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Abstract

We study the buckling of a thin compressed elastic film bonded to a compliant
substrate. We focus on a family of buckling patterns, such that the film profile is
generated by two functions of a single variable. This family includes the unbuck-
led configuration, the classical primary mode made of straight stripes, as well the
pattern with undulating stripes obtained by a secondary instability investigated in
the first companion paper, and the herringbone pattern studied in last compan-
ion paper. A simplified buckling model relevant for the analysis of these patterns
is introduced. It is solved analytically for moderate or for large residual compres-
sive stress in the film. Numerical simulations are presented, based on an efficient
implementation. Overall, the analysis provides a global picture for the formation
of herringbone patterns under increasing residual stress. The film shape is shown
to converge at large load to a developable shape with ridges. The wavelength of
the pattern, selected in a first place by the primary buckling bifurcation, is frozen
during the subsequent increase of loading.

Key words: Buckling, Plates, Thermal stress, Asymptotic analysis, Energy
methods

Preprint submitted to Elsevier 23 May 2008



1 Introduction

Buckling of thin plates is a classical subject in engineering mechanics. In par-
ticular, the buckling of multi-layered materials has received much attention
due to its importance in the design of sandwich panels (Allen, 1969). This
field has been the subject of recent work, in connection with the generation of
wrinkles in human skin or the templating and assembly of materials (see e.g.
Genzer and Groenewold, 2006, for a review). Here, we consider the buckling
of a thin and stiff film bonded to a compliant substrate. In typical experi-
ments, thin metallic films are deposited on an elastomer (Bowden et al., 1998;
Huck et al., 2000; Yoo et al., 2002). When the system is cooled, compressive
residual stress is induced in the film, caused by the mismatch in the thermal
expansion coefficients of the two layers. This can lead to buckling into straight
wrinkles (Bowden et al., 1998), i. e. to a pattern that is invariant in one di-
rection and has cylindrical symmetry. Other patterns may also appear (see
e.g. Audoly and Boudaoud, 2007a). Here we focus on herringbone patterns,
also called chevron or zigzag patterns, which have been observed for instance
by Huck et al. (2000); in such patterns, the crests and valleys of the wrinkles
adopt characteristic zigzag shapes.

Herringbone patterns have been studied numerically. Chen and Hutchinson
(2004) simulated the elementary cell of a periodic herringbone pattern, as-
sumed to be a parallelogram; they investigated the dependence of energy on
the geometrical parameters of the cell. Huang et al. (2004) undertook simu-
lations on a grid much larger than the wavelength; they first considered the
case of a Winkler foundation ( a foundation made of linear springs) and later
(Huang et al., 2005) the case of a thick elastic foundation. They observed her-
ringbones in either of the following conditions: with isotropic 1 compressive
stress when the simulations is initialized with an array of ‘nascent’ herring-
bones, or with anisotropic compressive stress and random initialization.

In the first companion paper (Audoly and Boudaoud, 2007a), we investigated
the stability of the straight wrinkles (stripe pattern); we found that these
wrinkles soon become linearly unstable with respect to a pattern compris-
ing undulating stripes. In the last companion paper (Audoly and Boudaoud,
2007c), herringbones are recovered as a solution of the equations for plates
on an elastic foundation, based on an asymptotic analysis in the limit of a
large buckling parameter. The present paper aims at bridging the gap be-
tween these limits of moderate (first paper) and large buckling parameters
(last paper), and shows that undulating stripes evolve smoothly towards her-
ringbones under increasing load. This analysis is based on a simplified buckling

1 As in the companion papers, ‘isotropic’ stress is used as a synonym for ‘equi-
biaxial’ and anisotropic’ as a synonym for biaxial but not equi-biaxial.
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model which, as in Audoly and Boudaoud (2003), addresses the buckling in a
well-chosen subspace of configurations for which analytical and numerical so-
lutions can be derived. It provides a global picture of buckling into herringbone
patterns under increasing (from small to large) residual stress.

In this paper, our approach is to understand the formation of herringbones at
large residual stress, characterized by faceted shapes with sharp folds, and the
selection of wavelengths. This involves following the evolution of a particular
pattern, not necessarily that with the lowest energy, under increasing loads. We
do not include here the patterns that are unrelated to herringbones even if they
can be observed at small residual stress — this is the case for checkerboards
for instance. They have been the subject of the first companion paper.

The present paper is organized as follows. In Section 2, we briefly recall
the formulation of the problem, given in the companion paper (Audoly and
Boudaoud, 2007a). In Section 3, we introduce the simplified buckling model
which is analyzed in the subsequent sections. In Section 4, we give the results
of the linear stability analysis and of the weakly post-buckled analysis based
on this approximate model, and compare with the exact results of the first
companion paper. In Section 5, we present comprehensive numerical simu-
lations of the model, which allow one to explore moderate to large load. In
Section 6, we undertake an asymptotic analysis of the limit of large load, and
derive solutions which describes patterns similar to herringbone, found in the
preceding numerical analysis. In Section 7, we point out the existence of many
local equilibria at large load and discuss the selection of the pattern observed
in the experiments.

2 Formulation

We consider an thin elastic film bound to an elastic foundation. The dimen-
sions of the film are infinite in its two in-plane directions. In the following,
we write the elastic energy of the system per unit area in the framework
of Hookean elasticity, that is assuming a linearly elastic response. The film is
loaded with a biaxial, uniform residual stress. We focus on the case of compres-
sive stress, which may make the film unstable. The film is described by the
Föppl–von Kármán plate equations with moderate deflections (Timoshenko
and Gere, 1961). The foundation is assumed to be an infinitely deep, linearly
elastic solid.
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Fig. 1. Geometry of the problem and notations.

2.1 Film

We denote the E, ν and h the Young’s modulus, Poisson’s ratio and thickness
of the film, respectively. The reduced Young’s modulus is defined as E∗ =
E/(1 − ν2). The loading is given in terms of the differential strain 2 ηx,
ηy between film and substrate, the x and y directions being chosen as the
principal directions of this differential strain (see Fig. 1 for the geometry and
notations). By this, we mean that the residual stress in the film is equivalent
to that obtained by starting from the stress-free configurations of the film
and substrate, contracting the film by a factor ηx along the x direction and
ηy in the y direction, and finally binding the film to substrate. This defines
the reference configuration of the system. We are interested in the subsequent
deformation of the film and substrate in response to this loading.

We denote u(x, y), v(x, y) and w(x, y) the two components of the in-plane
displacements and the out-of-plane displacement of the center-surface of the
film, respectively. Then, the film in-plane strain in actual configuration reads:

ǫxx = −ηx +
∂u

∂x
+

1

2

(

∂w

∂x

)2

, (1a)

ǫxy =
1

2

(

∂u

∂y
+
∂v

∂x
+
∂w

∂x

∂w

∂y

)

, (1b)

ǫyy = −ηy +
∂v

∂y
+

1

2

(

∂w

∂y

)2

. (1c)

Using the classical approximations of the Föppl-von Kàrmàn plate theory,
nonlinear terms involving the in-plane displacement (u, v) have been neglected.
For simplicity, the film material is assumed to be isotropic. The constitutive

2 Traditionally, the loading is characterized in terms of the residual stress in the film
which, from equation (2), are related to the differential strain by σ0

xx = −E (ηx +
ν ηy)/(1 − ν2) and σ0

yy = −E (ηy + ν ηx)/(1 − ν2).
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equations for the film are those for plane-strain, two dimensional elasticity:

σxx =
E

1 − ν2
(ǫxx + ν ǫyy), (2a)

σxy =
E

1 + ν
ǫxy, (2b)

σyy =
E

1 − ν2
(ǫyy + ν ǫxx). (2c)

The stretching energy per unit area of the film reads

Efs =
1

Lx Ly

h

2

∫

σαβ ǫαβ dx dy, (3)

while its bending energy per unit surface is given by the integral of the squared
mean curvature:

Efb =
1

Lx Ly

D

2

∫

(∇2w)2 dx dy, (4)

where ∇ denotes the gradient of a function of two variables, (x, y). According
to plate theory, the bending modulus is

B =
E h3

12 (1 − ν2)
. (5)

Finally, we write the total energy of the film per unit area as

Ef = Efs + Efb. (6)

2.2 Substrate

The substrate, which fills the half-space z < 0, has Young’s modulus Es and
Poisson’s ratio νs. The substrate has linear elastic response. Introducing the
Fourier transform of the film deflection

ŵ(kx, ky) =
∫

dx dy w(x, y) exp[−i(kxx+ kyy)], (7)

the energy of substrate can be written as

Es =
1

Lx Ly

∫

dkx dky E
∗

s

√

k2
x + k2

y ŵ(kx, ky)ŵ(−kx,−ky). (8)

It depends on only one parameter E∗

s , which is proportional to Es and is a
function of Poisson’s ratio νs,

E∗

s =
Es (1 − νs)

(1 + νs) (3 − 4νs)
. (9)
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For details, we refer to the first companion paper (Audoly and Boudaoud,
2007a).

2.3 Optimization problem

The goal of the paper is to derive equilibrium solutions describing buckled
states. This involves minimizing the total energy, which is the sum of the film
and substrate energies:

Et({u, v, w}) = Es({w}) + Ef({u, v, w}). (10)

This energy has to be minimized with respect to the three components of the
film’s displacement,

(u(x, y), v(x, y), w(x, y)),

for given values of the material parameters and differential strain (ηx, ηy).

3 A simplified model for the analysis of buckling

As explained in the introduction, the first companion paper is concerned with
small to moderate residual stress, and the last one with large stress. In the
present one, we discuss the case of intermediate loading. In particular, we
study the selection of the herringbone pattern and its wavelength. This ques-
tion is of particular importance as we shall see that global energy minimization
does not provide a consistent selection mechanism. The general question we
address here is how undulating stripe patterns evolve when the differential
strain is progressively increased from the initial buckling threshold to much
larger values. This progressive increase of the loading does take place in typi-
cal experiments, whereby a sample obtained at high temperature cools down
progressively.

Pattern selection is difficult to approach based solely on numerical simulations
(as in Huang et al., 2004, 2005) as it is impossible to vary systematically all
the parameters of the problem. Moreover, the final pattern depends largely
on the arbitrary initial condition. On the analytical side, we have exhausted
in the two companion papers all the methods that allow for exact results, by
exploiting the presence of a small parameter in the limits of small or large
load. In contrast, no analytical solution for the buckling problem formulated
in Section 2 is available in the case of intermediate load. For this reason,
we introduce a simplified buckling model. It is designed in such a way that
the essential features of the original model are retained; on the other hand, is
simple enough that it can be studied analytically and simulated very efficiently.
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3.1 Motivation

To introduce our simplified model, we shall first list the various exact solutions
that can be derived for the film shape, for different values of the residual stress.
The first ones are the unbuckled solution, below the initial threshold, and the
cylindrical mode (stripes) just above it:

w(x, y) = 0 (11a)

w(x, y) = A cos(k x), (11b)

where A is the amplitude of the mode and k the wavenumber. These classical
solutions are recalled in the first companion paper. The undulating stripe
pattern, introduced in the same paper, is another solution valid slightly above
the secondary threshold, which we rewrite as follows:

w(x, y) = A cos(k x) + b sin(k x) sin(k q y)

≃ A cos

[

k

(

x− b sin(k q y)

k A

)]

+ O
(

b2

A

)

.
(11c)

Here, b is the amplitude of the perturbation to the cylindrical model, and
b≪ A slightly above threshold; q defines the aspect ratio of the pattern, that
is the ratio of the longitudinal and transverse wavenumbers.

Another analytical solution, derived in the last companion paper for large
differential strain, is the Miura-ori pattern, defined by

w(x, y) = AS





x+ a tan θ
(

1
2

+ S
(

y
a
− 1

2

))

b



 , (11d)

where a and b now define the dimensions of the unit cell of this periodic
pattern.

We now formulate a key remark: for all the analytical solutions in equa-
tions (11a–11d), the deflection w(x, y) is of the form:

w(x, y) = f(x− g(y)), (12)

for some functions f and g that depend on the profile considered (see Fig. 2).
Indeed, for the unbuckled configuration, f(x) = 0 and g is arbitrary; for the
straight stripes, f(x) = A cos(kx) and g(y) = 0; for the undulating stripe
pattern, f(x) = A cos(kx) and g(y) = b sin(kqy)/(kA): for the Miura-ori
(herringbone) pattern, f(x) = AS(x/b) and g(y) = −a tan θ (1/2 + S(y/a−
1/2)).
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a) b)

c) d) e)

xy

Fig. 2. All the patterns derived so far belong the class of quasi-1D patterns, as de-
fined in equation (13a). (a) unbuckled, f(x) = 0 g(y) = 0; (b) straight stripes (cylin-
drical pattern), f(x) = .7 cos x, g(y) = 0; (c) undulating stripes, f(x) = .7 cos x,
g(y) = .6 sin y; (d) developable surface with curvilinear ridges f(x) = .8S(x),
g(y) = .6 sin y; (e) herringbone pattern (also called Miura-ori and zigzag pattern),
f(x) = .8S(x), g(y) = .7 (1/2 + S(y − 1/2)).

3.2 Kinematical constraints

Our aim is to study the transition from a flat pattern to straight or undulating
stripes at small strain, and to a herringbone (Miura-Ori) pattern at large
strain. Since all these patterns are of the particular form w(x, y) = f(x −
g(y)), we propose to analyze the evolution of the pattern under increasing
loading within this reduced space of configurations. In other words, we suggest
to constrain the profile to be of the form w(x, y) = f(x − g(y)), even at
intermediate load values. This approximation provides a workaround to the
absence of analytical solutions to the full problem. It is natural given the
particular form of the various exact solutions.

Technically, we consider the buckling problem as a minimization problem
within a reduced space of configurations, which we call quasi-1D configu-
rations. This space is defined as

Q = {w(x, y) | w(x, y) = f(x− g(y))} , (13a)

where the vertical bar stands for ‘such that’. It has already been emphasized
that the planar, cylindrical, undulating stripes and Miura-Ori patterns all
belong to this class. Within this class, the deflection is no longer an arbitrary
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function of two variables. Instead, it is fully specified by two functions f and
g of a single variable. As a result, the Euler-Lagrange equations associated
with the condition of energy minimum takes the form of coupled ordinary

differential equations for f and g in the quasi-1D problem, instead of partial
differential equations in the original problem. In numeric calculations, the
number of degrees of freedom is (2N) for a grid of size N × N , instead of
(N2).

Even with the previous approximation, the Euler-Lagrange equations express-
ing the condition of energy minimum are not solvable analytically because
the in-plane displacements u(x, y) and v(x, y) are required in addition to the
deflection w(x, y). In order to avoid this difficulty, we shall further constrain
the kinematics of the film and seek solutions within the class Q ∩R, where

R = {u(x, y), v(x, y), w(x, y) | ∇ǫxx = 0 & ǫxy = 0} , (13b)

the strain being defined in terms of the displacement by equation (1). In this
class, the film has uniform strain component ǫxx and a vanishing in-plane
shear strain 3 . This approximation was successfully used for the analysis of
multiscale, self-similar buckling patterns (Audoly and Boudaoud, 2003). It is
a reasonable approximation for studying the evolution of the system under
increasing load; indeed, developable surfaces, such that ǫαβ = 0 for α and
β = x, y, belong to the class R by definition, those developable solutions
being the preferred solutions of the original problem at large compressive
stress. Because of this, we avoid the difficulties associated with another popular
but much cruder approximation that consists in setting to zero the in-plane
displacements (see Jin and Sternberg, 2001, for a discussion of the drawbacks
of such models).

We do not claim that the two approximations Q and R just proposed can be
justified rigorously. As a matter of fact, solutions of the simplified problem
are not solutions of the original problem and we do not expect the simplified
analysis of buckling that follows to agree in full details with that based on the
original theory. Our assumptions are merely a set of convenient and reason-
able approximations that allow for analytical calculations and fast numerical
simulations, provide good insights into the phenomena and capture the main
features of transition towards herringbone patterns. This view is supported by
the analysis of Section 4, where the analyses carried out in the first compan-
ion paper on the full model is repeated, with similar results, on the quasi-1D
model.

3 This class R treats differently the two in-plane directions x and y, as ǫyy may well
be nonzero. The resulting model is not covariant with respect to in-plane rotations.
This is not really a problem as the quasi-1D patterns Q that we consider are not
isotropic anyway.
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3.3 Analytical reconstruction of in-plane displacement

We shall first show that, using the kinematical hypothesis R, the in-plane dis-
placements u and v can be reconstructed from the deflection w. The constrain
that the strain component ǫxx is uniform can be rewritten as ǫxx(x, y) = 〈ǫxx〉.
Here and later, the brackets 〈·〉 stand for the average over x and y of the quan-
tity inside, whereas the brackets 〈·〉x denote the average in the x direction only.
This allows one to express u from equation (1a) as

∂u

∂x
= 〈ǫxx〉 + ηx −

1

2

(

∂w

∂x

)2

= 〈ǫxx〉 + ηx −
1

2
f ′2(x− g(y))

(14)

Let F (x) be the antiderivative of (f ′2(x)−〈f ′2〉) with a constant of integration
chosen such that F is zero on average:

F ′(x) = f ′2(x) −
〈

f ′2
〉

and 〈F 〉 = 0. (15)

In the absence of ambiguity, the averages of functions of the variable x only,
such as 〈f ′2〉, are noted 〈·〉 or 〈·〉x indifferently.

By integration along x of equation (14) for ∂u/∂x, one obtains

u(x, y) =
(

〈ǫxx〉 + ηx −
1

2

〈

f ′2
〉

)

x− 1

2
F (x− g(y)) + φ(y),

where φ is an arbitrary function of y. Now, u(x, y) has to a bounded function
for the substrate energy to remain finite. Therefore, the prefactor of x in the
expression above has to vanish:

〈ǫxx〉 = −ηx +
1

2

〈

f ′2
〉

, (16)

which leads to

u(x, y) = −1

2
F (x− g(y)) + φ(y). (17)

Having computed u(x, y), we can now obtain v(x, y) by plugging the kinemat-
ical assumption ǫxy(x, y) = 0 into equation (1b):

∂v

∂x
= −∂u

∂y
− ∂w

∂x

∂w

∂y

= −1

2
g′(y)F ′(x− g(y))− φ′(y) + g′(y) f ′2(x− g(y)

=
1

2
g′(y)F ′(x− g(y)) + 〈f ′2〉 g′(y) − φ′(y).
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As for u, the displacement v has to be bounded and this implies that the
averaged derivative of v with respect to x is zero: 〈∂v/∂x〉x = 0. This yields,
using 〈F ′〉 = 0 and 〈g′〉 = 0 (as g(y) is periodic hence bounded):

φ′(y) = 〈f ′2〉 g′(y).

We have averaged over the variable x only to obtain this equation. Plugging
back the above expression for φ′ into the expression for ∂v/∂x and carrying
out the integration with respect to x, one obtains v(x, y) as

v(x, y) =
1

2
g′(y)F (x− g(y)) + ψ(y), (18)

where ψ is another arbitrary function, to be determined.

3.4 Energy

Having determined the displacement, we can compute the strain. The compo-
nent ǫxx, which is constant by construction, has already been given in equa-
tion (16). The shear component is zero by construction. The remaining com-
ponent, ǫyy, can be computed from equation (1c). This yields:

ǫxx(x, y) = −ηx +

〈

f ′2

2

〉

(19a)

ǫxy(x, y) = 0 (19b)

ǫyy(x, y) = −ηy +
1

2
〈f ′2〉 g′2(y) +

1

2
g′′(y)F (x− g(y)) + ψ′(y). (19c)

Anticipating the rest of the calculation, we decompose the last component
into three contributions,

ǫyy(x, y) = ǫ(1)yy (x, y) + ǫ(2)yy (y) + ǫ(3)yy , (20)

defined by

ǫ(1)yy (x, y) = ǫyy(x, y) − 〈ǫyy(x, y)〉x (21a)

ǫ(2)yy (y) = 〈ǫyy(x, y)〉x − 〈ǫyy〉 (21b)

ǫ(3)yy = 〈ǫyy〉. (21c)

By construction, these quantities satisfy

〈ǫ(1)yy (x, y)〉x = 0 for all y, and 〈ǫ(2)yy (y)〉y = 0, (22)
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which in particular implies 〈ǫ(1)yy (x, y)〉 = 〈ǫ(2)yy (x, y)〉 = 0. From equation (19c),
one can find explicit expressions for these three terms:

ǫ(1)yy (x, y) =
1

2
g′′(y)F (x− g(y)) (23a)

ǫ(2)yy (y) =
1

2
〈f ′2〉 (g′

2
(y) − 〈g′2〉) + ψ′(y) (23b)

ǫ(3)yy = −ηy +
1

2
〈f ′2〉 〈g′2〉. (23c)

Indeed, one can notice that 〈ψ′〉 = 0, as implied by the equality 〈∂v/∂y〉 = 0
which comes itself from the fact that the displacement v(x, y) is bounded.

With the aim to formulate a minimization problem with respect to the two
unknown functions f(x) and g(y) and the auxiliary function ψ(y), we compute
the stretching the energy per unit area of the film, defined by equations (2a–2c)
and (3) in terms of the strain tensor:

Efs({u, v, w}) =
Eh

2(1 − ν2)

1

Lx Ly

∫

dx dy (ǫ2xx + ǫ2yy + 2ν ǫxxǫyy).

When the decomposition (20) for ǫyy is plugged into this expression, all the
cross-products of the form (ǫ(i)yy ǫ

(j)
yy ), with i 6= j vanish upon integration due

to equation (22). This leads to the following expression for the film stretching
energy:

Efs({u, v, w}) =

Eh

2(1 − ν2)

(

〈ǫxx〉2 + 〈(ǫ(1)yy )2〉 + 〈(ǫ(2)yy )2〉 + (ǫ(3)yy )2 + 2ν 〈ǫxx〉 〈ǫyy〉
)

. (24)

Here, the last term has been rewritten using the following equalities:

1

Lx Ly

∫

dx dy ǫxx ǫyy = 〈ǫxx ǫyy〉 = 〈〈ǫxx〉 ǫyy〉 = 〈ǫxx〉 〈ǫyy〉,

since ǫxx is uniform by construction.

In the stretching energy (24), the function ψ enters via a single term, namely
〈(ǫ(2)yy )2〉2, whose value is given by equation (23b). Therefore, the optimality
condition of the stretching energy with respect to this function ψ, which writes
formally as

δEfs

δψ′(y)
= 0,

leads to
ǫ(2)yy (y) = 0.

This equation allows one to determine the auxiliary function ψ,

ψ′(y) = −1

2
〈f ′2〉 (g′

2
(y) − 〈g′2〉).
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We can finally write the stretching energy of the film for our reduced model
by combining the equations above:

Efs(w ∈ Q ∩R) =
Eh

2 (1 − ν2)





〈g′′2〉 〈F 2〉
4

+

(

〈f ′2〉
2

− ηx

)2

+

(

〈f ′2〉 〈g′2〉
2

− ηy

)2

+ 2ν

(

〈f ′2〉
2

− ηx

) (

〈f ′2〉 〈g′2〉
2

− ηy

)



, (25)

where the function F is defined by equation (15). Thanks to our kinematical
assumptions, we have been able to write the film stretching energy in a simple,
closed form.

The other contributions to the energy are the film’s bending energy and the
substrate energy. The bending energy can be computed by plugging the special
form of w(x, y) given in equation (13a) into equation (4). This yields

Efb(w ∈ Q) =
D

2

(

〈[1 + g′
2
(y)]2〉 〈f ′′2(x)〉

+ 〈g′′2〉 〈f ′2〉 − 2

LxLy
[g′ + g′3/3]

Ly

0 [f ′2/2]Lx
0

)

. (26)

The last two terms are boundary terms, which vanish when f and g are as-
sumed to be periodic and continuous, which is what we do in the simulations.

The substrate energy Es(w ∈ Q), defined by equation (8), cannot be found
explicitly in terms of f and g. In the numerical simulations, it is computed
by a two dimensional Fourier transform of the profile w(x, y) = f(x − g(y)).
For the analyses of stability of Section 4, this substrate energy is computed
by expansion near the bifurcation threshold.

We have derived a simplified model for the analysis of patterns in stiff films
bonded to a compliant substrate. In this model, the total energy is the sum of
the film stretching energy (25), the film bending energy (26), and the substrate
energy defined by equation (8) with a deflection of the form (12):

Et(w ∈ Q ∩R) = Efs(w ∈ Q ∩R) + Efb(w ∈ Q) + Es(w ∈ Q) (27)

To study this reduced model, we shall now consider the problem of minimizing
this energy with respect to the two functions f(x) and g(y), for different values
of the differential strain (ηx, ηy).
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4 Linear stability and weakly nonlinear analyses

With the aim to validate our simplified model, we repeated the weakly nonlin-
ear analyses carried out in the companion paper, which are relevant for small
loading, with the aim to compare to the results of the exact model.

4.1 Primary buckling bifurcation

Let us first consider the linear stability analysis of the unbuckled state. We
use the same rescalings as in the companion paper, and define

h∗ =
h

√

12 (1 − ν2)

as a unit of length. The stiffness contrast between the two layers reads

C =
E∗ h

E∗
s h

∗
. (28)

This large number is used to rescale the differential strain:

ηx =
ηx

C−2/3
, ηy =

ηy

C−2/3
. (29)

For the sake of brevity, we shall not give the details of the the analysis of
linear stability, which is a classical method. The optimal film shape predicted
by the simplified model from equation (27) bifurcates from planar to buckled
state above a critical differential strain. The buckled state is characterized by
a harmonic profile w(x, y) with amplitude A and wavenumber k satisfying:

w(x, y) = A cos(kx)

A = 2h
√

ηx + ν ηy − 3(1 − ν2)

kh∗ = C−1/3.

(30)

The planar state becomes linearly unstable when the argument of the square
root defining the amplitude A becomes positive. As in the companion paper,
the initial buckling threshold under isotropic loading is noted

ηI
c = 3 (1 − ν)

Remarkably, the primary instability (30) predicted by the simplified model
is identical to that predicted by the full model (see Audoly and Boudaoud,
2007a). In both cases, the buckled state involves a harmonic perturbation of
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the film with cylindrical symmetry; the instability threshold, and the ampli-
tude and wavenumbers of the unstable mode are identical. It may be surprising
that the analysis of linear stability based on the approximate model allows one
to recover the exact results. The reason is that the simplifying kinematical as-
sumptions Q and R hold both for the planar state, and for cylindrical stripe
pattern immediately above the primary threshold 4 .

4.2 Secondary buckling bifurcation

Having studied the initial buckling bifurcation, we can analyze the secondary
bifurcations similarly. In the companion paper, this has been done based on the
exact equations and we found that a secondary instability leads to undulating
stripes; this secondary instability takes place:

• strictly above the initial buckling threshold under anisotropic loading (namely
when either ηx or ηy reaches ηI

c ),
• concomitantly with the initial buckling under isotropic loading.

Here again, we shall not give the details of the analysis of linear stability of
the stripe pattern based on the quasi-1D model. The outcome of this analysis
is that straight wrinkles become linearly unstable with respect to undulat-
ing stripes too. This secondary instability takes place at a threshold, denoted
η′Ic in the isotropic case, which is always strictly above the initial threshold:
η′Ic > ηI

c . The different predictions regarding these thresholds is apparent from
Fig. 3. We conclude that the analysis of the secondary bifurcation based on the
simplified model is approximate, unlike that of the primary bifurcation. The
reason is that the solution describing undulating stripe pattern in the original
model does not satisfy the kinematical hypothesis R. There are fewer poten-
tially unstable modes in the quasi-1D model as only those compatible with
the kinematical assumptions are available; as a result, the buckling threshold
is overestimated in the quasi-1D model. This discrepancy is in fact minor, for
two reason: first, we qualitatively recover the same type of secondary insta-
bility, leading to undulating stripes; second, the undulating stripes is actually
the optimal shape of the quasi-1D model just above the primary buckling
threshold ηI

c , although this is not apparent from the present linear stability
analysis (see end of Section 5).

4 This is not a coincidence: the main motivation for the quasi-one dimensional
deflection, of the form (12), that is encompasses analytical solutions for the film
profile, which includes the cylindrical pattern.
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the exact result (dotted curves) from Audoly and Boudaoud (2007a). (a) Linearly
unstable longitudinal wavenumber q (dark grey region) and most unstable wavenum-
ber q (thick curve). (b) Rescaled amplitude b/A of the zigzag perturbation. Both
plots are made with Poisson’s ratio ν = 0.3.

4.3 Post-buckling analysis

These analysis of linear stability can be complemented by the nonlinear anal-
ysis of post-buckled undulating stripes. The results, based on either the full
or the quasi-1D model, are compared in Fig. 3. For the sake of brevity, we
omit the details of the calculations for the quasi-1D model, which are similar
to those for the full model obtained by Audoly and Boudaoud (2007a).

Although the simplified model does not yield exact predictions for the sec-
ondary instability threshold, it captures the most salient features of the sys-
tem: the existence of a primary bifurcation leading to a stripe pattern and of
a secondary bifurcation leading to undulating stripes are captured correctly.
The thresholds and amplitudes relevant for the primary bifurcations are exact,
although those for the secondary bifurcations are approximate (and compa-
rable to the exact ones). This validates our suggestion to use the quasi-1D
model as a toy model for analyzing the buckling of a stiff film bonded to a
compliant substrate. This is the aim of the rest of the paper, where buckling
is investigated under intermediate to large loads.

5 Numerical simulations

The quasi-1D model is first studied numerically, at intermediate loads: we
assume the differential strain to be significantly larger — but not larger by
orders of magnitude — than the primary and secondary thresholds ηI

c and η′Ic .
In the absence of analytical methods of solution applicable to this situation,
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and (b). The simulation extends over (x, y) ∈ [0, Lx] × [0, Ly] with Lx = Ly = 4π,
and is for isotropic load.

we resort to numerical simulations.

5.1 Implementation

The energy of the quasi-one dimensional model (27) is minimized with respect
to the values of the functions f(x) and g(y) discretized on even meshes, each
having a number of points that is a power of 2, in the range 64–256. The
stretching and bending energy of the film, given by equations (25) and (26),
are computed using finite differences. The energy of the substrate (8) is com-
puted using a Fast Fourier transform algorithm (FFT). The energy is then
minimized by the method of conjugate gradient descent. The size Lx × Ly of
the squared simulation cell is chosen at the beginning of the simulation. Using
periodic boundary conditions, we effectively simulate an infinite array of such
elementary cells. Ideally, our simulation cell is much larger than the expected
size of the buckling pattern, which is of order 2π in dimensionless units (recall
that the wavenumber of the primary instability is 1 in dimensionless units);
in some cases, especially when using a fine spatial discretization, the actual
dimensions of the simulation cell had to be lowered to values comparable to
wavelength of the buckling pattern in order to keep the simulation time rea-
sonable. We used rescaled quantities in all the numerical simulations, thereby
avoiding to introduce unnecessary errors caused by machine accuracy.

In our simulations, we focused on the case of isotropic differential strain,
η = ηx = ηy. Then, the only control parameter in the simulation is the
rescaled differential strain, η. The result of a typical simulation session is
shown in Fig. 4. The functions f and g are initialized with very small, ran-
dom values. Starting from η = 0, we progressively increase the differential
strain, and observe the profiles of the numerical minimizers f(x) and g(y). As
explained earlier, the kinematical assumptions in the model allow for offline,
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symbolic calculations of the in-plane displacement. The calculations that re-
main to be done online are essentially the calculation of integrals involving f , g,
their derivatives and powers, which is effectively a one-dimensional problem 5 ,
and can be done very quickly, at an interactive rate on a standard personal
computer. This makes it quite easy to track solutions under increasing or de-
creasing loading, and to discriminate between continuous and discontinuous
bifurcations, as reported in the end of the present Section.

5.2 Results

In the simulation shown in Fig. 4, we first observe the unbuckled state for low
differential strain: f(x) ≈ 0 for all x and g(y) ≈ 0 for all y. When η is increased
above a primary threshold, the function f starts to make undulations, although
the profile g(y) remains flat. This corresponds to the stripe pattern. At a
secondary threshold, the function g starts to make undulations, producing
undulating stripes. The values of the thresholds, amplitudes and wavelength
are studied in details next, see Fig. 5. They are consistent with the analytical
predictions of Section 4. When the loading is further increased, the function f
changes progressively from a sinusoidal to a non-smooth, sawtooth-like shape.

In Fig. 5, we present a more detailed analysis of the simulation results, for
ν = 0.3. When the loading is increased, starting from η = 0, the unbuckled
pattern, characterized by 〈f ′2〉 = 0 and 〈g′2〉 = 0 is first observed. At a
threshold very close to that predicted by the theory, η = ηI

c = 3 (1− ν) = 2.1,
the function f(x) bifurcates. This corresponds to the emergence of a stripe
pattern, set inset (B), with a wavelength, 2π in rescaled units, consistent with
that predicted by the linear stability analysis. The squared amplitude of the
pattern, 〈f ′2〉, is found to vary linearly with the distance to threshold η − ηI

c ;
this is characteristic of a supercritical (continuous) bifurcation. This is all in
agreement with the results of the previous section and with those of the exact
model given in the first companion paper (Audoly and Boudaoud, 2007a).

The stripe pattern persists until a secondary threshold is reached. This thresh-
old is very close to the threshold, η′Ic (ν = .3) = 5.88, predicted by linear
stability analysis of the straight wrinkles, see Section 4. This secondary bi-
furcation turns out to be subcritical (discontinuous): both the energy and the
number 〈g′2〉 change by a finite amount in a single simulation step. Above

5 At every step in the minimization, we need to reconstruct the 2D profile of the
plate using equation (12) before we can carry out the fast Fourier transform nu-
merically. This is the only operation that is two-dimensional, i. e. that involves N2

operations where N is the number of discretization points). Being based on a highly
optimized algorithm, the fast Fourier transform, it remains very quick and did not
slow noticeably the calculation down.
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Fig. 5. Simulations based on the quasi-1D model. In the upper-left part of the
diagram, the quantities 〈f ′2〉 and 〈g′2〉 are given as a function of the control param-
eter η, which is first increased and then decreased. Two bifurcations, involving f
first and then g, take place very close to the theoretical thresholds (vertical dotted
lines). A hysteresis curve is followed when the loading is first increased and then
decreased. In the lower left diagram, the energy of the solution is plotted. On the
right-hand sides, the 3D configurations of a few representative configurations are
shown. The rectangular simulation cell has dimensions Lx = Ly = 4π and resolution
Nx = Ny = 32. Poisson’s coefficient is ν = 0.3.

the secondary threshold, undulating stripes are obtained; the evolution of this
pattern when the loading is further increased is analyzed in the next section.

When the loading is subsequently decreased, the solution follows a hysteresis
cycle. Below η′Ic (but above ηI

c), the film pattern is still given by undulating
stripes, although it was made of straight stripes during the loading stage
in the same range of differential strain. The energy profile at the bottom of
Fig. 5 reveals that the undulating pattern has a lower energy than the straight
stripes. In retrospect, it appears that the system has remained trapped in a
local minimum of energy in the range ηI

c < η < η′Ic and under increasing
loading, which it could not escape until this local energy minimum became
linearly unstable, at η′Ic .
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These numerical results are in complete agreement with the analysis of the
simplified model presented in the previous section. Furthermore, the numerical
observation of a hysteresis cycle mitigates the main discrepancy found between
the exact model and the simplified one. Recall that, with the exact model
under isotropic isotropic loading, straight stripes become linearly unstable
immediately above the initial buckling threshold ηI

c , although in the quasi-1D
model they were found to remain linearly stable over a range ηI

c < η < η′Ic
which extends much beyond the initial buckling threshold. As revealed by
the numerics, undulating stripe patterns are actually present in the quasi-1D
model immediately above the initial threshold too, and are indeed the state
of lowest energy — however, they are not accessible by the analysis of linear
stability as they appear by a discontinuous bifurcation.

6 Analytical and numerical solution in the limit of large load

Numerical simulations have confirmed the emergence of an undulating pattern
by a sequence of two bifurcations, namely an initial bifurcation towards a
cylindrical pattern and a secondary bifurcation leading to undulations. In the
present section, we investigate how this pattern evolves when residual stress is
further increased. We show in details how the pattern, emerging in a first place
as a small amplitude perturbation on top of the straight stripe pattern, evolves
progressively towards a developable shape with crests and valleys comprising
angular points. We shall also address the selection of the wavelengths of the
pattern obtained at large differential strain, a question which has remained
unsettled so far.

6.1 Penalization of the stretching energy

We shall show that the quasi-1D model can be solved analytically in limit
of large differential strain, ηx ≫ 1 and ηy ≫ 1. As explained before, this
model is based on approximations but is expected to provide good insights
into the behavior of the full model — in the last companion paper, we discuss
in detail the similarities and differences of the predictions of the two models
for large load. Note that, by large differential strain, we mean large rescaled

differential strain ηα = ηα/C
−2/3 ≫ 1. The stiffness contrast C is a large

number by assumption and so the rescaled strain can be large although the
physical strain remains small; in fact, this happens when

1 ≪ ηα ≪ C2/3. (31)

In this regime, it is consistent to use the assumption of a linear elastic response
for the substrate and the Föppl-von Kàrmàn equations for the film. In the rest
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of this section, we consider this range of loading, defined by equation (31): we
derive the features of the energy minimizers analytically and compare with
numerical simulations.

A classical result of plate theory is that the stretching energy, associated with
a stiffness E h directly proportional to the small parameter h, becomes dom-
inant over the bending energy whose stiffness E h3 scales like the third power
of h. As a result, thin plates subjected to significant load attempt to minimize
their stretching energy in a first place (mathematically, this defines a penal-
ization problem). Unless this is prevented by the boundary conditions or by
the geometry, their center-surface adopts a profile close to a developable sur-
face — this happens for instance in folds and d-cones analyzed by Lobkovsky
(1996); Ben Amar and Pomeau (1997). Therefore, we expect the optimal film
shapes to make the film stretching energy (25) vanish at dominant order:

Efs(w ∈ Q ∩R) =
Eh

2 (1 − ν2)





〈g′′2〉 〈F 2〉
4

+

(

〈f ′2〉
2

− ηx

)2

+

(

〈f ′2〉 〈g′2〉
2

− ηy

)2

+ 2ν

(

〈f ′2〉
2

− ηx

) (

〈f ′2〉 〈g′2〉
2

− ηy

)



.

The same argument will be used in the last companion paper where we study
a family of developable patterns. For large differential strain ηx and ηy, there
are two types of factors that become formally large in this expression, namely
(〈f ′2〉/2−ηx)

2 and (〈f ′2〉 〈g′2〉/2−ηy)
2. We conjecture that the functions f(x)

and g(y) with lowest energy make these terms cancel:

〈f ′2〉 ≈ 2 ηx, 〈g′2〉 ≈ ηy

ηx

, (32)

as this the best way to lower the energy of the system. The prediction (32) is
confirmed by the numerical simulations shown in Fig. 6. In these simulations,
the differential strain is isotropic, ηx = ηy and so 〈g′2〉 is expected to converge
to 1 for large ηx = ηy.
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6.2 Optimal film profile

We are left with one single term in the stretching energy, proportional to
〈F 2〉. The function F has been defined in equation (15) as the antiderivative
of f ′2 − 〈f ′2〉. In order to minimize 〈F 2〉, the function f should be such that
f ′2(x) ≈ 〈f ′2〉 almost everywhere. Combining with equation (32), this yields

f ′2(x) ≈ 2 ηx for almost all x.

The solutions for this equation are sawtooth functions, with slope ±√
2 ηx.

One possibility is that the sign of f ′ change periodically, as happens with the
following function:

f(x) → (2 ηx)
1/2 ℓx S

(

x

ℓx

)

, (33)

where ℓx is half the wavelength, a free parameter of the solution. In this
equation, we have introduced the sawtooth function with period 2,

S(t) =















−1 − t if −1 ≤ t ≤ −1/2,

t if −1/2 ≤ t ≤ 1/2,

1 − t, if 1/2 ≤ t ≤ 1,

(34)

extended by periodicity for all t by S(t+ 2) = S(t)

This function is plotted in Fig. 7.

Equation (33) is not the only possibility for f(x) as one can replace S by
an irregular function S̃ such that |S̃ ′(u)| = 1 almost everywhere. Irregular
sawtooth functions are likely to be less favorable as their bending energy is
unevenly distributed across the film area, but they may well lead to metastable
energy minima. The convergence of f(x) towards the profile predicted by equa-
tion (33) has been observed in the simulations, see Fig. 8, left, with appropriate
initial data 6 . We shall limit ourselves to formal arguments, without attempt-

6 f(x) converges to the regular sawtooth S(x) when the load is gradually increased
past the secondary threshold η′Ic , following the procedure discussed in Section 7.
If the simulation is started with a arbitrary value of the differential strain, f(x)
converges to an irregular sawtooth S̃.
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ing to establish the convergence by rigorous arguments.

In order to derive the function g(y) in this limit of large applied loading, we
shall first assume that 〈F 2〉 converges to a nonzero value, a hypothesis that will
be checked to be consistent at the end. The optimization problem for g is that
the remaining term in the stretching energy, namely 〈g′′2〉〈F 2〉, is minimum
under the constraint 〈g′2〉 = ηy/ηx coming from equation (32). Technically, this
constrained minimization problem can be solved using a Lagrange multiplier
µ, and we seek the minimum of the functional

∫

g′′2dy − µ
∫

g′2dy.

The corresponding Euler-Lagrange condition is the differential equation g′′′′(y)+
µg′′(y) = 0; its bounded solutions are harmonic 7 functions, up to an additive
constant that is unimportant as it corresponds to a translation of the pattern
along the x axis. For a similar reason, we fix the phase of the function g(y)
arbitrarily, as it corresponds to a translation of the pattern along the y axis.
This yields, in the limit of large differential strain:

g(y) →
(

2
ηy

ηx

)1/2

ℓy sin

(

y

ℓy

)

. (35)

Here, ℓy is the typical lengthscale for g, which is another free parameter of
the solution. The convergence of g(y) towards the profile predicted by equa-
tion (35) is again confirmed by numerical simulations, see Fig. 8, right.

At large differential strain, the minimizers of our simplified model are given
by a sinusoidal function f(x) and a sawtooth function g(y), see equations (33)
and (35). From equation (12), the function f determines the profile of the film
when cut along a vertical plane perpendicular to the average direction of the
ridges, although the graph of g(y) yields the shape of the crest and valleys

7 For negative µ, we also have solutions in the form of hyperbolic sine and cosine
functions but the latter are not bounded and so are discarded.
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of the pattern. Therefore, the optimal pattern at large load in the quasi-1D
model is a developable surface obtained by folding a cylindrical shape along
sinusoidal ridges, similar to that shown in Fig. 2d.

6.3 Energy of the minimizers, width of the ridges

This argument can be pushed further: by studying in more detail what happens
near the angular points for f(x), we shall be able to estimate the energy of the
minimizers at large differential strain. The sawtooth profile (33) for f(x) is
unphysical near the angular points, where the bending energy diverges. There
is a small layer near these angular points where bending has to be taken into
account. This results in a profile that is regularized over a typical length δ
much smaller than ℓx. This length δ is similar to the width of circular ridge
studied by Pogorelov (1988). We shall estimate the ridge width δ along with
the total energy of the film for the problem at hand.

In the layer obtained by regularizing the angular points, which we call the
ridge, the order of magnitude of f ′ is, like everywhere, ηx

1/2. The second
derivative f ′′ is zero far from the ridges where f has a linear dependence on
x; across a ridge, f ′ changes sign, and so varies by an amount comparable to
ηx

1/2 over a length δ. This yields the estimate f ′′ ∼ ηx
1/2/δ in the ridge region.

As f ′′ is nonzero over a fraction δ/ℓx of the x axis, the average of its square is
estimated as

〈f ′′2 〉 ∼
(

ηx
1/2

δ

)2
δ

ℓx
∼ ηx

δ ℓx
. (36)

From this equation, we find that the bending energy (26) is of order:

Efb ∼ D 〈f ′′2 〉 ∼ D η

δ ℓx
. (37)

For simplicity, we assume from now on that the differential strain is not
severely anisotropic, i. e. that ηx and ηy have the same order of magnitude,
called η: we write η ∼ ηx ∼ ηy.

Let us come back to the remaining term in the stretching energy (26), which
is proportional to 〈g′′2〉〈F 2〉. The factor 〈g′′2〉 can be estimated easily, as equa-
tion (32) implies that g′ is a quantity of order 1. As a result, g′′ is comparable
to 1/ℓy, where ℓy is the typical length over which the smooth function g(y)
varies, and 〈g′′2〉 ∼ ℓy

−2. In order to estimate the other factor, 〈F 2〉, we note
that F is defined as the antiderivative of f ′2 − 〈f ′2〉, a quantity which is zero
everywhere, except in the ridge regions, of length δ, where it is comparable to
η. This yields

F ∼ δ η.
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Combining these results, we estimate the first term in the stretching energy
as

〈g′′2〉 〈F 2〉 ∼ δ2 η2

ℓy
2 (38)

Note in passing that we can validate the initial and main assumption of our
reasoning: if equation (32) were not satisfied, the stretching energy would be of
order Ehη2; when it is satisfied, it is of order Ehη2 (δ/ℓy)

2 by the calculation
above. Anticipating on the fact that δ ≪ ℓy, something that we shall check in
the end, we confirm the fact that the constraints (32) allow a drastic decrease
in the stretching energy, by a factor (δ/ℓy)

2.

We have just shown that the stretching energy of the film is comparable to

Es ∼ Eh〈g′′2〉 〈F 2〉 ∼ Eh
δ2 η2

ℓy
2 . (39)

The ridge width δ results from a balance of two antagonistic effects. The
stretching energy above is lower when δ is smaller, although the bending en-
ergy (37) is lower when δ is larger. Balancing these two terms, we obtain an
estimate for this width:

δ

ℓy
∼
(

h2

ℓxℓyη

)1/3

. (40)

Noting λ = 2π/k = 2π h∗C1/3 the wavelength of the initial, cylindrical buck-
ling pattern, and rescaling the in-plane lengths ℓx and ℓy using λ, we have

ℓx =
ℓx
λ

∼ ℓx
hC1/3

, ℓy =
ℓy
λ

∼ ℓy
hC1/3

. (41)

Recalling the definition (29) of the rescaled differential strain, we rewrite the
estimate for δ given above in equation (40) in terms of dimensionless quanti-
ties:

δ

ℓy
∼ 1
(

ℓx ℓy η
)1/3

. (42)

This expression confirms that the ridge width is small compared to the wave-
length ℓy in the strongly nonlinear limit, η ≫ 1, assuming that the wavelengths
of the pattern are comparable to the wavelength λ of the stripe pattern at the
onset of bifurcation threshold (ℓx,y ∼ λ implies ℓx,y ∼ 1). This makes our
approach consistent.

With the ridge width given in equation (42), the stretching energy (39) and
bending energy of the film are both of the same order of magnitude, and the
total energy of the film reads

Ef ∼ Eh

(

h2

ℓxℓy

)2/3

η4/3 = Eh
η4/3

C4/3 (ℓx ℓy)2/3
. (43)
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We shall now show that the energy of the substrate is negligible, that is much
smaller than Ef in this limit. The typical deflection w is found from equa-
tion (33) as w ∼ f ∼ η1/2 ℓx, whereas the wavevector k that brings the domi-
nant contribution to the substrate energy is 1/min(ℓx, ℓy). Plugging this into
the definition (8) of the substrate energy yields

Es ∼ Es η
ℓx

2

min(ℓx, ℓy)
.

The ratio of this substrate energy to the film energy (43) reads

Es

Ef
∼




ℓx
8/3

ℓy
2/3

min(ℓx, ℓy)





1

η1/3
. (44)

Whenever the right-hand side in equation (44) is small, the energy of the
substrate is negligible, |Es| ≪ |Ef |, and the total energy is estimated as:

Et ∼ Ef ∼ Eh
η4/3

C4/3 (ℓx ℓy)2/3
, provided

ℓx
8/3

ℓy
2/3

min(ℓx, ℓy)
≪ η1/3. (45)

This happens in particular in the limit of large load, η ≫ 1, when the pattern
wavelengths are comparable to the buckling wavelength λ at the onset of
bifurcation — then, ℓx and ℓy are of order unity.

The main result of this scaling analysis of the ridge is that the total energy
of the pattern goes like η4/3 at large differential strain, when all the other pa-
rameters remain unchanged, see equation (45). We have confirmed this scaling
behavior with the numerical simulations shown in Fig. 6, right. In this figure,
the numerical value of 〈f ′′2〉 at large η is also compared to a prediction that
can be made by combining equations (36) and (40), namely 〈f ′′2〉 ∼ η4/3, and
a good agreement is found.

6.4 Tentative prediction of wavelengths based on energy minimization

It is interesting to optimize the energy (45) of the pattern with respect to
its wavelengths, ℓx and ℓy. The result is somewhat surprising as we shall now
show that the optimal rescaled wavelengths are ℓx → 0 and ℓy → ∞. Indeed,
let us introduce a large number, ρ, which will soon be identified with the
aspect ratio ℓy/ℓx ≫ 1 of the pattern, and consider wavelengths that scale
like ℓy ∼ (η)1/7 ργ and ℓx ∼ (η)1/7/ρ1−γ , where γ is a number in the range
γ ∈ [1

2
, 5

7
]. By plugging these expressions into equation (45), we find that the

energy scales like Et ∼ E hC−4/3 η24/21/ρ
4
3 (γ− 1

2) and therefore goes to zero
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at fixed η when ρ → ∞, given that γ > 1
2
. The condition on the right-

hand side of equation (45) is satisfied provided 1/ρ
5−7 γ

3 → 0, and this is
indeed the case with γ < 5

7
. We have shown that the pattern that achieves

the absolute minimum of energy is made of curvilinear ridges with ℓx ≪ ℓy:
the spacing between ridges is much smaller than than the wavelength of these
sinusoidal ridges. A similar oddity will be obtained with the full model (Audoly
and Boudaoud, 2007c). In contrast, the two wavelengths of the pattern are
comparable in the experiments. This points to the fact that the wavelengths
of the pattern are not selected by energy minimization at large load but instead
by a trapping mechanism, as explained in Section 7.

6.5 On the shape of crests and valleys

At large load, we have found that the quasi-1D model predicts a developable
pattern made of piecewise cylindrical shapes connected by sinusoidal ridges, as
in Fig. 2d. In the last companion paper, we shall show that the exact model
predicts a similar pattern in this limit, but with zigzag crests and valleys
comprising angular points. This discrepancy concerning the shape of crests
and valleys is caused by the kinematical assumptions at the basis of the quasi-
1D model, as discussed in detail in the forthcoming paper. Although it does not
predict the correct ridge shapes, the quasi-1D model shows how undulating
patterns, obtained by a sequence of two buckling bifurcation, progressively
evolve towards a piecewise developable shape. Even more importantly, this
approximate models explains how the wavelengths of the pattern are selected,
as investigated in the next Section.

7 Selection of wavelength, metastability and trapping

In our simulations of the quasi-one dimensional model, the differential strain
is progressively increased from zero. As explained in Section 5, we observe a
bifurcation to a straight stripe pattern which becomes unstable towards an
undulating zigzag pattern — sometimes, the stripe pattern is not observed at
all as the system jumps directly to the zigzag pattern, see Fig. 5. When the
differential strain is further increased, the smooth undulating pattern evolves
progressively into a pattern with sharp curvilinear ridges, as shown in the
previous Section. When the loading is increased by small increments and the
system is allowed to relax at each step, this smooth transition from undulating
stripes to a developable pattern with ridges does not involve any noticeable
change in the wavelengths of the pattern (this concerns both the wavelength
along the average ridge direction and the spacing between neighboring ridges).
As a result, the piecewise developable patterns obtained at the maximum
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loading that the simulation can handle, typically η ∼ 103, have wavelengths
close to λ = 2π/k, the wavelength of the cylindrical pattern at the onset of
buckling.

In contrast, we argued in Section 6.4 that the pattern with lowest energy is
a piecewise developable shape having widely different longitudinal and trans-
verse wavelengths: its inter-crest spacing is much smaller than λ, although the
wavelength of the crests (and valleys) is much larger than λ. This points to
the fact that the system has many local equilibrium configurations and that it
is unable to pick that with lowest energy in the simulation. In the presence of
a small amount of dissipation, or when the dimension of the film is large but
finite, the wavelength of a pattern cannot not vary smoothly but by jumps,
by a local doubling of wavelength for instance. As a result, the system is able
to explore a limited set of wavelengths only. Consequently, the wavelength is
frozen during loading, and remains comparable to its value λ at the onset of
buckling. We claim that the wavelengths observed at relatively large buckling
number in the experiments result from this trapping mechanism, and not from
a principle of energy minimization.

In the present section, we provide numerical evidence of this trapping mech-
anism and show that a pattern keeps its wavelengths and overall geometry
unchanged (unless severely perturbed) even though they are no longer the
ones with lowest energy. The simulations presented in this section are carried
out on a domain several times larger than the initial wavelength of the in-
stability, and so the unit simulation cell comprises many wavelengths of the
pattern.

In Fig. 9, we illustrate the existence of several local equilibria by showing two
numerical equilibria observed in the same loading conditions but following
different loading histories. In the upper part of the figure, the pattern has been
obtained with a slowly increasing loading and the resulting pattern is periodic.
In the lower part of the figure, it has been obtained with a non-monotonic
loading varied by jumps; the resulting pattern is not periodic along the y
direction. The two patterns correspond to the same set of final parameters.
There are five wavelengths across the width of the unit cell in the first case,
and seven in the second case. This illustrates the dependence of the pattern
on the loading history, and the existence of many local equilibria.

This trapping mechanism is clearly demonstrated by the simulations shown in
Fig. 10. The simulation is started with a differential strain η a few times above
the primary threshold, typically η ≈ 5. Differential strain is then increased
smoothly. As explained earlier, the herringbone pattern obtained in this way
has periodic crests (or valleys) with a wavelength close to the initial buckling
wavelength λ. The spacing between these crests and valleys is of the same
order of magnitude. When η is further increased, the geometry of the pattern
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Fig. 9. Existence of multiple equilibria with identical parameters and loading. For
both simulations, the parameters are Nx = Ny = 128, ℓx = ℓy = 10π, ν = .3 and
η = 6.36 (a) Et = −31.9 (b) Et = −23.1. Note the difference in wavelengths.
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Fig. 10. Tracking of numerical solutions for a loading cycle. The system is ‘shaken’
at the maximum loading to allow better relaxation of the energy, and jumps to
a pattern with large wavelengths. The energy is plotted along this loading cycle,
revealing a hysteresis: under increasing loading, the numerical solution is trapped in
a local minimum of energy. Simulation parameters are Lx = 4π, Ly = 8π, Nx = 32,
Ny = 64, ν = .3

29



ηηI
c η′c

I

(P) (C) (U) (D)

Fig. 11. Summary of patterns under increasing load η. (P) flat, unbuckled state,
(C) straight wrinkles (cylindrical state), (U) undulating stripes, (D) Developable
pattern. The transitions from P to C and from P to U correspond to the primary
and secondary buckling at well-defined thresholds in compressive strain, whereas the
evolution from U to D is smooth. Pattern D has curvilinear ridges in the quasi-1D
model (see Section 6) but piecewise straight zigzag ridges in the full model (see
analysis of the Miura-ori pattern in the last companion paper).

changes very little, and none of the wavelengths varies noticeably (see insets on
top of Fig. 10); the only difference is that the pattern has a higher and higher
contrast as the deflection of the film increases. However, if the simulation is
reset to an almost flat configuration at large strain η, of the order of 1000, the
inter-crest spacing and longitudinal wavelength jump to the largest accessible
value, i.e. to the size of the simulation cell Lx and Ly. This is consistent
with the fact that the energy (45) decreases when the wavelengths ℓx or ℓy
increase 8 . When the loading η is decreased from there, down to values as
small as η ∼ 5, the wavelengths do not change either. We have computed the
energy along these two branches and found that the second pattern always has
a significantly lower energy that the first one. This means that the solution
obtained under increasing loading has remained trapped in a local equilibrium
configuration all the way up to the maximum applied loading, η ∼ 103.

The numerical observations in Fig. 10 confirm the findings of Section 6.3,
namely that the optimal wavelengths are widely different from the wavelength
λ at the onset of buckling. When the residual stress is gradually increased, the
pattern is not selected by global energy minimization: the transverse and lon-
gitudinal wavelengths of a herringbone pattern remain locked in a metastable
minimum under increasing load. In the experiments, they are probably fixed
by the initial and secondary buckling bifurcations, leading to undulating pat-
terns.
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8 Conclusion

In this paper, we investigated the formation of herringbone patterns in com-
pressed thin films bonded to a compliant substrate, based on a simplified
buckling model. This model is built by imposing kinematical constraints on
the film shape. These kinematical constraints were chosen so as to be compat-
ible with analytical solutions of the problem available in the limits of small
and large loads — the patterns such as the checkerboard that are unrelated
to the formation of herringbones, are not included in the present analysis.
This reduced model has the remarkable property that its stretching energy
vanishes whenever the actual stretching energy vanishes; as a result, smooth
developable surfaces are favored in the limit of large compression, as in the
exact model. A validation is provided by comparison of the results of a linear
stability analysis and of a weakly nonlinear analysis, based either on the sim-
plified or exact models. A similar buckling model has been used to analyze
multiscale, self-similar buckling patterns in thin elastic plates (Audoly and
Boudaoud, 2003), and might be applicable to other buckling problems.

Using numerical simulations of the simplified model, we recovered the initial
and secondary buckling bifurcations, first to a cylindrical pattern and second
to an undulating pattern. The undulating pattern evolves smoothly towards
a developable pattern with ridges at large differential strain. This developable
pattern is very similar to the Miura-ori pattern analyzed in the last companion
paper, and to the experimental herringbone patterns; a minor difference, com-
ing from the approximations introduced, is that the numerical minimizers have
curved — and not sawtooth-like — crests and valleys in the quasi-1D model.
By the developability condition, the ratio of principal residual stresses can be
extracted from the profile g(y) of the crests and valleys; see equation (32).

Our numerical simulations reveal that many equilibrium states are possi-
ble. When the compressive strain is gradually increased, the system remains
trapped in a local minimum of energy which is not the global one. As a result,
the longitudinal and transverse wavelengths of herringbone patterns in real
experiments are expected to be comparable to the buckling wavelength λ at
threshold; the precise value of its aspect ratio depends on the detailed history
of loading at the early stage of the experiment.

Our results are in qualitative agreement with the experiments showing herring-
bone patterns under approximately isotropic compression, by Bowden et al.
(1998) and Huck et al. (2000), and with the numerical simulations based on

8 Note that we do not obtain a pattern with a large aspect ratio ℓy ≫ ℓx after
the jump, as could be expected from the analysis of Section 6.4. This is probably
because the system has jumped to metastable state with a lower energy that is still
not the absolute energy minimum.
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the finite elements method by Chen and Hutchinson (2004) on the unit cell of
a periodic pattern. More specifically, we have rationalized the following obser-
vations. The existence of many metastable states accounts for the variability
of patterns in the experiments, as well as for the weak dependence of the
energy on the aspect ratio of the pattern in the simulations. The proposed
trapping mechanism accounts for the fact that the longitudinal wavelength of
the zigzags and the gap between them are comparable.

The simplified model allows one to propose a global scenario for the evolution
of the pattern, from undulating stripes to developable surfaces with ridges,
reminiscent of herringbones. This scenario accounts for many previous exper-
imental and numerical observations, except for the fact that, the profile of
the ridges is sinusoidal in the approximate model, unlike in the experiments.
This discrepancy will be resolved in the last companion paper (Audoly and
Boudaoud, 2007c), where exact solutions of the original equations are derived
in the limit of large buckling parameter.
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