.
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• κ and λ control the rate of constriction. κ ≈
w

2R0

(
ζf ef
ζ0 e0

− 1
)

characterizes the dependence of the
constriction rate on the contractility difference between
the ring and the poles, and depends on the normalized
furrow activity ζf/ζ0 and on turnover via the normal-
ized thickness ef/e0. λ depends essentially on turnover
via ef . We plot in Fig. 7 A the furrow radius rf evo-
lution as a function of time for various values of κ be-
tween 0.1 and 1, at fixed λ = 0.1 and recover qualita-
tively the same dynamics as in the numerical results. In
Fig. 7 B we keep ζf/ζ0 constant and plot rf as a func-
tion of time t/Ta for four values of ef/e0 between 1 and
4, thereby mimicking the competition between cortical
flows and actin turnover. Again we retrieve qualitatively
the same behavior as for the continuous model: decreas-
ing the furrow thickness ef , thereby enhancing turnover,
slows down the constriction and can even impede its com-
pletion (see curve ef /e0 = 1 ).

• If we assume that w scales linearly with R0 then κ and
λ, which are both proportional to w/R0, become inde-
pendent of the initial cell radius and so does H: the con-
striction rate in Eq. 9 is proportional to the initial radius
and the cytokinesis duration becomes independent of ini-
tial cell size, as illustrated on Fig. 7 C, that reproduce the

numerical results of Fig. 5.

Finally we show that the dissipation associated to the
poles stretching participates largely to the slowing down of
furrow constriction, consistently with numerical results (see
Fig. S5 B in the Supporting Material): the decrease of rf is
indeed much more rapid in Fig. 7 D for vanishing poles dissi-
pation (Vp → 0 in Eq. 8). These results suggest that not only
the contractility but also the viscosity of the polar cortex is
a critical parameter to consider to account for the dynam-
ics of furrow constriction. In the limiting case of an isolated
visco-active ring (no poles at all), scaling arguments yield
a purely exponential constriction dynamics (dashed line in
Fig. 7 D), consistent with experimental contraction of iso-
lated rings in-vitro (49). We can retrieve this scaling by a
simple balance of viscous forces ηw efrf

drf
dt with the con-

stricting force γ = wNa
f = w ef ζf∆µ in the ring, which

leads immediately to rf/R0 = e−t/τ , with τ = 2η/ζf∆µ
the characteristic active time-scale of the problem. The con-
striction dynamics of an isolated visco-active ring depends
therefore strongly on the ratio of myosin activity ζf and ac-
tomyosin viscosity η (controlled by cross-linking) but be-
comes independent of actin turnover, consistent with recent
experimental results (50).
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FIGURE 7 Constriction dynamics in scaling. Normalized furrow radius evolution rf/R0 with time t/Ta: (A) For κ = 0.1, 0.25, 0.4, 0.5, 0.75
and 1, with constant λ = 0.1. For κ . 0.4, the furrow radius reaches a plateau indicating constriction failure, whereas for κ & 0.4 constriction
is complete and its speed increases with κ. (B) For ef/e0 between 1 and 4, keeping ζf/ζ0 = 8 and w/R0 = 0.1 constant. Constriction slows
down when ef/e0 decreases from 4 to 1.5, and can even fail when it drops to 1. (C) For four initial cell radii R0 = 0.5, 1, 2 and 4, where the ring
width w is increased proportionnaly w = 0.05, 0.1, 0.2, and 0.4. ef/e0 = 2 and ζf/ζ0 = 8 are maintained constant. The rate of constriction
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line corresponds to the constriction of an isolated ring (no poles) fitted with the exponential function e−t/τ with τ = 2η/ζf∆µ.
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DISCUSSION

Using both numerical and scaling analyses we rationalize
the physical mechanisms governing ring constriction in the
cytokinesis of animal cells. Following the seminal work of
Bray, White and Borisy (6, 51), we show that a gradient of
surface contractility from the poles to the equator is sufficient
to drive cytokinesis and to reproduce its main features: for-
mation of the contractile ring, cortical flow toward the equa-
tor and furrow constriction. Starting from a quite fundamen-
tal physical model of the cortex — a thin viscous layer pro-
ducing active contraction and subjected to a uniform cyto-
plasmic pressure — we are able to reproduce realistic shapes
of dividing embryos. We provide quantitative criteria for cy-
tokinesis completion and propose a general framework for
interpreting and characterizing constriction failure. We fur-
thermore demonstrate the physical mechanism leading to the
independence of cytokinesis duration on the initial cell size
in embryos (47), and we highlight the critical influence of
actin turnover. A scaling model is then proposed to interpret
the numerical results. It explains and successfuly reproduces
the properties of furrow constriction, despite its simplified
geometry. It notably demonstrates that the contractility dif-
ference between the poles and the furrow is the key parame-
ter for both cytokinesis completion and constriction dynam-
ics. This highlights a critical role of the polar cortex in cy-
tokinesis success and dynamics.

We reproduce accurately the experimental constriction dy-
namics and shape evolution of a sand dollar embryo. Precise
spatio-temporal measurements of RhoA-GTP along the cor-
tex over the entire time of constriction would however be
required for our simulation to reproduce an experiment in
full details. Estimates of cortex turnover are also required to
account for the accumulation of actin in the ring via cortical
flows, which can play a major role in constriction dynamics.
FRAP measurements of the cortex provide reasonable val-
ues for the turnover time-scale (32), but we have neglected
here the possible non-uniformity of turnover along the cortex
for the sake of simplicity. RhoA-GTP is indeed known for
also promoting actin polymerization via the formin mDia1
(20), and the ring formation is then likely to be the result of
both accumulation by cortical flows and higher polymeriza-
tion (30, 31). On the contrary, myosin activity, promoted by
RhoA-GTP via its effector ROCK, has been shown to en-
hance actin filament disassembly both in-vitro and in-vivo
(30, 52). Altogether, the local activation of RhoA is likely
to enhance non-uniformly turnover. A more rigorous imple-
mentation of non-uniform turnover would require substan-
tial progress in the theoretical understanding and quantitative
characterization of in-vivo disassembly of actin by myosin
motors, which is far beyond this study. We argue neverthe-
less that the fundamental trends highlighted in our study will
remain valid. Based on quantitative studies in C. Elegans
(53), our model assumed that the frictional loss associated
with cortex sliding along the plasma membrane and cytosol

was negligible compared to viscous dissipation associated
with cortex deformation. It would however be interesting to
evaluate the effect of friction on the constriction dynamics in
a further development of the model.

We have also neglected here the anisotropy in actin fil-
ament orientation. Their spatial organization in the plane
of the membrane is indeed dynamically coupled to cortical
flows (14, 34). Again we expect similar results if flow align-
ment effects are taken into account, although we can conjec-
ture that alignment of actin filaments in the furrow (34, 54)
lowers the activity threshold for full constriction. Finally we
expect the threshold value to drop rapidly, or even to vanish,
if the constraint of cytoplasm incompressibility is partially
relaxed, as would happens for instance by the release of cy-
toplasmic fluid through membrane pores. Variability among
animal species and among differentiated cells in a same or-
ganism may thus be revelealed by different strategies for
ensuring constriction success. These subtle physical effects
suggest future lines for experimental investigations and po-
tential improvements of our description and understanding
of furrow constriction in animal cell cytokinesis.

SUPPORTING MATERIAL

Additional explanation of the model, two tables, 6 figures, 5 movies
are available at http://www.biophysj.org.

References (55–64) appear in the Supporting Material.
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