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Abstract. We study the nonlinear deformations of a long rectangular elastic plate clamped along its edges
and submitted to in-plane biaxial compression. Using the Föppl–von Kármán equations, we predict various
secondary buckling modes according to the applied longitudinal and transverse compressions. A model
experiment is carried out in a thin polycarbonate film, and the observed buckling patterns are found in
good agreement with theory. Pattern selection in the delamination of compressed thin films is discussed in
the light of these results.

PACS. 46.32.+x Static buckling and instability – 68.55.-a Thin film structure and morphology –
89.75.Kd Patterns

The way thin materials deform under the action of elas-
tic stresses has proven to be of paramount importance
in a number of phenomena standing at many different
scales. These may be found in biophysics (e.g. membrane
shape, vesicule conformation, retina detachment), me-
chanics (e.g. material resistance, film delamination) and
geophysics (e.g. strata deformation), to cite but a few
examples. However, current understanding of patterns dis-
played by thin elastic plates under stress is restricted to
primary bifurcations (e.g. the initial buckling from the pla-
nar state) and simple primary structures (e.g. the Euler
column, defined below) [1]. Despite recent advances in the
strongly nonlinear regime [2,3], both the amplitude of de-
formation and the secondary instabilities of a plate at high
stresses still resist analysis [4]. The difficulty comes from
the presence of strong geometric nonlinearities in the the-
ory of thin elastic bodies. As a result, the analysis of pat-
terns is far less advanced in elasticity than in many other
nonlinear systems [5].

This paper reports the first determination of the sec-
ondary instability diagram of a plane plate submitted
to biaxial compression. Our approach consists in a joint
experimental, theoretical and numerical study. A model
experiment is conducted, in which primary buckling pat-
terns are investigated, as well as secondary ones re-
sulting from further instabilities. A theoretical analysis
based on the Föppl–von Kármán equations (F.–von K.)
is presented, which is complemented numerically using a
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Fig. 1. A long elastic strip clamped along both sides is sub-
mitted to a biaxial in-plane compression (σt, σ`). This leads to
buckling and postbuckling instabilities.

Galerkin method. Altogether, these analyses build up the
phase diagram of the strip. Incidentally, they establish
that worm-like patterns allow an optimum release of the
elastic energy in the context of thin film delamination [6].

We consider a plane plate submitted to in-plane bi-
axial compression and to clamping boundary conditions
(see Fig. 1). This geometry is a natural generalization of
Euler’s famous Elastica (the axially loaded rod). In con-
trast with the Elastica, both stretching and bending of the
mean surface are important, and there is one additional
space dimension. This will result in rather complex sec-
ondary buckling patterns, which we seek to evidence and
determine.

Besides pattern formation, the studied system may
also provide new insights into the delamination [7,8] of
compressed thin films. It may indeed be regarded as a
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simple model of blister: biaxial compression accounts for
the residual (thermal, chemical) film stresses driving de-
lamination. The clamping boundary conditions are those
for an elongated, straight blister. Note that coupling of
film elasticity with fracture of the film/substrate inter-
face are disregarded here, as the blister edges are fixed in
advance. This simplification enables us to attack the post-
buckling problem using the exact F.–von K. equations, in-
stead of relying on controversial [3] approximations. There
resides the main difference with former analyses of delam-
ination blisters [8].

Buckling of the strip is described using the F.–von K.
equations [1] for thin elastic plates:
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where D = E h3/12(1 − ν2), E is the Young’s modulus
of the film, h its thickness, ν its Poisson ratio, ζ(x, y) its
deflection and χ(x, y) the Airy potential for the in-plane
stress. The imposed biaxial in-plane compression [9] yields
two additional terms σt

∂2ζ
∂x2 + σ`

∂2ζ
∂y2 in equation (1a),

where σ` (resp. σt) denotes the applied stress in the longi-
tudinal (resp. transverse) direction, as in Figure 1. Equa-
tions (1) are submitted to boundary conditions, not given
here, expressing that the edges are clamped.

The compression applied on the edges of the plate has a
destabilizing effect: to recover its natural length, the plate
tends to buckle away from its rest plane, and bends. Buck-
ling therefore results from a balance between the release of
the in-plane compression energy — described by the last
term in equation (1a) — and a gain of bending energy —
the first term in this equation. Interestingly, this balance
gives rise to many buckling bifurcations, addressed below.

The linear buckling of the plate has been solved for
a long time [10] by an explicit linear stability analysis of
the planar state (ζ, χ) ≡ (0, 0). Marginal stability is rep-
resented by the boundary of the P domain in the lower
left-hand corner of Figure 2. When the transverse com-
pression σt is dominant (σ`/σt < 2/3), the plate buckles
to a cylindrical profile known as an “Euler column” (E
domain). In this case, both the profile and the critical
transverse load σE are simply given by Euler’s Elastica:
σE = E π2

12 (1−ν2)

(
h
b

)2
, b denoting half the strip width. When

σ`/σt > 2/3, the plate bifurcates instead to a bump con-
figuration (B domain). To our knowledge, this is the only
known result on the buckling structures of the strip.

In the following, we complement this analysis of
the primary bifurcation by considering compressions as
large as several times σE. It is consistent to use the
F.–von K. equations to this end: their validity is not lim-
ited to a small dimensionless buckling parameter β =
[max(σt, σ`)/σE − 1] but, instead [1], to small values of
the combination (h/b)β1/2. For a typical aspect ratio

Fig. 2. Theoretical phase diagram for a film Poisson ratio
ν = 0.3. Thick lines delimit regions, in each of which the buck-
ling mode of lowest energy is visualized using grey levels for
the deflection ζ. Dotted line corresponds to marginal stabil-
ity of the Euler column. Grey sector shows where the worm
configuration is stable or metastable.

h/b = 1/100, the F.–von K. equations therefore remain
valid for compressions as large as about 20 σE.

We take advantage of the existence of an explicit, exact
(although nonlinear) solution of the F.–von K. equations,
the Euler column, and compute its linear stability. Ex-
tending a method discussed earlier in references [11,12],
we indeed determine the locus in the (σt, σ`) plane where
the Euler column becomes linearly unstable (dotted line
in Fig. 2). In contrast, thick lines indicate a change in the
configuration with minimum energy, as explained below.
Dotted and thick lines coincide wherever the Euler column
is the absolute minimum of energy and undergoes a super-
critical bifurcation. This is actually the case for the Euler
[E] to worms [W] transition. In contrast, the gap between
these lines in the range 1 ≤ σt/σE ≤ 7.2 indicates that the
Euler column is no longer the absolute minimum of energy
when it becomes unstable. This points out multistability
of this system.

In order to further investigate the nonlinear buckling
of the strip, we use a Galerkin procedure: we restrict the
space of configurations of the plate to three modes of defor-
mations. Guided by the analytical results reminded above,
we choose them to be a cylindrical Euler like mode (E), a
bump mode (+) symmetric with respect to x 7→ −x and
an antisymmetric bump mode (−). The following form of
the deflection was imposed:

ζ(x, y) = vE cos2 π x

2 b
+ v+ cos2 π x

2 b
cos(k+ y) (2)

. . . +v−

(
2 sin

π x

b
+ sin

2 π x
b

)
cos(k− y),

in agreement with the clamping conditions on the edges:
ζ = ∂ζ/∂x = 0 at x = ±b. Equation (2) includes 5 trial
parameters (3 amplitudes v. and 2 wavenumbers k±). The
Airy potential was found in terms of these 5 parameters
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Fig. 3. Experimental set-up made up of a 30×30 cm2 wide sub-
strate (a) compressed along orthogonal directions using four
screws (b), of four dial indicators (c) showing the imposed
strain and of two rulers (d) screwed on the substrate, onto
which the strip (e) is glued.

by solving (1b), and the elastic energy was then calculated
by combining χ and ζ. Minimization of this energy with
respect to the 5 trial parameters was finally carried out.
Resonances involving the symmetric and antisymmetric
modes (±) were treated separately.

By varying the compressions (σt, σ`), we obtained var-
ious buckling modes separated by bifurcations (thick lines
in Fig. 2). These buckling modes are characterized by the
set S = {i ∈ {E,+,−} | vi 6= 0} of indices of nonvanishing
coefficients in equation (2): S = {E} corresponds to Eu-
ler buckling (E), S = {+} to bumps (B), S = {E,−} to
worms (W), S = {} to the planar, unbuckled configura-
tion (P). Oblique bumps (OB) are a resonant combination
of the symmetric and antisymmetric modes: S = {+,−}
and k+ = k−.

The experimental setup, shown in Figure 3, is de-
signed to induce an homogeneous, biaxial compression in
a polycarbonate strip. This is achieved by binding the
strip to a thick 30 × 30 × 1 cm3 PVC block squeezed
along two orthogonal directions independently (perpen-
dicular and parallel to the film length) using screws. The
strip is 295 mm long, 2 cm wide and 0.1 mm thick. It
is not bound directly to the substrate but, instead, glued
to small PVC rulers that are themselves screwed onto the
substrate (Fig. 3, bottom). These rulers permit to trans-
mit substrate compression to the strip while keeping it at
a distance from the substrate so as to allow it to freely
buckle. The substrate is chosen thick enough so as not to
buckle during the experiment and to remain unperturbed
by the film or the rulers: it acts as a reservoir of strain. It
is moreover sucked downwards in such a way that is does
not lift off the base at large in-plane compressions.

The main difficulty in this experiment comes from
the presence of a small parameter, the film aspect ra-
tio h/2b = 5 × 10−3, that enhances imperfections of the
setup [14]. In-plane displacements of the film edge as small
as [2 b× σE/E] ≈ [2 b (h/b)2] ≈ 2 µm induce film stresses
of order σE, i.e. are large enough to make the film buckle.
This makes the setup extremely sensitive to mechanical

(P)

(E)

(B)

(W)

(OB)

Fig. 4. Experimental buckling patterns identified from the dis-
tortion of a grid reflected on the strip surface (observed strip
size is 20× 150 mm2): (P) initial level of distortion in the ab-
sence of buckling, (E) Euler column revealed by the separation
of the longitudinal stripes, (B) bumps revealed by a symmetric
distortion, (W) worms, (OB) oblique bumps.

gaps (e.g. between base and substrate) and to the quality
of the ruler-film binding. Still because of the small pa-
rameter h/b, temperature variations of only 2 K induce
thermal stresses of order σE: the setup had to be put in a
temperature controlled box.

The applied stresses (σt, σ`) were deduced from the
compression-induced shortening of the substrate, mea-
sured by four indicators with micrometric accuracy. Ex-
perimental accuracy is assessed as follow. The amplitude
of the mechanical gaps is estimated from the hysteresis
in the output of the indicators following a typical, large
cycle of loading: about 2 µm. The quality of the initial
state of the strip is estimated from the slight distortions
in the snapshot labeled ‘P’ in Figure 4: they amount to an
initial unwanted stress of order (but not larger than) σE.
This gives rise to overall errors of the order σE on (σt, σ`).
This systematic error is acceptable since experiments are
meant to explore the strongly nonlinear regime.

The buckling structure of the strip was determined
from the distortions of the image of a grid reflected on the
strip surface. The observed patterns, shown in Figure 4,
remarkably coincide with those predicted by the theory.
In particular, the existence of a (resonant) oblique bump
mode (OB) was confirmed. Near the transitions, pattern
identification was improved by performing image differ-
ences (Moiré effect). The experimental phase diagram is
reported in Figure 5. Observations are limited to an angu-
lar sector due to the Poisson ratio of the film [13] and the
sampling interval between measurements is 2σE, i.e. twice
the experimental accuracy. Bistability, denoted using twin
symbols, corresponds to the observation of either oblique
bumps or worms depending on the loading history or on
external perturbations.

Discrepancies between theory and experiments can
arise from: (i) mechanical gaps amplified by the small
factor h/b, as discussed above; (ii) the nonzero deforma-
tion threshold needed for pattern identification; (iii) the
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Fig. 5. Experimental phase diagram: observation of the pat-
terns in Figure 4 is reported using symbols. Legend is otherwise
as in Figure 2. Note the bistability region with both oblique
bumps and worms. Comparison with the theoretical phase di-
agram (Fig. 2) involves no adjustable parameter.

finite strip length, which, by inhibiting potentially unsta-
ble wavenumbers k± stabilizes the planar state; (iv) mul-
tistability. Factors (i–iii) contribute to an overall experi-
mental error of order σE (one unit in the diagrams): the
P domain is enlarged in the experimental diagram com-
pared to the theoretical one by (i) and (iii), and an overall
offset of the experimental diagram toward higher stresses
is induced by (i). Multistabilty (iv) is an actual feature
of the system, and is not due to a limited experimental
accuracy. It has been observed both experimentally and
numerically.

Despite the above difficulties, one obtains a good over-
all agreement between the experimental and theoretical
diagrams. In particular, the relative positioning of the var-
ious patterns is identical (Figs. 2 and 5). Such an agree-
ment is remarkable given that strongly nonlinear regimes
(σt,`/σE ∼ 20) are being investigated. We should also em-
phasize that, in a multistable system as this one, com-
parison of the location of the transition lines does not
necessarily make sense, because experimental transitions
are triggered by perturbations that are difficult to control.
The overall shape of the diagram is therefore more rele-
vant than the precise location of the bifurcations. For in-
stance, the observed worm domain W in Figure 5 is wider
than expected from a mere minimization of energy (thick
lines in Fig. 2); the essential point, however, is that is
lies within the region of metastability predicted by theory
(grey sector in Fig. 2).

This phase diagram of a compressed elastic strip pro-
vides a new understanding of the telephone cord (also
called worm like) patterns observed in thin-films blister-
ing. At large, isotropic compressions (σt = σ`), as in tem-
perature driven delamination, the diagram exhibits two
equilibrium configurations (Figs. 2 and 5): oblique bumps
(OB) and worm (W). The former, OB, has a slightly lower
energy but is forbidden in delamination, as it violates

the condition of non-interpenetrability with the substrate,
ζ > 0 [15]. Telephone cord patterns therefore emerge from
the present analysis as a mean to minimize the elastic
energy of the film. Such a variational selection accounts
for the existence of worm like patterns, whose origin has
remained rather obscure since they were first observed al-
most 40 years ago [6].

In addition, it has recently been reported [16] that
worm like or straight patterns can be reversibly trans-
formed into varicose ones by tuning transverse compres-
sion; this can be understood from the presence of bumps
(B) and worms (W) besides oblique bumps (OB) in the
upper part of diagram.

We have investigated the secondary buckling patterns
of a long rectangular elastic plate submitted to biaxial in-
plane compression. The instability domains, the marginal
stability lines and the domains of multistability have been
characterized by nonlinear theoretical analysis, numeri-
cal Galerkin method and a model experiment. Altogether,
these analyses revealed a remarkably complex phase di-
agram for such a simple system. Incidentally, at large
isotropic compressions and for an impenetrable substrate,
the energy of the film was shown to be best released by
worm like patterns. This provides a simple selection mech-
anism for the telephone cord blisters observed in thin film
delamination.

We are very grateful to Yves Pomeau for stimulating discus-
sions.
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