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Abstract

We study the buckling of a compressed thin elastic film bonded to a compliant sub-
strate. An asymptotic solution of the equations for a plate on an elastic foundation
is obtained in the limit of large residual stress in the film. In this limit, the film’s
shape is given by a popular origami folding, the Miura-ori, and is composed of par-
allelograms connected by dihedral folds. This asymptotic solution corresponds to
the herringbone patterns reported previously in experiments: the crests and valleys
of the pattern define a set of parallel, sawtooth-like curves. The kink angle obtained
when observing these crests and valleys from above are shown to be right angles
under equi-biaxial loading, in agreement with the experiments. The absolute min-
imum of energy corresponds to a pattern with very slender parallelograms; in the
experiments, the wavelength is instead selected by the history of applied load.

Key words: Buckling, Plates, Thermal stress, Asymptotic analysis, Energy
methods

1 Introduction

The buckling of multi-layered materials is relevant to the formation of wrin-
kles in human skin, to the templating and assembly of materials (see e. g.
Genzer and Groenewold, 2006, for a review), and to the design of sandwich
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panels (Allen, 1969). A thin metallic film deposited on an elastomer provides
a simple multi-layer geometry investigated experimentally by Bowden et al.
(1998); Huck et al. (2000); Yoo et al. (2002). When the system cools down
after deposition, compressive residual stress is induced in the film by the large
thermal expansion coefficient of the substrate, relative to that of the film. This
residual stress can lead to film buckling into straight wrinkles (Bowden et al.,
1998), observable as a set of parallel stripes, especially near defects or bound-
aries. Here we focus on the herringbone patterns, also known as chevrons;
the crests and valleys of the herringbone follow zigzag paths. Herringbone
patterns are observed at moderate to large residual stress, as shown in the
pictures in Chen and Hutchinson (2004) after Bowden et al. (1998); Huck
et al. (2000). Numerical simulations of these patterns have been performed by
Chen and Hutchinson (2004) and Huang et al. (2005).

In the first companion paper (Audoly and Boudaoud, 2007a), we investigated
the stability of straight wrinkles, also called straight stripes, and showed that
the they become unstable towards undulating stripes by a secondary insta-
bility. In the second companion paper (Audoly and Boudaoud, 2007b), we
solved a simplified buckling model and found that the undulating stripes
evolve smoothly towards a pattern similar to herringbones under increasing
load; these approximate solutions feature sharp folds along crests and valleys,
like herringbones, but these crests and valleys have sinusoidal shapes instead
of zigzag ones. The goal of the present paper is to show that this approxi-
mate solution, applicable to arbitrary loads, can be improved in the case of
large load by an asymptotic solution of the full equations for plates on an
elastic foundation, with no approximation. This exact solution describes her-
ringbone patterns, with zigzag folds, in agreement with former experiments
and numerical simulations reported in the literature.

Our solution is inspired by the similarity of the herringbone pattern with
origami folding of a piece of paper, as first described by Miura (1980). The
relevance of Miura-ori folding to herringbone buckling has been alluded to
by Chen and Hutchinson (2004); Mahadevan and Rica (2005) but has not
been exploited so far. Here, we construct minimizers of the energy of the
system at large buckling parameter; these minimizers are based on the Miura-
ori construction, which provides a family of developable shapes. We derive the
energy and geometrical properties of these solutions. A similar technique for
building solutions in the limit of a large parameter, by asymptotic analysis,
has been used by Choksi et al. (1999); Conti (2000) for ferromagnetic materials
and by Pomeau and Rica (1997); Jin and Sternberg (2001) for the compression
of free standing elastic plates. Applications of these methods to the theory of
elastic shells are reviewed in the book by Libai and Simmonds (1998).

This series of papers addresses the buckling of an elastic plate on an elastic
foundation. In this paper, we focus on the limit of large residual stress in
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Fig. 1. Geometry of the problem and notations.

the film. In Section 2, we recall the formulation of the problem given in the
companion papers. In Section 3, we discuss the case of developable solutions
having curvilinear ridges, like those obtained in the second companion pa-
per (Audoly and Boudaoud, 2007b), and show that their energy is minimized
by going to zigzag ridges. The main results are presented in Section 4, where
we investigate in detail developable solutions comprising zigzag crests and val-
leys connected by piecewise straight ridges, as in the popular origami folding
due to Miura (Miura-ori).

2 Formulation

The film is assumed to be infinitely long in its two in-plane directions, x and y.
We start by writing the elastic energy of the system per unit area; we remain
in the framework of Hookean elasticity and assume a linearly elastic response
— although some geometric nonlinearities will be considered for the plate.
The film is loaded with a biaxial, uniform differential strain. We consider the
case of compressive residual stress in the film, for which the planar configu-
ration is potentially unstable by buckling. We do not consider delamination:
buckling can occur without delamination when the film is much stiffer than
the substrate. The film is described by the Föppl–von Kármán equations for
plates undergoing moderate deflections (Timoshenko and Gere, 1961). The
foundation is assumed to be an infinitely deep solid with a linear response.

2.1 Film

Let E, ν and h be Young’s modulus E, Poisson’s ratio and thickness of the
film. The film is loaded with a compressive differential strain ηx, ηy, the x and
y directions being chosen as the principal directions of this strain (see Fig. 1
for the geometry and notations). The loading parameters ηx and ηy, assumed
to be homogeneous along the film, are taken positive in the case which we
consider, namely when the film is in compression. The residual stress in the
film is related to this differential strain by the constitutive relations for plane
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stress elasticity:

σ0
xx = −E (ηx + ν ηy)

1 − ν2
and σ0

yy = −E (ν ηx + ηy)

1 − ν2
. (1)

When film buckles so as to relax this residual stress, the in-plane strain (in
actual configuration) is given by

εxx = −ηx +
∂u

∂x
+

1

2

(
∂w

∂x

)2

, (2a)

εxy =
1

2

(
∂u

∂y
+

∂v

∂x
+

∂w

∂x

∂w

∂y

)
, (2b)

εyy = −ηy +
∂v

∂y
+

1

2

(
∂w

∂y

)2

. (2c)

This strain tensor uses the planar, stress-free configuration of the film as a
reference. Here u(x, y) and v(x, y) are the two components of the in-plane
displacements, along x and y respectively, and w(x, t) is the out-of-plane dis-
placement (deflection). Using the classical approximations of the Föppl-von
Kàrmàn plate theory, nonlinearities in the in-plane displacement (u, v) have
been neglected, although those involving the deflection w are retained.

The detailed formulation for the elastic energy of the film can be found in the
companion papers (Audoly and Boudaoud, 2007a,b). Here we will only use
the decomposition of the film energy into a stretching part Efs and bending
one Efb,

Ef = Efs + Efb. (3)

All energies noted with the letter E are counted per unit area, unlike those
written with the letter U . The stretching modulus is proportional to Eh while
the bending one is proportional to Eh3: the bending stiffness goes to zero
much faster in the limit of a small thickness h, which we consider here. This
property can be used for asymptotic analyses (see e.g. Ben Amar and Pomeau,
1997; Lobkovsky, 1996; Pomeau and Rica, 1997; Jin and Sternberg, 2001).

2.2 Substrate

The elastic foundation, which fills the half-space z < 0 in the undeformed
configuration, has Young’s modulus Es and Poisson’s ratio νs. Introducing the
Fourier transform of the film deflection,

ŵ(kx, ky) =
∫

dx dy w(x, y) exp[−i(kxx + kyy)], (4)
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the energy of the substrate, which has a linear response by assumption, can
be written as

Es =
1

Lx Ly

∫
dkx dky E∗

s

√
k2

x + k2
y ŵ(kx, ky)ŵ(−kx,−ky). (5)

It depends on the effective modulus E∗
s , which is Young’s modulus Es mul-

tiplied by a function of Poisson’s ratio νs, as explained in the companion
paper (Audoly and Boudaoud, 2007a):

E∗
s =

Es (1 − νs)

(1 + νs) (3 − 4νs)
. (6)

2.3 Optimization problem

The goal of the paper is to derive equilibrium solutions describing buckled
states. This involves minimizing the total energy, which is the sum of the film
and substrate energies:

Et({u, v, w}) = Es({w}) + Ef({u, v, w}). (7)

Here, curly braces mean that the energy is a function, i. e. depends on the
values of the functions u(x, y), vx(, y) and w(x, y) over the entire domain. The
energy has to be minimized with respect to these three components

(u(x, y), v(x, y), w(x, y))

of the film displacement, at fixed material parameters and differential strain
(ηx, ηy).

3 Developable solutions with ridges

In this paper, we consider the limit of a large buckling parameter ηx � 1 and
ηy � 1. Then, the out-of-plane displacement is many times the thickness of
the film. In this limit, the bending energy of the film becomes much smaller
than that of stretching, because the stretching stiffness becomes comparatively
very large. As a consequence, the film attempts to relax stretching and the
optimal shape has a vanishing strain tensor εαβ (by convention, Greek indices
run over the in-plane directions, x and y). Then, the center surface is called 1

developable (Spivak, 1979). More accurately, the solution is developable almost

1 More accurately, the displacement defines an isometric embedding. This is what
we mean in the following by ‘developable’.
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everywhere, except along internal ‘boundary layers’ which form a network of
ridges and conical points (Lobkovsky, 1996; Ben Amar and Pomeau, 1997). As
a matter of fact, we have already encountered developable solutions in the limit
of a large load (Audoly and Boudaoud, 2007b): using an simplified buckling
model, we showed in the companion paper that the film profile converges to
developable shapes comprising ridges.

3.1 Film deflection

We seek solutions to the equations for a stiff film on an elastic foundation in
the form of periodic, developable surfaces. A classical result in the differential
geometry of surfaces is that developable surfaces are always ruled, i. e. are
spanned by straight lines called generatrices (Spivak, 1979) — however, not
all ruled surfaces are developable. The cylindrical pattern (straight stripes)
shown in Fig. 2a is a ruled surface (the generatrices of which are all parallel).
However, these generatrices are also parallel to the mean plane of the film and,
as a result, this pattern does not relax residual compression in the direction of
the stripes: it is not developable in the sense that it does not satisfy εαβ = 0 for
α, β = x, y. Indeed, a necessary condition for a film profile to be developable
(εαβ = 0) can be derived by averaging equation (2c) over the film area

ηy =
1

2

〈(
∂w

∂y

)2〉
, (8)

where 〈·〉 denotes an average. To derive the equation above, we have used
〈v〉 = 0 since v(x, y) is a bounded function, and the film dimensions are
infinite. Equation (8) shows that if a generatrix of the film lies above a line
in the plane (Oxy) parallel to the direction y, this generatrix has to be tilted
with respect to the plane (x, y), that is ∂w/∂y �= 0, in order to relax the
initial longitudinal strain ηy �= 0 — this property can easily be extended to
generatrices having an arbitrary orientation, not necessarily parallel with the
y axis when projected in plane.

Therefore, developable surfaces comprise tilted generatrices. On the other
hand, the film is bonded to the substrate and the deflection w(x, y) has to
remain bounded — otherwise, the energy of the substrate would be infinite.
This shows that the limit shape of the film, which is developable, cannot re-
main smooth: the straight generatrices cannot be tilted with respect to the
plane (Oxy) while remaining at a finite distance from it. More specifically, this
suggests the geometrical construction in Fig. 2, whereby a cylindrical profile,
initially tilted with respect to the mean plane of the film, undergoes repeated
mirror symmetries and is patched to form a periodic, developable surface with
curvilinear ridges. This pattern is enclosed between two planes P+ and P−
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Fig. 2. Examples of developable surfaces representing film under large differential
strain. (a) When the generatrices are parallel to the mean surface of the substrate,
residual stress along the generatrices cannot be well relaxed. (b) When generatrices
are tilted, repeated mirror symmetries allow the film to remain at a finite distance
from the plane (Oxy). These symmetries create curvilinear ridges in general. (c)
Particular case of a Miura-ori (piecewise straight ridges), studied in Section 4, ob-
tained when the original cylindrical profile in (a) is generated by a sawtooth curve.

parallel to the mean plane of the film. Every other ridge lies in one of these
planes. This construction defines a family of film shapes that are investigated
in the rest of this paper.

Note that any surface similar to the one obtained in Fig. 2b3 belongs to the
quasi-one-dimensional class introduced in the simplified model of the compan-
ion paper (Audoly and Boudaoud, 2007b),

Q = {w(x, y) | w(x, y) = f(x − g(y))} , (9)

where f(x) defines the film profile in a planar section, taken perpendicular to
the mean direction of the crests and valleys (f(x) is a sawtooth function in
the present case), whereas g(y) defines the profile of a crest or a valley along
the plane P+ or P− (this defines is another sawtooth function). It is not a
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coincidence that Miura-ori pattern belong to the class Q, as this class, intro-
duced in the second paper, has been inspired by the results of the forthcoming
Section 4 (with some anticipation).

Our goal is now to derive solutions of the equations given in Section 2 in
the limit of large residual compression, based on the above construction. The
developable surface just constructed makes the stretching energy of the film,
in equation (3), vanish. However, the curvature diverges at the ridges and
the bending energy is infinite there. This points to the existence of internal
‘boundary layers’ along the ridges. Such boundary layers were investigated by
Pogorelov (1988) in the case of curvilinear ridges, and by Lobkovsky (1996) in
the case of straight ridges. It was shown that straight ridges have in general a
significantly lower energy than curvilinear ridges (see e.g. Pauchard and Rica,
1998) and we shall therefore start by comparing the energy of the two types
of ridges in our system.

3.2 Smooth curvilinear ridges

We start by deriving the energy of the system when the ridges are curvilinear,
as in Fig. 2b3. We shall only need to estimate the order of magnitude of this
energy as a function of the various parameters, and compare it to that for
straight ridges: we drop prefactors of order unity in the present section and
in the next one. A detailed analysis of the optimal network of folds, with all
numerical factors included, is given in Section 4.

The film surface is periodic and is characterized by two wavelengths, one along
the crests and valleys, and the other one across them. We assume that these
two wavelengths are of the same order of magnitude λ, so that the area B of the
unit cell of the periodic surface is of order B ∼ λ×λ. We consider developable
surfaces, such that the strain εαβ vanishes. Then, by equation (8), the film
slope appears to be of order

√
η, where η is the order of magnitude of the

loading (ηx, ηy). As a result, the out-of-plane displacement can be estimated
as w̃ ∼ λ

√
η.

We proceed to estimate the energy of the film. Pogorelov (1988) derived the
energy of a curvilinear ridge having curvature κr(s) and dihedral angle 2α(s)
(the dihedral angle is defined as the arc cosine of the scalar products of the
unit normals on either side of the ridge), where s is the curvilinear coordinate
along the ridge:

Ucr =
ccr E h5/2

[12 (1 − ν2)]3/4

∫
κ1/2

r (s) α5/2(s) ds, (10)

where ccr ≈ 1.2 is a numerical prefactor.
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A unit cell of area B ∼ λ2 contains two curvilinear ridges. Each ridge undulates
with an amplitude of order λ and wavelength of order λ, hence a curvature
κr ∼ 1/λ. The integral in equation (10) involves a total curvilinear length∫

ds ∼ λ; the dihedral angle can be estimated as 2α ∼ w̃/λ ∼ √
η. With these

scalings, equation (10) yields the contribution of ridges to the film energy per
unit surface as

Ecr
f ∼ Ucr

B
∼ E h5/2 η5/4 λ−3/2. (11)

The energy of the elastic foundation (5) reads, for a typical wavenumber ∼ π/λ
and deflection w̃:

Es ∼ Es w̃2/λ ∼ Es λ η. (12)

The optimal wavelength of the pattern is obtained by minimizing the sum of
film energy (11) and substrate energy (12). At minimum, the two energies are
comparable. This yields, for the optimal wavelength:

λ ∼ C2/5 h η1/10 (13)

and for the total energy of the system:

Ecr
t ∼ E h C−3/5 η11/10, (14)

where C is the stiffness contrast of the film and substrate:

C =
E

Es

� 1, (15)

a large number by assumption.

In the analysis of the simplified model presented in the companion paper (Au-
doly and Boudaoud, 2007b), we found that the energy minimizers converge to
developable surfaces. However, we derived a scaling Eapprox

f ∼ Eh7/3η4/3λ−4/3

for the energy of the film that differs from the exact one in equation (11) by a
factor Eapprox

f /Ecr
f ∼ (w̃/h)1/6, which is a large number in the limit we consider

(large buckling number). Therefore, the curvilinear ridges investigated here
have a lower energy than those found in the approximate model — recall that
this model was based on the kinematical assumption Q defined in equation (9).
This is because the structure of the ridge predicted by Pogorelov (1988) is not
invariant along the ridge at small scales. For instance, the ridge width scales
as [h1/2 κ−1/2

r (s) α1/2], and so varies with s. As a result, the minimizers of the
full model satisfy the kinematical condition Q far away from the ridges (as
does the developable shape in Fig. 2b3), but not very close to them. This
discrepancy is not severe: the quasi-1D model overestimates the energy by a
factor (w̃/h)1/6 which grows very slowly with the buckling parameter, due to
the small exponent 1/6; for instance, when the deflection is three times the
film thickness, the quasi-1D model overestimates the energy by no more than
∼ 20 %.
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Fig. 3. Focusing of ridge curvature. (a) Smooth curvilinear ridges, as in Fig. 2b3.
(b) Focusing of curvature in a region of size γ much smaller than λ, leading to a
herringbone (zigzag) pattern as in Fig. 2c.

3.3 Optimization of ridge profile: zigzag ridges

In the previous section, we studied the case when the ridges have smooth,
rounded shapes, and the two wavelengths of the pattern and its amplitude are
all comparable, of order λ. In the present section, we show that the optimal
ridge shapes are in fact different: by focusing its curvature at sharp corners
separated by straight segments, a ridge is able to decrease its energy by a
large factor. As a result, the optimal ridge profiles are sawtooth-like, and not
smooth.

Let us consider how the ridge energy (10) changes when the ridge goes to the
sawtooth shape depicted in Fig. 3, right: the ridge profile is made of straight
parts of edges ∼ λ connected by vertices having a spatial extent ∼ γ, with
γ 	 λ. In this situation, the curvature κr along the ridge vanishes everywhere,
except at the angular points where it has a magnitude ∼ 1/γ. By equation (10),
the energy density associated with sawtooth-like ridges can then be estimated
as

Ucr

B
∼ (E h5/2) γ−1/2 (

√
η)5/2 γ

λ2
∼ (E h5/2 η

5/4 λ−3/2)
(

γ

λ

)1/2

.

In the first factor of the right-hand side, we have factored out the energy (11)
for smooth ridges. Because of the second factor, the film energy becomes
arbitrarily small when the curvature of the ridges focuses more and more
(γ/λ → 0). In fact, by adjusting the wavelength λ appropriately, it can be
shown that both the film and the substrate energy (12) can be sent to zero in
the limit γ/λ → 0. This means that it is always optimal for the film energy
to go from a smooth to a sawtooth-like ridge profile.

The present analysis, based on the theory of curvilinear ridges (Pogorelov,
1988), is not applicable to the straight part of the ridges, for which κr = 0 and
so Ucr = 0. It shows well that smooth ridges are not optimal (the energy is
minimized when γ → 0), but is unable to predict the small but nonzero value
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of γ at equilibrium. The analysis of the optimal pattern, with zigzag ridges,
has to be based on the solution of the plate equations for a straight ridge,
derived by Lobkovsky, and not on that for curvilinear ridges. This is the aim
of the next Section.

Note that the ridges of the simplified model derived in the second companion
paper do not feature curvature focusing: we have shown both analytically and
numerically that the function g(y) converges to a sinusoid in the limit of large
load (Audoly and Boudaoud, 2007b). This is again because the simplified
model is unable to capture the details of the ridge structure at small scale.
Despite this limitation, the simplified model is very useful as it provided a
detailed account of the evolution of the pattern from undulating stripes at
moderate strain to a piecewise smooth, periodic and developable surface at
high compression.

3.4 Network of straight ridges

The previous arguments show that, among the family of developable surfaces
introduced in Fig. 2, only those with straight ridges, such as in Fig. 2c, are
potentially equilibrium solutions. In the rest of this paper, we analyze such
solutions, called Miura-ori. We start by a scaling analysis of this pattern.

We consider film shapes given by Miura construction shown in Fig. 4, which is
a periodic polyhedron obtained by patching parallelograms along their edges.
The energy of a straight ridge depends only on its length � and on the dihedral
angle 2α between the neighboring facets (Lobkovsky et al., 1995; Lobkovsky,
1996):

Usr(�, α) =
csr E h8/3

[12 (1 − ν2)]5/6
�1/3 α7/3, (16)

where csr = 1.505 is a numerical prefactor, as computed by Audoly and
Pomeau (2008).

A unit cell of area B ∼ λ2 contains eight ridges of length � ∼ λ. The associated
dihedral angles scales as α ∼ √

η, as earlier in Section 3.2. The energy of the
film per unit surface then reads

E sr
f ∼ Usr

B
∼ E h8/3 λ−5/3 η7/6. (17)

Note that this energy is smaller than the energy of smooth curvilinear ridges,
given in equation (11), by a factor

E sr
f

Ecr
f

∼
(

h

w̃

)1/6

, (18)
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which is a very small number in the limit of a large buckling parameter, w̃ � h.
This confirms the argument of the previous section according to which straight
ridges have a lower energy than smooth curvilinear ridges.

Minimizing the sum of the film energy E sr
f in equation (17) and the substrate

energy Es in equation (12) leads to the following scaling law for the wavelength:

λ ∼ C3/8 η1/16 h, (19)

while the total energy (per unit surface) becomes

E sr
t ∼ E h C−5/8 η17/16. (20)

Having carried out the scaling analysis of the Miura-ori solution, we can now
proceed to a detailed analysis of this pattern, including all numerical factors
of order unity, which we have overlooked in a first approach.

4 Miura-ori solutions

In the present section, we extend the previous scaling analysis of a Miura-
ori pattern to a quantitative analysis, and derive the energy of the pattern
as a function of all the parameters of the problem. To do so, we first derive
a parameterization of the film surface (Section 4.1), and compute the film
energy based on a solution of the plate equations describing straight ridges
(Section 4.2), and the substrate energy by computing the Fourier transform
of the film profile (Section 4.3).

4.1 Film profile

At large buckling parameter, the film profile is a periodic developable surface
with straight ridges, similar to the popular Miura-ori pictured in Fig. 4. This
construction is made up of planar facets connected by straight ridges; it is
a three dimensional tiling of identical parallelograms of width a and length
b, with a skew angle θ. Before we give explicit formula for this profile, it is
convenient introduce the sawtooth function with period 2 as follows

S(t) =



−1 − t if −1 ≤ t ≤ −1/2,

t if −1/2 ≤ t ≤ 1/2,

1 − t, if 1/2 ≤ t ≤ 1,

(21)

extended by periodicity for all t by S(t + 2) = S(t)
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Fig. 4. Photographs of the Miura folding (Miura-ori) with a piece of paper. For any
geometry of the network of ridges, given by the lengths a and b and the angle θ, this
yields an articulated folded structure, parameterized by the transverse amplitude
A.
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Fig. 5. Sawtooth function S defined by equation (21).

This function is plotted in Fig. 5.

The profile of the Miura-ori folding is most easily found in two steps. The first
step is to remark that a section by a plane containing the x and z axes yields
the sawtooth profile just introduced, up to scaling factors:

W (x) = w(x, y = 0) = AS
(

x

b

)
, (22)

where A is the amplitude of the pattern. In a second step, one notices that
the surface is spanned by moving this 1D curve sideways along a zigzag path
parallel to the crests and valleys. Such a zigzag path has the equation x +
a tan θ

(
1
2

+ S
(

y
a
− 1

2

))
= C, where C is a constant. This yields the following

parameterization of the Miura-ori:

w(x, y) = W
(
x + a tan θ

(
1

2
+ S

(
y

a
− 1

2

)))
(23a)

= AS


x + a tan θ

(
1
2

+ S
(

y
a
− 1

2

))
b


 (23b)
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This is the Cartesian equation of the Miura-ori profile shown in Fig. 4, right,
with parameters a, b, θ, A.

We shall now work out the developability condition for a surface given by
equation (23b). As explained earlier, the stretching is penalizing in the limit
of large residual stress which we consider, and a necessary condition 2 for
the energy to be minimum is εαβ = 0. The in-plane displacement enters in
the expression for the in-plane strain, but can be removed by considering
the spatial averaging of Eqs. (2a-2c): the in-plane displacement u and v are
bounded and their derivatives are zero on average. This yields:

0 = −ηx +

〈
1

2

(
∂w

∂x

)2〉

0 = −ηy +

〈
1

2

(
∂w

∂y

)2〉
.

Here, the angular brackets stand for the spatial average of the quantity inside
over the entire domain (x, y). Plugging the Miura-ori profile defined by equa-
tion (23b) into the two equations above, we find the developability condition:

ηx =
1

2

(
A

b

)2

(24a)

ηy =
1

2

(
A tan θ

b

)2

. (24b)

These two equations relate some of the geometrical parameters, A, b and θ of
the folding construction to the imposed differential strain. They can be used
to eliminate A and θ:

A = b
√

2 ηx, tan θ =

(
ηy

ηx

)1/2

. (25)

Using these relations, we shall consider from now on that the pattern is pa-
rameterized by a and b. In the following, we optimize the construction with
respect to these main parameters, a and b.

Before we proceed, we note that the angle θ of the herringbone is given in
equation (25) in terms of the ratio of ηy/ηx of principal strain values where,
following our conventions, y denotes the average direction of the zigzag ridges
forming the crests and valleys, although x is the direction of the family of
ridges in the perpendicular direction, which go up and down. It can be easily

2 The film profile is developable everywhere except in a very narrow region around
of the folds. This effect, neglected here, would add a very small correction to the
developability condition (24).
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checked that equation (25) is a special case of the kinematic condition for
developable surfaces belonging to the quasi-one-dimensional class Q,

〈g′2〉 =
ηy

ηx

,

derived in the companion paper (Audoly and Boudaoud, 2007b). Indeed for
a sawtooth g(y), the slope is |g′| = tan θ. The angle θ of the zigzags in equa-
tion (25) can be reexpressed in terms of the principal residual stress (σ0

xx, σ
0
yy)

using equation (1):

tan2 θ = (1 − ν2)

(−σ0
xx

−σ0
yy

− ν

)−1

− ν (26)

In the particular case of equi-biaxial compression, that is for ηx=ηy, or equiv-
alently σ0

xx = σ0
yy, an important consequence of equation (25) is that

θ =
π

4
(for equi-biaxial differential strain).

This explains that the chevrons patterns make kinks at right angles, as has
been observed both in experiments (Bowden et al., 1998; Huck et al., 2000)
and in numerical studies (Chen and Hutchinson, 2004; Huang et al., 2005).

4.2 Film energy

Our goal in the rest of this section is to derive, and then optimize, the energy
of the pattern as a function of the remaining parameters a and b. The film is a
polyhedron with planar facets, and the film energy resides in the ridges. The
energy of an ridge has been given in equation (16) as a function of its length
� and of the dihedral angle 2α between the neighboring facets,

Usr(�, α) =
csr E h8/3

(12 (1 − ν2))5/6
�1/3 α7/3, (27)

Note that the following analysis does not depend crucially on the details of
the formula above; any power-law dependence of the ridge energy on � and α
with positive exponents would yield similar results.

As can be seen from Fig. 4, two types of ridges are present in the Miura-
ori, with lengths b and a/ cos θ, and dihedral angles 2A tan θ/b and 2A/b cos θ
respectively. The unit cell of the Miura-ori has an area (4ab) and contains four
ridges of each type. Therefore, the average energy of the film per unit surface
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reads

Ef(a, b) =
1

4 a b

(
4Usr

(
b,

A tan θ

b

)
+ 4Usr

(
a

cos θ
,

A

b cos θ

))
. (28)

This provides an explicit formula for the film energy of the Miura-ori (her-
ringbone) pattern.

4.3 Substrate energy

In order to determine the energy of the substrate, we first need to compute
the Fourier coefficients of the vertical displacement w(x, y) of the Miura-ori,
given in equation (23b). To do so, we start with the Fourier expansion of the
function associated with the curve W (x) = w(x, y = 0) obtained by a planar
section of the surface:

W (x) =
∞∑

k′=0

Wk′ sin(νk′ x),

where Wk′ = (−1)k′ 4 A

π2 (2k′ + 1)2
and νk′ =

π

b
(2k′ + 1).

Then, using the definition (23b) of w(x, y), and introducing the C∞ smooth
functions sinc u = sin u/u and cosc u = (1 − cos u)/u, we obtain

w(x, y) =
1

2

∞∑
k=0,k′=0

(
Wk′ sk,k′ cos(λky + νk′x) + Wk′ sk,k′ cos(λky − νk′x)

+ Wk′ ck,k′ sin(λky + νk′x) + Wk′ ck,k′ sin(λky − νk′x)
)

where

sk,k′ = cosc ((λk + ν ′
k tan θ) a) + cosc ((ν ′

k tan θ − λk) a) ,

ck,k′ = sinc ((λk + ν ′
k tan θ) a) + sinc ((ν ′

k tan θ − λk) a) ,

λk =
π

a
k,

and k and k′ are integers indexing the Fourier modes.

The substrate energy (5) per unit surface can then be written as

Es(a, b) =
E∗

8

∑
k,k′

W 2
k′

1 + δk
0

√
λ2

k + ν2
k′

(
s2

k,k′ + c2
k,k′

)
. (29)

The Kronecker symbol is defined by δk
0 = 1 if k = 0, and δk

0 = 0 otherwise.
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4.4 Energy minimization

The total energy, to be minimized, is the sum of the film and substrate energies,
given in equations (28) and (29) respectively. In order to put the equations in
dimensionless form, we introduce the aspect ratio

ρ =
a

b
,

and the typical length a∗ and energy E∗,

a∗ =

(
csr E

(12 (1 − ν2))5/6 E∗
s

)3/8

(2 ηx)
1/16 h and E∗ = 2 ηx E∗

s a∗.

Introducing the rescaled length a = a/a∗, the total energy Et(a, b) = Ef(a, b)+
Es(a, b) takes the dimensionless form

Et(a, ρ)

E∗ =

(
a

ρ2
Us(ρ, θ) +

ρ

a5/3
Uf(ρ, θ)

)
, (30)

where the functions

Uf(ρ, θ) = 27/3

(
tan7/3 θ

ρ1/3
+

1

cos8/3 θ

)
(31a)

Us(ρ, θ) =
ρ2

Esa
Es(a, b) (31b)

are known numerical functions depending the aspect ratio ρ and on the angle
θ only. The function Us(ρ, θ) is not given here for the sake of brevity but it
can easily be found from equation (29).

Returning to the optimization problem, we first minimize the total energy
Et(a, η) with respect to the rescaled dimension of the pattern, a. The condition
∂Et/∂a = 0 yields

a(ρ) =

(
5 ρ3

3

Uf(ρ)

Us(ρ)

)3/8

, (32a)

and the energy becomes a function of the parameter ρ only:

E†
t (ρ) ≡ min

a
Et(a, ρ) =

8 E∗

5

a(ρ)Us(ρ)

ρ2
(32b)

There remains to optimize with respect to the pattern aspect ratio ρ. The
reduced energy E†

t (ρ) is plotted in Fig. 6 in the case of equi-biaxial compression
(θ = π/4). It appears to be a monotonically decreasing function: the optimum
is reached for an infinite aspect ratio ρ = a/b → ∞. It is not possible to select
a well-defined Miura-ori pattern by energy minimization.
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Fig. 6. Log-log plot of the reduced energy (32b) of the Miura-ori pattern as a function
of the aspect ratio ρ = a/b in the case of equi-biaxial compression (θ = π/4). The
optimal choice is ρ → ∞, that is a � b.

The fact that a large aspect ratio ρ is energetically favorable can be understood
as follows. According to equation (5), the substrate energy associated with a
pure Fourier mode with wavevector (νk′ , λk) goes like |(νk′ , λk)|A2. In the limit
ρ = a/b � 1, the dominant contribution to the norm of this wavevector comes
from the y component since λk ∝ 1/b although νk′ ∝ 1/a. For a large aspect
ratio, the substrate energy is therefore dominated by the small scale pertur-
bation, at scale b, and is of order Es(a, b) ∼ E∗

s A
2/b. Using the kinematical

relation (24a), this yields Es ∼ E∗
s b ηx. On the other hand, the long ridges, of

length a, make a dominant contribution to the film energy. As a result, the
film energy scales as Ef(a, b) ∼ Eh8/3a1/3(A/b)5/3 ∼ Eh8/3(ηx)

7/6a−2/3b−1. As
a result, it is possible to make both energy contributions go to zero at fixed
differential strain, by taking b → 0 while a2/3b → ∞.

4.5 Trapping

In the limit of large differential strain, the absolute minimum of energy of the
system is reached when the Miura-ori pattern has an infinite aspect ratio. This
corresponds to a series of stripes organized in chevrons, such that the stripe
spacing is much smaller than the distance between angular points. This is
very similar with the results obtained with a simplified buckling model in the
companion paper (Audoly and Boudaoud, 2007b): we found that the absolute
minimum of energy corresponds to a pattern made of a series of undulating
stripes that are very close from each other.

In experiments where herringbones have been observed, the two wavelengths
of the pattern, namely the stripes spacing and the distance between kinks,
appear to be comparable. This points to the fact that the wavelengths are not
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selected by energy minimization. Indeed, as shown by analysis and the nu-
merical simulations of the simplified model (Audoly and Boudaoud, 2007b),
the observed wavelengths depend on the history of the loading. Under increas-
ing load, the system remains trapped in a metastable equilibrium having two
comparable wavelengths, determined by the primary and secondary buckling
bifurcations.

5 Conclusion

We have studied the buckling of a thin film bound to a compliant substrate.
We derived analytical solutions of this problem in the limit of large residual
stress (strongly post-buckled limit). We started by introducing a family of
developable solutions, relevant to this limit, obtained by repeatedly patching
pieces of a cylindrical surface along ridges. In general, these ridges can be
curvilinear but we have shown that the elastic energy is minimum when the
ridge curvature concentrates. This provides a simple interpretation for ‘her-
ringbone’ patterns reported in experiments under approximately equi-biaxial
compression by Bowden et al. (1998) and Huck et al. (2000), and in the fi-
nite elements simulations of a unit cell of a periodic pattern by Chen and
Hutchinson (2004).

In herringbone patterns, the crests and valleys follow a set of parallel sawtooth-
like curves. We derived a robust geometrical result, namely that the kink angle
(2θ) of these curves is directly related to the ratio of the principal residual com-
pressive stresses, see equation (26). In the particular case of equi-biaxial load-
ing, the crests and valleys must kink at right angle, which is consistent with
previous experimental and numerical observations (see Chen and Hutchinson
(2004) in particular).

Making full use of the similarity of this pattern with a popular origami folding
(Miura-ori), we have expressed the film deflection as a function of the wave-
lengths and other geometrical parameters. We derived a closed-form expression
for the energy of the pattern as a function of these parameters, in the limit
of large load. We found that this energy is at its absolute minimum when the
aspect ratio of the pattern, defined as the ratio of the crests’ zigzag wavelength
to the gap between crests, becomes infinite. However, the simplified buckling
model studied in the companion paper (Audoly and Boudaoud, 2007b), re-
veals that the wavelengths observed under monotonically increasing loading
are not those with the absolute lowest energy: the system is trapped in a local
minimum of energy and the pattern aspect ratio, determined once for all by
the primary and secondary bifurcations, remains of order one even at large
load. This is consistent with the experimental observation that the longitudi-
nal wavelength of the zigzags is comparable with the gap between them, both
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being close to the wavelengths predicted by the primary and secondary buck-
ling instabilities. Moreover, the present analysis reveals the existence of many
metastable states and this may explain the variability of patterns observed in
the experiments.

This paper closes a set of papers analyzing buckling of a stiff plate under com-
pressive residual stress, and bonded to a compliant substrate. Straight stripes
have been well studied and are known to appear above a (primary) buckling
threshold. In part I, we investigated the limit of small load, and showed that
secondary buckling instabilities lead to checkerboard patterns for equi-biaxial
loading and to undulating stripes for biaxial (but not equi-biaxial) loading.
In part II, we proposed a global scenario for the evolution from undulating
stripes to herringbones as the loading is gradually increased. In part III (the
present one), we derived an asymptotic solution describing herringbone pat-
terns in the limit of a large buckling parameter. We have used a variety of
mathematical methods, from a classical analysis of stability, to weakly and
strongly non-linear post-buckling analyses. An unusual feature of the primary
and secondary buckling bifurcations comes from non-linear interactions be-
tween the classical buckling modes, which eventually yield complex patterns.
In the strongly post-buckled regime, developable solutions have been obtained
by an asymptotic analysis. For intermediate load, no exact solution is available
and a buckling model based on carefully chosen approximations allowed us to
put all results in a consistent framework. We believe that the methods used
here should be applicable to many other buckling problems.

Even though the geometry of a thin elastic plate bonded to a compliant sub-
strate is particularly simple, it can lead to many different buckling patterns
depending on the loading conditions; we encountered straight and undulat-
ing stripes, varicose, hexagonal, checkerboard and herringbone patterns. The
labyrinthine one, observed by Bowden et al. (1998) and many others, has re-
mained unexplained to date — we may conjecture that this aperiodic pattern
follows from a superposition of an infinite number of the classical, cylindrical
buckling modes.
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