
The shapes of a suspended curly hair

J.T. Miller1, A. Lazarus2, B. Audoly3, and P.M. Reis1,2,∗
1Dept. of Civil & Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

2Dept. of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
3Institut Jean le Rond d’Alembert, CNRS and UPMC Université Paris 06, Paris, France
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We investigate how natural curvature affects the configuration of a thin elastic rod suspended
under its own weight, as when a single strand of hair hangs under gravity. We combine precision
desktop experiments, numerics, and theoretical analysis to explore the equilibrium shapes set by the
coupled effects of elasticity, natural curvature, nonlinear geometry, and gravity. A phase diagram is
constructed in terms of the control parameters of the system, namely the dimensionless curvature
and weight, where we identify three distinct regions: planar curls, localized helices and global helices.
We analyze the stability of planar configurations, and describe the localization of helical patterns
for long rods, near their free end. The observed shapes and their associated phase boundaries are
then rationalized based on the underlying physical ingredients.

Hairstyle has a marked effect on a person’s appear-
ance, for whom hair color, length, and curliness can all
be distinguishing characteristics. The bulk appearance of
a head of hair, in particular, is governed by the shape of
the individual strands and their collisions [1]. This topic
is of great importance to the computer animation indus-
try [2] to achieve visually realistic representations. Curly
hair can also be taken as an analogue for other instances
of naturally curved filamentary structures that abound
in nature and technology. These include DNA [3], plant
tendrils [4], pipes and cables [5], all of which can dis-
play similar behavior across widely different length scales.
Given their extreme slenderness, these rodlike structures
can undergo large rotations while remaining in the small
strain regime, and are amenable to a unified framework
that couples linear elasticity and nonlinear geometry. In
the absence of natural curvature, the nonlinear equilib-
rium equations for rods are integrable thanks to Kirch-
hoff’s analogy with the motion of a spinning top [6]. For
naturally curved rods, however, existing explicit solutions
are essentially limited to helices [7, 8], which require the
external load to be highly symmetric. We have recently
found that natural curvature can dramatically affect the
mechanical behavior of rods [9], both quantitatively and
qualitatively. There is therefore a need to develop a pre-
dictive framework that is applicable to naturally curved
rods subjected to a non-symmetric load, which can result
in spatially heterogeneous configurations.

Here, we explore the deceivingly simple problem of
predicting the shape of a naturally curved rod that is
clamped and suspended under its own weight, which
we take to be representative of a curly hair. To tackle
this, we perform a combination of precision model exper-
iments, simulations and theoretical analysis. In Fig. 1,
we present examples of five rods with increasing values
of their stress-free natural curvature, κn, but that are
otherwise identical in all other mechanical properties.
Our experimental fabrication protocol allows for a fine
control of κn, which we therefore take as an indepen-

dent control parameter. If the rod is naturally straight
(e.g. Fig. 1A for κn = 0) it hangs vertically. For small val-
ues of κn, the configurations are planar (e.g. Fig. 1B,C for
κn = 6 and 38m−1, respectively); the rods are straight
near their clamp but develop a curled hook near their
free end. As κn is progressively increased, this hook
looses stability and the rod acquires a non-planar three-
dimensional shape. A curl first localizes near the free end
(e.g. Fig. 1D for κn = 56m−1) and global helical config-
uration are obtained for high values of κn (e.g. Fig. 1E
for κn = 62m−1). We focus on rationalizing how these
shapes are set by the balance between elasticity, geome-
try, and gravity. Our approach is complementary to [1],
where collisions within an ensemble of hair were treated
using a statistical mechanics approach to describe the
overall bulk shape of a ponytail. Taking an alternative
point of departure, we identify the transitions between
planar and non-planar shapes for an analogue of a single
curly and describe the non-planar shapes in detail.

In our experiments, we custom fabricate rods by in-
jecting Vinylpolysiloxane (VPS) into a flexible Polyvinyl
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FIG. 1. Equilibrium shapes of rods suspended under their
own weight: comparison of experiments and simulations. The
natural curvature, κn, is varied, while the length L = 20cm,
radius r = 1.55mm, elasticity parameters (E = 1290kPa, ν =
.5), and volumetric mass ρ = 1200kg/m3 are kept constant.
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chloride (PVC) tube, whose inner diameter sets the ra-
dius of the rod, r = 1.55mm. The PVC tube is wound
around a cylindrical object (or laid straight), which sets a
constant radius (or infinite) of curvature on the rod upon
subsequent curing and demolding [9]. Our fabrication
procedure allows for the precise control of the natural
curvature in the range 0 < κn [m−1] < 65, a parame-
ter that we vary systematically. The Young’s modulus
of the elastomer is measured to be E = 1290 ± 12kPa,
the Poisson ratio is ν ≈ 0.5 and the volumetric mass
is ρ = 1200kg/m3. Each experimental test consists of
mounting a single rod with suspended length in the range
1 < L [cm] < 20 onto a clamp that is aligned vertically.
The rod is then suspended under its own weight and
allowed to reach static equilibrium, as shown in Fig. 1
(green configurations). Three-dimensional reconstruc-
tion of the rods are produced by taking digital images
from two perpendicularly directions and performing im-
age processing to obtain their centerlines.

We also perform numerical simulations, representative
examples of which are presented in Fig. 1 (red configu-
rations), where all parameters match those of the exper-
iments. Good agreement is found throughout between
the two. The simulations compute the equilibria of an
inextensible three-dimensional Elastica subjected to its
own distributed weight, and account for both bending
and twisting. The numerical method was developed us-
ing the continuation software package MANlab [10] and
is described in detail in [9].

Our first quantitative test is provided by comparing
the experimentally measured and simulated vertical el-
evation of the tip, h, between the clamp and the free
end of the rod. In Fig. 2 we plot h as a function of the
total arc length, L, for three values of the natural curva-
ture, κn. Quantitative agreement is found between ex-
periments (data points) and simulations (solid lines). For
the two lowest values of κn = 16.6 and 38 m−1, the config-
urations are planar for all lengths tested and h decreases
monotonically with L. For κn = 56.2m−1, however, pla-
nar shapes are observed for L . 0.1 m, see Fig. 2F,G,
but non-planar ones are observed for L & 0.1 m, see
Fig. 2H,I.

With the aim of rationalizing the behavior observed
in both the experiments and simulations, we use an in-
extensible rod model with natural curvature [11]. All
lengths are rescaled by the natural radius of curvature,
κ−1n . For example, s = sκn denotes the rescaled arc
length, 0 ≤ s ≤ L, with its origin at the free end, s = 0.
The dimensionless length, L = κn L, offers a measure of
the rod’s curliness. All energies are rescaled by B κn,
where B = E I and I = π r4/4 are the bending stiffness
and area moment of inertia of the rod, respectively.

The configurations are defined in terms of the posi-
tion of its centerline, r(s), and an orthonormal direc-
tor basis, (d1(s),d2(s),d3(s)), subjected to the condi-
tion r′ = d3, with primes denoting derivation with re-
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FIG. 2. Vertical elevation of the tip, h, vs. arc length
of the rod, L, for three different natural curvatures, κn =
(16.6, 38.0, 56.2) m−1; experiments (circles) and simulations
(solid lines). For κn = 56.2m−1, the configurations F and G
are planar while the configurations H and I are non-planar.

spect to the rescaled arc length, s. The Cartesian ba-
sis, ei, is chosen such that the clamping condition writes
r(L) = 0 and (d1,d2,d3)s=L = (ey,−ex, ez). The ma-
terial curvatures, κ1 and κ2, and twist, κ3, are defined
by κi = 1

2εijk d
′
j · dk, where εijk is the skew-symmetric

permutation tensor, εijk = (ei×ej)·ek. The total energy
of the rod is then written as,

E =

∫ L

0

(
1

2

[
(κ1 − 1)2 + κ2

2 + C κ3
2
]
− w s cosβ

)
ds,

(1)
where C is the ratio between the twisting and bending
moduli and w = w

B κ3
n

is the dimensionless weight. The

weight per unit length for a rod with circular cross section
is w = ρ π r2 g in physical units, g being the acceleration
of gravity. We set C(ν) = (1 + ν)−1 = 2/3 since our
rods are cylindrical and ν ≈ 0.5. Finally, β is the an-
gle between the tangent, d3, and the vertical, such that
cosβ = d3 · ez, as illustrated in the schematic of Fig. 2.
The first term in the integrand of Eq. (1) represents the
strain energy and 1

2 (κ1 − 1)2 considers the natural cur-
vature, which is unity in this dimensionless description.
The second term in the integrand corresponds to the
gravitational potential energy. The control parameters
the curly rods are therefore their dimensionless length,
L, and weight, w..

Our simulations compute the stationary points of the
energy in Eq. (1) for fixed values of L and w. In
Fig. 3, we present the phase diagram of the system in
the (L,w) parameter space, which is explored systemat-
ically. The numerical results (shaded regions) were ob-
tained by simulating 11,110 equilibrium shapes within
the following ranges of physical properties: Young’s mod-
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FIG. 3. Phase diagram for the rod configurations: pla-
nar (2D) and non-planar (3D, global and localized helices).
Each experimental datapoint is plotted on the (L,w) space,
whereas only the phase boundaries are shown for the nu-
merics. Theoretical curves for the planar-to-localized and
localized-to-global transitions are superposed on the data.
Three experimental reconstructions are shown as insets: J –
planar (blue, κn = 49.5m−1, L = 10cm), K – localized helix
(red, κn = 49.5m−1, L = 40cm), and L – global helix (green,
κn = 62.3m−1, L = 20cm).

ulus 96 < E [kPa] < 9600, length 5 < L [cm] < 50,
and natural curvature 0 < κn [m−1] < 100. For a di-
rect comparison, in Fig. 3 we also superpose the results
of 170 experiments in the ranges 0 < L [cm] < 52 and
0 < κn [m−1] < 65, while keeping E = 1290 kPa con-
stant.

The shapes can be classified as i) planar, ii) non-planar
localized helical, and iii) non-planar global helical, repre-
sentative examples of which are presented in Fig. 3J,K,L,
respectively. The localized helices, in particular, consist
of a helical portion near the free end, underneath a verti-
cal and straight section closer to the clamp (our threshold
for a straight section is β ≤ 1.5◦). Moreover, a configu-
ration is assumed to be a localized helix if the arc length
of the helical portion is less that 95% of the total rod
length and a global helix, otherwise. Using this classifi-
cation protocol, the numerical and experimental config-
urations consistently map onto the same regions of the
phase diagram. We now seek to rationalize the bound-
aries between these regions.

The planar (2D) configurations of the suspended rod
(e.g. Fig. 2F,G) can be recovered as a particular case of
our general 3D model by setting κ1 = β′ and κ2 = κ3 =
0. These shapes have been solved analytically in [11] for

various limits of L and w. Here, we calculated them nu-
merically by solving the nonlinear boundary-value prob-
lem for β(s). Moreover, we have numerically computed
their linear stability with respect to out-of-plane buck-
ling, as a function of the parameters w and L. The re-
sulting curve of marginal stability has two asymptotes for
L� 1. The first corresponds to planar shapes consisting
of a long, vertical tail connected to a hook near the free
end. These configurations loose stability when the free
end of the hook rises high enough to cause an overturn-
ing moment (e.g. Fig. 1C). The corresponding buckling
mode is localized near the free end and, as a result, the
threshold wc is independent of L, for L� 1. A detailed
analysis yields wc = 0.2391 (for L = ∞ and ν = 0.5).
This predicted boundary (thin vertical line between blue
and red regions in Fig. 3) is in excellent agreement with
both the experiments and the simulations. The second
asymptote for the transition between 2D and global he-

lical (3D) shapes, wc ∼ L
−2

, corresponds to the loss of
stability of highly curved and stiff rods that make multi-
ple turns in their 2D configuration. These, however, do
not have a direct counterpart in the experiments since
self-contact is not taken into account in our model.

Having been able to predict the 2D-to-3D transition,
we now focus on characterizing the helical configura-
tions, with particular emphasis on long and curly rods,
L� 1. Since tension varies along the rod due to the dis-
tributed weight, the properties of the helices also evolve
with arc length. Inspired by previous analyses of he-
lices subjected to constant tension [8], we analyze these
shapes assuming that the director d2 is perpendicular to
the applied force (weight), such that d2 · ez ≈ 0 (this
approximation is justified in the Supplementary Infor-
mation for a slowly varying tension). These configu-
rations can be parameterized by the two Euler angles,
β(s) and γ(s) (shown schematically in Fig. 4), as: d1 =
cosβ (− sin γ ex + cos γ ey) + sinβ ez, d2 = − cos γ ex −
sin γ ey and d3 = − sinβ (− sin γ ex+cos γ ey)+cosβ ez.
When the corresponding strains, κ1 = γ′ sinβ, κ2 = −β′
and κ3 = γ′ cosβ, are inserted into the expression for
the total energy in Eq. (1), we find that E , depends on γ′

but not on γ, as a consequence of the cylindrical invari-
ance about ez. Optimizing the resulting E with respect
to γ′ yields γ′ = κn sin β

sin2 β+C cos2 β
and, after eliminating γ′,

we obtain a reduced expression for the energy of helical
shapes,

E3D =

∫ L

0

(
f(w s, β(s)) +

1

2
β′(s)2

)
ds, (2)

where f(u, β) = 1
2

(
1 + tan2 β

C

)−1
−u cosβ. The equilib-

rium configurations are stationary points of this energy
with respect to β(s). To compute them, we first intro-
duce a local helix approximation, which we later refine
by an inner layer theory.
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In Fig. 4 we quantify a representative example of a lo-
calized curl in the limit of L� 1 by measuring β(s) from
both the 3D experimental reconstructions and the numer-
ical configurations, finding good agreement between the
two. The rod is straight near the clamp, β ≈ 0, while β
increases in an oscillatory manner towards the free end at
s = 0. To analyze these localized shapes, we first assume
that β(s) varies slowly with s, implying that the squared
derivative in Eq. (2) can be neglected. We refer to this
as the Local Helix approximation (LH). The minimum
energy is obtained by locally optimizing f with respect
to β: ∂f/∂β = 0. We recover the equation for the helical
solutions of a spring subjected to constant tension [8].
It is known that the solution β of this implicit equation
undergoes a pitchfork (symmetry-breaking) bifurcation
as w s is varied (purple curve in Fig. 4). The straight,
vertical configuration, β = 0, is always an extremum
of f , but it is unstable beyond s∗LH = (wC)−1, where

∂2f/∂β2 = w s − C−1 becomes negative. For s ≥ s∗LH,
the upper part of the rod is subjected to a sufficiently
large tension due to the weight of the portion under-
neath, causing it to remain vertical. On the other hand,
for 0 ≤ s ≤ s∗LH, the tension is low and the optimum value
of β is non-zero resulting in a helical configuration. This
prediction captures the overall shape shape of the rod
(purple curve in Fig. 4): the LH approximation agrees
qualitatively with simulations and experiments even if it
does not work well near the transition point, s = s∗LH,
nor near the free end, s = 0.

In the vicinity of the transition point s = s∗LH, the
LH approximation fails because β varies quickly (see
Fig. 4). Taking an alternative approach to the LH
above, we study this region using an Inner Layer (IL)
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FIG. 4. A localized helical configuration as quantified by the
angle from vertical, β(s), for L = 19.8 and w = 0.12. Experi-
mental and numerical results are compared to the predictions
from the Local Helix (LH) and Inner Layer (IL) approxima-
tions described in the text. The arrows show the predicted
position of the transition point for each approximation.

approximation. The derivative β′(s) is now restored in
Eq. (2), and f is expanded near s∗LH for small β as f ≈
f0 + 1

2 f2 β
2 + 1

24 f4 β
4, where f2 = ∂2f/∂β2 = w (s−s∗),

and f4 = ∂4f/∂β4 = 3 4−3C
C

2 . Dropping terms that are

independent of β, we then have to minimize the func-

tional
∫ (w (s−s∗)

2 β2 + f4
24 β

4 + 1
2β
′2
)

ds within the inner

layer. By the change of variable S = s−s∗
w−1/3 and unknown

B(S) =
√

f4
12 w

−1/3 β(s), the above functional be rewrit-

ten as 1
2

∫
(S B2+B4+B′

2
) dS. The Euler-Lagrange con-

dition of optimum yields the second Painlevé equation,
B′′(S) = S B(S) + 2B3(S). Interestingly, this equation
arises in domains such as nonlinear optics, Bose-Einstein
condensation and random matrix theory [12]. It has a
unique solution BHML(S) connecting the symmetric so-
lution B → 0 for S → +∞, to the bifurcated solution
B ∼

√
−S/2 for S → −∞, known as the Hastings-

McLeod solution [13]. In terms of the original variables,
the solution reads,

βIL(s) =
2C w1/3√

4− 3C
BHML

(
s− s∗LH
w−1/3

)
. (3)

This inner layer solution successfully describes the
smooth transition between the helical and straight por-
tions of rod near s∗LH , as shown in Fig. 4.

Returning to the phase diagram of Fig. 3, we can now
predict the transition from the localized to global heli-
cal configurations. With the same localization criterion
used above, this phase boundary is expected to occur
for βIL(.95L) = 1.5◦ (thick grey curve in Fig. 3): this
is in excellent agreement with the numerical and ex-
perimental results when the inner layer is indeed small
(L� 1, w � 1). This, combined with our results above
for the 2D-to-3D transition where a planar configuration
becomes unstable, completes our rationalization of the
phase diagram of Fig. 3.

Beyond a predictive description of the aesthetics of
curly hair, our results can be directly applicable to a
variety of engineering systems such as naturally curved
fibers, wires, cables and pipes. All of these rod-like struc-
tures are often manufactured, stored and transported
in spooled configurations, thereby imparting an intrin-
sic curvature, which can now be readily quantified using
our framework as an inverse problem.
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