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Abstract

We study the buckling of a thin compressed elastic Im bondedto a compliant
substrate. We focus on a family of buckling patterns, such tkat the Im prole is
generated by two functions of a single variable. This familyincludes the unbuck-
led con guration, the classical primary mode made of straidnt stripes, as well the
pattern with undulating stripes obtained by a secondary ingability investigated in
the rst companion paper, and the herringbone pattern studied in last compan-
ion paper. A simpli ed buckling model relevant for the analysis of these patterns
is introduced. It is solved analytically for moderate or for large residual compres-
sive stress in the Im. Numerical simulations are presented based on an e cient
implementation. Overall, the analysis provides a global pcture for the formation
of herringbone patterns under increasing residual stressThe Im shape is shown
to converge at large load to a developable shape with ridgesThe wavelength of
the pattern, selected in a rst place by the primary buckling bifurcation, is frozen
during the subsequent increase of loading.
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1 Introduction

Buckling of thin plates is a classical subject in engineeignmechanics. In par-
ticular, the buckling of multi-layered materials has receed much attention
due to its importance in the design of sandwich panels (Alleril969). This
eld has been the subject of recent work, in connection withite generation of
wrinkles in human skin or the templating and assembly of matels (see e.g.
Genzer and Groenewold, 2006, for a review). Here, we consitlee buckling
of a thin and sti Im bonded to a compliant substrate. In typi cal experi-
ments, thin metallic Ims are deposited on an elastomer (Boden et al., 1998;
Huck et al., 2000; Yoo et al., 2002). When the system is coolezbmpressive
residual stress is induced in the Im, caused by the mismatcim the thermal
expansion coe cients of the two layers. This can lead to buding into straight
wrinkles (Bowden et al., 1998), i. e. to a pattern that is invdant in one di-
rection and has cylindrical symmetry. Other patterns may ao appear (see
e.g. Audoly and Boudaoud, 2007a). Here we focus on herringieopatterns,
also called chevron or zigzag patterns, which have been obvsel for instance
by Huck et al. (2000); in such patterns, the crests and vallsyof the wrinkles
adopt characteristic zigzag shapes.

Herringbone patterns have been studied numerically. Chemd Hutchinson

(2004) simulated the elementary cell of a periodic herringime pattern, as-
sumed to be a parallelogram; they investigated the dependmnof energy on
the geometrical parameters of the cell. Huang et al. (2004hdertook simu-

lations on a grid much larger than the wavelength; they rst onsidered the
case of a Winkler foundation ( a foundation made of linear sjmgs) and later

(Huang et al., 2005) the case of a thick elastic foundation.ney observed her-
ringbones in either of the following conditions: with isotpic ! compressive
stress when the simulations is initialized with an array ofnascent' herring-
bones, or with anisotropic compressive stress and randonitialization.

In the rst companion paper (Audoly and Boudaoud, 2007a), wénvestigated
the stability of the straight wrinkles (stripe pattern); we found that these
wrinkles soon become linearly unstable with respect to a gatn compris-
ing undulating stripes. In the last companion paper (Audolyand Boudaoud,
2007c), herringbones are recovered as a solution of the etjpres for plates
on an elastic foundation, based on an asymptotic analysis the limit of a

large buckling parameter. The present paper aims at bridginthe gap be-
tween these limits of moderate (rst paper) and large bucktig parameters
(last paper), and shows that undulating stripes evolve smdidy towards her-
ringbones under increasing load. This analysis is based osimpli ed buckling

1 As in the companion papers, ‘isotropic' stress is used as a sgnym for “equi-
biaxial' and anisotropic’' as a synonym for biaxial but not equi-biaxial.



model which, as in Audoly and Boudaoud (2003), addresses thackling in a
well-chosen subspace of con gurations for which analyticand numerical so-
lutions can be derived. It provides a global picture of buckig into herringbone
patterns under increasing (from small to large) residual s#ss.

In this paper, our approach is to understand the formation olfierringbones at
large residual stress, characterized by faceted shapeshwsharp folds, and the
selection of wavelengths. This involves following the ewdlon of a particular
pattern, not necessarily that with the lowest energy, undeincreasing loads. We
do not include here the patterns that are unrelated to herrigbones even if they
can be observed at small residual stress | this is the case fatheckerboards
for instance. They have been the subject of the rst companimopaper.

The present paper is organized as follows. In Section 2, weigyy recall
the formulation of the problem, given in the companion pape(Audoly and
Boudaoud, 2007a). In Section 3, we introduce the simpli ed uzkling model
which is analyzed in the subsequent sections. In Section 4 @give the results
of the linear stability analysis and of the weakly post-budled analysis based
on this approximate model, and compare with the exact resdtof the rst
companion paper. In Section 5, we present comprehensive remoal simu-
lations of the model, which allow one to explore moderate taidge load. In
Section 6, we undertake an asymptotic analysis of the limitfdarge load, and
derive solutions which describes patterns similar to herrgbone, found in the
preceding numerical analysis. In Section 7, we point out thexistence of many
local equilibria at large load and discuss the selection dfi¢ pattern observed
in the experiments.

2 Formulation

We consider an thin elastic Im bound to an elastic foundatio. The dimen-
sions of the Im are in nite in its two in-plane directions. In the following,
we write the elastic energy of the system per unit area in theadmework
of Hookean elasticity, that is assuming a linearly elasticesponse. The Im is
loaded with a biaxial, uniform residual stress. We focus omé case of compres-
sive stress, which may make the Im unstable. The Im is desdoed by the
Feppl{von Karman plate equations with moderate de ecti ons (Timoshenko
and Gere, 1961). The foundation is assumed to be an in nitelgeep, linearly
elastic solid.
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Fig. 1. Geometry of the problem and notations.

2.1 Film

We denote theE, and h the Young's modulus, Poisson's ratio and thickness
of the Im, respectively. The reduced Young's modulus is deed asgE =
E=(1 2). The loading is given in terms of the dierential strain 2 ,
y between Im and substrate, thex and y directions being chosen as the
principal directions of this di erential strain (see Fig. 1for the geometry and
notations). By this, we mean that the residual stress in thelm is equivalent
to that obtained by starting from the stress-free con guraions of the Im
and substrate, contracting the Im by a factor , along the x direction and
y in the y direction, and nally binding the Im to substrate. This de nes
the reference con guration of the system. We are interestdad the subsequent
deformation of the Im and substrate in response to this loaidg.

We denote u(x;y), v(x;y) and w(x;y) the two components of the in-plane

displacements and the out-of-plane displacement of the ¢ensurface of the
Im, respectively. Then, the Im in-plane strain in actual con guration reads:
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Using the classical approximations of the Feppl-von Karman plate theory,
nonlinear terms involving the in-plane displacementy; v) have been neglected.
For simplicity, the Im material is assumed to be isotropic. The constitutive

2 Traditionally, the loading is characterized in terms of the residual stress in the Im
which, from equation (2), are related to the dierential strainby 9 = E( x+

y=1 Pand )= E(y+ =1 ),



equations for the Im are those for plane-strain, two dimernsnal elasticity:

E
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The stretching energy per unit area of the Im reads
1 h?

Es = oL > dx dy, 3)

while its bending energy per unit surface is given by the inggal of the squared
mean curvature: 1 pZ

— = 2\07\ 2 4
Bo= oy (W) dkay, (4)
wherer denotes the gradient of a function of two variablesx(y). According
to plate theory, the bending modulus is

_ EnRd
B= a7 ()

Finally, we write the total energy of the Im per unit area as

E = Es+ En. (6)
2.2 Substrate

The substrate, which lls the half-spacez < 0, has Young's modulu€g and
Poisson's ratio s. The substrate has linear elastic response. Introducing ¢h

Fourier transform of the Im de ection
z

W(ke ky) = dx dy wix;y)exp[ i(kex + kyy)l; (7)

the energy of substrate can be written as
1 Z
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It depends on only one parameteE_, which is proportional to Es and is a
function of Poisson's ratio g,
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For details, we refer to the rst companion paper (Audoly andBoudaoud,
2007a).

2.3 Optimization problem

The goal of the paper is to derive equilibrium solutions desbing buckled
states. This involves minimizing the total energy, which ishe sum of the Im
and substrate energies:

E(fu;v,wg) = E(fwg) + E(fu;v;wg). (10)

This energy has to be minimized with respect to the three conopents of the
Im's displacement,

(U y); V(X y); wix; y)),
for given values of the material parameters and di erentiabtrain ( ; ).

3 A simplied model for the analysis of buckling

As explained in the introduction, the rst companion paper § concerned with
small to moderate residual stress, and the last one with laggstress. In the
present one, we discuss the case of intermediate loading. particular, we
study the selection of the herringbone pattern and its wavehgth. This ques-
tion is of particular importance as we shall see that globahergy minimization
does not provide a consistent selection mechanism. The gexleguestion we
address here is how undulating stripe patterns evolve whemd di erential

strain is progressively increased from the initial bucklig threshold to much
larger values. This progressive increase of the loading daeke place in typi-
cal experiments, whereby a sample obtained at high tempetat cools down
progressively.

Pattern selection is di cult to approach based solely on nunerical simulations
(as in Huang et al., 2004, 2005) as it is impossible to vary sgmatically all
the parameters of the problem. Moreover, the nal pattern dpends largely
on the arbitrary initial condition. On the analytical side, we have exhausted
in the two companion papers all the methods that allow for exa results, by
exploiting the presence of a small parameter in the limits admall or large
load. In contrast, no analytical solution for the buckling poblem formulated
in Section 2 is available in the case of intermediate load. Fahis reason,
we introduce a simpli ed buckling model. It is designed in sth a way that
the essential features of the original model are retainedn éhe other hand, is
simple enough that it can be studied analytically and simulkad very e ciently.



3.1 Motivation

To introduce our simpli ed model, we shall rst list the various exact solutions
that can be derived for the Im shape, for di erent values of e residual stress.
The rst ones are the unbuckled solution, below the initial hreshold, and the
cylindrical mode (stripes) just above it:

w(x;y)=0 (11a)
w(x;y) = A coskXx), (11b)

whereA is the amplitude of the mode andk the wavenumber. These classical
solutions are recalled in the rst companion paper. The undating stripe
pattern, introduced in the same paper, is another solutionalid slightly above
the secondary threshold, which we rewrite as follows:

w(x;y) = A coskx) + bsin(k x) sin&lfqy) |
bsinkqy) v (11c)

+0 —

A k
cos A A

Here, b is the amplitude of the perturbation to the cylindrical mode, and
b A slightly above threshold;q de nes the aspect ratio of the pattern, that
is the ratio of the longitudinal and transverse wavenumbers

Another analytical solution, derived in the last companionpaper for large
di erential strain, is the Miura-ori pattern, de ned by

0

X + atan + S
w(xy)= AS@

b )
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D <
NI
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(11d)

where a and b now de ne the dimensions of the unit cell of this periodic
pattern.

We now formulate a key remark: for all the analytical solutios in equa-
tions (11a{11d), the de ection w(x;y) is of the form:

wixy) = f(x  g(y)), (12)

for some functionsf and g that depend on the pro le considered (see Fig. 2).
Indeed, for the unbuckled con guration,f (x) = 0 and g is arbitrary; for the
straight stripes, f (x) = A coskx) and g(y) = 0; for the undulating stripe
pattern, f (x) = A coskx) and g(y) = bsin(kgy)=(kA): for the Miura-ori
(herringbone) pattern, f (x) = AS(x=b and g(y) = atan (1=2+ S(y=a
1=2)).



Fig. 2. All the patterns derived so far belong the class of qusai-1D patterns, as de-
ned in equation (13a). (a) unbuckled, f (x) = 0 g(y) = 0; (b) straight stripes (cylin-
drical pattern), f (x) = :7 cosx, g(y) = 0; (c) undulating stripes, f(x) = :7 cosx,
g(y) = :6 siny; (d) developable surface with curvilinear ridgesf (x) = :8S(x),
g(y) = :6 siny; (e) herringbone pattern (also called Miura-ori and zigzagpattern),
f(x)=:8S(x), gly)=:7(1=2+ S(y 1=2)).

3.2 Kinematical constraints

Our aim is to study the transition from a at pattern to straig ht or undulating
stripes at small strain, and to a herringbone (Miura-Ori) pétern at large
strain. Since all these patterns are of the particular fornw(x;y) = f (x
a(y)), we propose to analyze the evolution of the pattern undemtreasing
loading within this reduced space of con gurations. In othewords, we suggest
to constrain the prole to be of the form w(x;y) = f(x g(y)), even at
intermediate load values. This approximation provides a wkaround to the
absence of analytical solutions to the full problem. It is rtaral given the
particular form of the various exact solutions.

Technically, we consider the buckling problem as a minimidan problem
within a reduced space of con gurations, which we caljjuasi-1D con gu-
rations. This space is de ned as

Q=fw(x;y)iw(xy)=f(x day)g, (13a)

where the vertical bar stands for "such that'. It has alreadypeen emphasized
that the planar, cylindrical, undulating stripes and Miura-Ori patterns all
belong to this class. Within this class, the de ection is nodnger an arbitrary



function of two variables. Instead, it is fully speci ed by wo functionsf and

g of a single variable. As a result, the Euler-Lagrange equatis associated
with the condition of energy minimum takes the form of couplke ordinary

di erential equations for f and g in the quasi-1D problem, instead of partial
di erential equations in the original problem. In numeric @lculations, the

number of degrees of freedom is () for a grid of sizeN N, instead of
(N?).

Even with the previous approximation, the Euler-Lagrangeauations express-
ing the condition of energy minimum are not solvable analytally because
the in-plane displacementsi(x;y) and v(x;y) are required in addition to the
de ection w(x;y). In order to avoid this di culty, we shall further constrai n
the kinematics of the Im and seek solutions within the clas® \R , where

R =fu(xy);v(xy);w(x;y)jr x =0&  =0g, (13b)

the strain being de ned in terms of the displacement by equain (1). In this
class, the Im has uniform strain component ,, and a vanishing in-plane
shear strain 2. This approximation was successfully used for the analysig
multiscale, self-similar buckling patterns (Audoly and Badaoud, 2003). It is
a reasonable approximation for studying the evolution of t system under
increasing load; indeed, developable surfaces, such that = 0 for  and

= X;Y, belong to the classR by de nition, those developable solutions
being the preferred solutions of the original problem at lge compressive
stress. Because of this, we avoid the di culties associateslith another popular
but much cruder approximation that consists in setting to zeo the in-plane
displacements (see Jin and Sternberg, 2001, for a discussid the drawbacks
of such models).

We do not claim that the two approximationsQ and R just proposed can be
justi ed rigorously. As a matter of fact, solutions of the smpli ed problem
are not solutions of the original problem and we do not expethe simpli ed
analysis of buckling that follows to agree in full details vih that based on the
original theory. Our assumptions are merely a set of convemt and reason-
able approximations that allow for analytical calculatiors and fast numerical
simulations, provide good insights into the phenomena andpture the main
features of transition towards herringbone patterns. Thisiew is supported by
the analysis of Section 4, where the analyses carried out inet rst compan-
ion paper on the full model is repeated, with similar resul{son the quasi-1D
model.

3 This classR treats di erently the two in-plane directions x andy, as yy may well
be nonzero. The resulting model is not covariant with respetto in-plane rotations.

This is not really a problem as the quasi-1D patternsQ that we consider are not
isotropic anyway.



3.3 Analytical reconstruction of in-plane displacement

We shall rst show that, using the kinematical hypothesisR, the in-plane dis-
placementsu and v can be reconstructed from the de ectiorw. The constrain
that the strain component ,, is uniform can be rewritten as 4 (X;y) = h xli.
Here and later, the bracketsh i stand for the average ovek andy of the quan-
tity inside, whereas the brackets i, denote the average in thex direction only.
This allows one to express! from equation (1a) as

|
1 @W2

2 @ (14)
—ho e
=hui+ o SO oY)

@u .
@X: hi +

Let F (x) be the antiderivative of (f ®(x) h f ®i) with a constant of integration
chosen such that~ is zero on average:

D E
Fx)=f®x) f® and hFi=0. (15)

In the absence of ambiguity, the averages of functions of thariable x only,
such asif @i, are notedh i or h iy indi erently.

By integration along x of equation (14) for@u=@»ne obtains
1D @E

. 1

UWGY)= i+ x5 % x SFE(x g+ ()

where is an arbitrary function of y. Now, u(x;y) has to a bounded function
for the substrate energy to remain nite. Therefore, the priactor of x in the

expression above has to vanish:

1 D E
hi = x Tt = fe ) (16)
2
which leads to 1
u(x;y) = > Fx aiy)+ (y). (17)

Having computedu(x;y), we can now obtainv(x;y) by plugging the kinemat-
ical assumption ,y(x;y) = 0 into equation (1b):

@v_ @Qu owaw
@x 1@y @x@y
= SOWMFX o) W+ aW%x o)

CPWFx g+ By 1)
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As for u, the displacementv has to be bounded and this implies that the
averaged derivative ofv with respect to x is zero:h@v=@x= 0. This yields,
usinghF4 =0 and hgd = 0 (as g(y) is periodic hence bounded):

) = 1 % gly).

We have averaged over the variablg only to obtain this equation. Plugging
back the above expression for?into the expression for@v=@and carrying
out the integration with respect to x, one obtainsv(x;y) as

vooy) = S F g+ W) (19)

where is another arbitrary function, to be determined.

3.4 Energy

Having determined the displacement, we can compute the sitra The compo-
nent ., which is constant by construction, has already been given iequa-
tion (16). The shear component is zero by construction. Theemaining com-
ponent, y, can be computed from equation (1c). This yields:

f(ﬁ
w (X y)= x+ - (19a)

xy(X;y)=0 (19b)
wxiy)= v+ %hf i g®(y) + %g"?y) F(x gy)+ qy).  (19c)

Anticipating the rest of the calculation, we decompose theakt component
into three contributions,

wy)= Qxy)+ D+ 9, (20)
de ned by
DY) = wy) h y(xy)i (21a)
By)= hy(y)ix h i (21b)
8 = hyi. (21c)

By construction, these quantities satisfy

h & (x;y)ix =0 for all y, and h & (y)i, = 0, (22)

11



which in particular implies h ) (x; y)i = h @ (x;y)i = 0. From equation (19c),
one can nd explicit expressions for these three terms:

G xy) = %go?y)F(x 9(y)) (23a)
)= %H‘@i @®(y) hag®)+ Ay) (23b)
W = y+%H@Hm%. (23c)

Indeed, one can notice thah 4 = 0, as implied by the equality h@v=@y 0
which comes itself from the fact that the displacement(x;y) is bounded.

With the aim to formulate a minimization problem with respedc to the two

unknown functionsf (x) and g(y) and the auxiliary function (y), we compute
the stretching the energy per unit area of the Im, de ned by guations (2a{2c)
and (3) in terms of the strain tensor:

Eh 1 4
(1 2 L«Ly

Ex(fu;viwg) = 5 dxdy (&t 5y T2 o yy):

When the decomposition (20) for , is plugged into this expression, all the
cross-products of the form () ), with i 6 j vanish upon integration due
to equation (22). This leads to the following expression faghe Im stretching
energy:

Es(f u; v; wg) =
Eh

2 2 2)\2; 3)\2 SR
D] hai2+ Y%+ )% +( 9)2+2 hyihyi . (24)

Here, the last term has been rewritten using the following eaqlities:
z
dXdy XX yy:hxx yylzhhxxl yylzhxxlh yyl,

L Ly
since 4y is uniform by construction.

In the stretching energy (24), the function enters via a single term, namely
h( (9)%?, whose value is given by equation (23b). Therefore, the opiality
condition of the stretching energy with respect to this funikon , which writes
formally as

Ess
_ = O'
qy)
leads to
2 —
@(y)=0.

This equation allows one to determine the auxiliary functio

L2 @®y) h o).

Uy) = 5

12



We can nally write the stretching energy of the Im for our reduced model
by combining the equations above:

0 |
Eh _hg®%hF2 @i 2
_ @
| | 1 1
H @i hg®i 2 H @i " H 2ihg®i '
SOy w2 L R A (29)

where the functionF is de ned by equation (15). Thanks to our kinematical
assumptions, we have been able to write the Im stretching emgy in a simple,
closed form.

The other contributions to the energy are the Im's bending eergy and the
substrate energy. The bending energy can be computed by pdigg the special
form of w(x;y) given in equation (13a) into equation (4). This yields

Eo(W2Q) = - HL+ g2 (yFint %(x)
N LA

[g°+ g®=3y’ [f ®=21* : (26)

The last two terms are boundary terms, which vanish wheh and g are as-
sumed to be periodic and continuous, which is what we do in tremulations.

The substrate energyEs(w 2 Q), de ned by equation (8), cannot be found
explicitly in terms of f and g. In the numerical simulations, it is computed
by a two dimensional Fourier transform of the pro lew(x;y) = f (x  g(y)).
For the analyses of stability of Section 4, this substrate engy is computed
by expansion near the bifurcation threshold.

We have derived a simpli ed model for the analysis of pattesin sti Ims
bonded to a compliant substrate. In this model, the total engy is the sum of
the Im stretching energy (25), the Im bending energy (26),and the substrate
energy de ned by equation (8) with a de ection of the form (12

EW2Q\R )= E(W2Q\R )+ Ep(W2Q)+ BE(W2Q)  (27)

To study this reduced model, we shall now consider the prolofeof minimizing
this energy with respect to the two functiond (x) and g(y), for di erent values
of the di erential strain ( «; y).

13



4 Linear stability and weakly nonlinear analyses

With the aim to validate our simpli ed model, we repeated theweakly nonlin-
ear analyses carried out in the companion paper, which ardeeant for small
loading, with the aim to compare to the results of the exact muel.

4.1 Primary buckling bifurcation

Let us rst consider the linear stability analysis of the unluckled state. We
use the same rescalings as in the companion paper, and de ne

h = qh:
12(1 2

as a unit of length. The sti ness contrast between the two lagrs reads

E h
C= = (28)

S

This large number is used to rescale the di erential strain:

- X . _ y
T C =3 YT C 2% (29)

For the sake of brevity, we shall not give the details of the & analysis of
linear stability, which is a classical method. The optimal Im shape predicted
by the simpli ed model from equation (27) bifurcates from phnar to buckled
state above a critical di erential strain. The buckled stak is characterized by
a harmonic pro le w(x;y) with amplitude A and wavenumberk satisfying:

w(x;y)= A %oskx)
A=2h =+ 7, 311 2 (30)
kh =C =
The planar state becomes linearly unstable when the argunenf the square

root de ning the amplitude A becomes positive. As in the companion paper,
the initial buckling threshold under isotropic loading is oted

=31 )

Remarkably, the primary instability (30) predicted by the smpli ed model
is identical to that predicted by the full model (see Audoly ad Boudaoud,
2007a). In both cases, the buckled state involves a harmorperturbation of

14



the Im with cylindrical symmetry; the instability thresho Id, and the ampli-

tude and wavenumbers of the unstable mode are identical. Itag be surprising
that the analysis of linear stability based on the approximie model allows one
to recover the exact results. The reason is that the simplifiyg kinematical as-
sumptions Q and R hold both for the planar state, and for cylindrical stripe
pattern immediately above the primary threshold*.

4.2 Secondary buckling bifurcation

Having studied the initial buckling bifurcation, we can andyze the secondary
bifurcations similarly. In the companion paper, this has ben done based on the
exact equations and we found that a secondary instability &sls to undulating
stripes; this secondary instability takes place:

strictly above the initial buckling threshold under anisotopic loading (namely
when either « or  reaches /),
concomitantly with the initial buckling under isotropic loading.

Here again, we shall not give the details of the analysis oh&ar stability of
the stripe pattern based on the quasi-1D model. The outcomé this analysis
is that straight wrinkles become linearly unstable with regect to undulat-
ing stripes too. This secondary instability takes place at ¢hreshold, denoted
9" in the isotropic case, which is always strictly above the itial threshold:

9 > | The dierent predictions regarding these thresholds is ggarent from
Fig. 3. We conclude that the analysis of the secondary bifustion based on the
simpli ed model is approximate, unlike that of the primary bifurcation. The
reason is that the solution describing undulating stripe p#ern in the original
model does not satisfy the kinematical hypothesiR. There are fewer poten-
tially unstable modes in the quasi-1D model as only those cqatible with
the kinematical assumptions are available; as a result, tHauckling threshold
is overestimated in the quasi-1D model. This discrepancy iis fact minor, for
two reason: rst, we qualitatively recover the same type ofexondary insta-
bility, leading to undulating stripes; second, the undulahg stripes is actually
the optimal shape of the quasi-1D model just above the primgarbuckling
threshold ., although this is not apparent from the present linear stality
analysis (see end of Section 5).

4 This is not a coincidence: the main motivation for the quasione dimensional
de ection, of the form (12), that is encompasses analyticalsolutions for the Im
pro le, which includes the cylindrical pattern.

15



Fig. 3. Linear stability analysis of the cylindrical patter n with respect to zigzags:
comparison of the predictions of the approximate quasi-1D rodel (solid curves) with
the exact result (dotted curves) from Audoly and Boudaoud (2007a). (a) Linearly
unstable longitudinal wavenumber g (dark grey region) and most unstable wavenum-
ber g (thick curve). (b) Rescaled amplitude b=A of the zigzag perturbation. Both
plots are made with Poisson's ratio =0:3.

4.3 Post-buckling analysis

These analysis of linear stability can be complemented by ¢tmonlinear anal-
ysis of post-buckled undulating stripes. The results, badeon either the full
or the quasi-1D model, are compared in Fig. 3. For the sake ofevity, we
omit the details of the calculations for the quasi-1D modelyhich are similar
to those for the full model obtained by Audoly and Boudaoud (@07a).

Although the simplied model does not yield exact predictios for the sec-
ondary instability threshold, it captures the most salientfeatures of the sys-
tem: the existence of a primary bifurcation leading to a stge pattern and of
a secondary bifurcation leading to undulating stripes areaptured correctly.
The thresholds and amplitudes relevant for the primary biftcations are exact,
although those for the secondary bifurcations are approxime (and compa-
rable to the exact ones). This validates our suggestion to @ghe quasi-1D
model as a toy model for analyzing the buckling of a sti Im boxded to a
compliant substrate. This is the aim of the rest of the papenvhere buckling
is investigated under intermediate to large loads.

5 Numerical simulations

The quasi-1D model is rst studied numerically, at intermedate loads: we
assume the di erential strain to be signi cantly larger | bu t not larger by
orders of magnitude | than the primary and secondary threshdds . and 2.

In the absence of analytical methods of solution applicable this situation,
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Fig. 4. A typical simulation session of the quasi-1D model, ér increasing values of
dimensionless load™ (bold arrows). (a) Numerical solutions f (x) and (b) g(y) for
di erent values of ~. (c) Visualization of the de ection w(x;y) = f(x g(y)) for a
particular value of — = 6:37, corresponding to the thick curvesf (x) and g(y) in (a)
and (b). The simulation extends over (X;y) 2 [O0;Lx] [0;Ly] with Ly = Ly =4 ,
and is for isotropic load.

we resort to numerical simulations.

5.1 Implementation

The energy of the quasi-one dimensional model (27) is minimaid with respect
to the values of the functionsf (x) and g(y) discretized on even meshes, each
having a number of points that is a power of 2, in the range 6485. The
stretching and bending energy of the Im, given by equation$25) and (26),
are computed using nite di erences. The energy of the subsite (8) is com-
puted using a Fast Fourier transform algorithm (FFT). The erergy is then
minimized by the method of conjugate gradient descent. Theze L, L, of
the squared simulation cell is chosen at the beginning of tsémulation. Using
periodic boundary conditions, we e ectively simulate an imite array of such
elementary cells. Ideally, our simulation cell is much lagy than the expected
size of the buckling pattern, which is of order 2 in dimensionless units (recall
that the wavenumber of the primary instability is 1 in dimensonless units);
in some cases, especially when using a ne spatial discratibn, the actual
dimensions of the simulation cell had to be lowered to valueomparable to
wavelength of the buckling pattern in order to keep the simalion time rea-
sonable. We used rescaled quantities in all the numericahsilations, thereby
avoiding to introduce unnecessary errors caused by machiaecuracy.

In our simulations, we focused on the case of isotropic diential strain,
~— = x = 7. Then, the only control parameter in the simulation is the
rescaled dierential strain, —. The result of a typical simulation session is
shown in Fig. 4. The functionsf and g are initialized with very small, ran-
dom values. Starting from~— = 0, we progressively increase the di erential
strain, and observe the pro les of the numerical minimizer§ (x) and g(y). As

explained earlier, the kinematical assumptions in the modlallow for o ine,
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symbolic calculations of the in-plane displacement. The kalations that re-

main to be done online are essentially the calculation of iegrals involvingf , g,

their derivatives and powers, which is e ectively a one-diensional problem®,

and can be done very quickly, at an interactive rate on a stamad personal
computer. This makes it quite easy to track solutions undemncreasing or de-
creasing loading, and to discriminate between continuoushd discontinuous
bifurcations, as reported in the end of the present Section.

5.2 Results

In the simulation shown in Fig. 4, we rst observe the unbucldd state for low
di erential strain: f (x) Oforallx andg(y) O forally. When~ isincreased
above a primary threshold, the functiorf starts to make undulations, although
the prole g(y) remains at. This corresponds to the stripe pattern. At a
secondary threshold, the functiong starts to make undulations, producing
undulating stripes. The values of the thresholds, amplituels and wavelength
are studied in details next, see Fig. 5. They are consistenttivthe analytical

predictions of Section 4. When the loading is further incresd, the functionf

changes progressively from a sinusoidal to a non-smoothwsaoth-like shape.

In Fig. 5, we present a more detailed analysis of the simulati results, for
= 0:3. When the loading is increased, starting front = 0, the unbuckled
pattern, characterized by % = 0 and hg®i = 0 is rst observed. At a
threshold very close to that predicted by the theory; = =L =3(1 ) =2:1,
the function f (x) bifurcates. This corresponds to the emergence of a stripe
pattern, set inset (B), with a wavelength, 2 in rescaled units, consistent with
that predicted by the linear stability analysis. The squaredamplitude of the
pattern, Hf @i, is found to vary linearly with the distance to threshold L
this is characteristic of a supercritical (continuous) bifircation. This is all in
agreement with the results of the previous section and witthbse of the exact
model given in the rst companion paper (Audoly and Boudaoud2007a).

The stripe pattern persists until a secondary threshold issached. This thresh-
old is very close to the threshold,2( = :3) = 5:88, predicted by linear
stability analysis of the straight wrinkles, see Section 4This secondary bi-
furcation turns out to be subcritical (discontinuous): boh the energy and the
number hg%i change by a nite amount in a single simulation step. Above

5 At every step in the minimization, we need to reconstruct the 2D pro le of the
plate using equation (12) before we can carry out the fast Foder transform nu-
merically. This is the only operation that is two-dimensional, i. e. that involves N 2
operations whereN is the number of discretization points). Being based on a higly
optimized algorithm, the fast Fourier transform, it remain s very quick and did not
slow noticeably the calculation down.
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Fig. 5. Simulations based on the quasi-1D model. In the uppeteft part of the

diagram, the quantities H @i and hfgi are given as a function of the control param-
eter , which is rst increased and then decreased. Two bifurcatims, involving f

rst and then g, take place very close to the theoretical thresholds (verital dotted

lines). A hysteresis curve is followed when the loading is st increased and then
decreased. In the lower left diagram, the energy of the solibn is plotted. On the

right-hand sides, the 3D con gurations of a few representaive con gurations are
shown. The rectangular simulation cell has dimension& x = Ly =4 and resolution
Ny = Ny = 32. Poisson's coe cientis =0:3.

the secondary threshold, undulating stripes are obtainedhe evolution of this
pattern when the loading is further increased is analyzed ithe next section.

When the loading is subsequently decreased, the solutioriléwvs a hysteresis
cycle. Below™? (but above ), the Im pattern is still given by undulating

stripes, although it was made of straight stripes during thdoading stage
in the same range of di erential strain. The energy pro le atthe bottom of
Fig. 5 reveals that the undulating pattern has a lower energthan the straight

stripes. In retrospect, it appears that the system has remaed trapped in a
local minimum of energy in the range™. < ~< ~9 and under increasing
loading, which it could not escape until this local energy mimum became

linearly unstable, at 2.
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These numerical results are in complete agreement with thenalysis of the
simpli ed model presented in the previous section. Furthenore, the numerical
observation of a hysteresis cycle mitigates the main dis@ancy found between
the exact model and the simpli ed one. Recall that, with the gact model
under isotropic isotropic loading, straight stripes becom linearly unstable
immediately above the initial buckling threshold—., although in the quasi-1D
model they were found to remain linearly stable over a range, < —<
which extends much beyond the initial buckling threshold. A revealed by
the numerics, undulating stripe patterns are actually preant in the quasi-1D
model immediately above the initial threshold too, and arendeed the state
of lowest energy | however, they are not accessible by the amgsis of linear
stability as they appear by a discontinuous bifurcation.

6 Analytical and numerical solution in the limit of large loa d

Numerical simulations have con rmed the emergence of an ualkhting pattern
by a sequence of two bifurcations, namely an initial bifurd¢eon towards a
cylindrical pattern and a secondary bifurcation leading taindulations. In the
present section, we investigate how this pattern evolves wh residual stress is
further increased. We show in details how the pattern, emergy in a rst place
as a small amplitude perturbation on top of the straight strpe pattern, evolves
progressively towards a developable shape with crests arallgys comprising
angular points. We shall also address the selection of the wedengths of the
pattern obtained at large di erential strain, a question whch has remained
unsettled so far.

6.1 Penalization of the stretching energy

We shall show that the quasi-1D model can be solved analytibain limit

of large dierential strain, —, 1and™, 1. As explained before, this
model is based on approximations but is expected to provideogd insights
into the behavior of the full model | in the last companion paper, we discuss
in detail the similarities and di erences of the predictiors of the two models
for large load. Note that, by large di erential strain, we men large rescaled
di erential strain — = =C 22 1. The stiness contrast C is a large
number by assumption and so the rescaled strain can be largkhaugh the

physical strain remains small; in fact, this happens when
1 - Cc= (31)

In this regime, it is consistent to use the assumption of a lear elastic response
for the substrate and the Feppl-von Karman equations forthe Im. In the rest
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Fig. 6. Numerical con rmation of the scaling laws for @, rgozi, Hf 9€i, and E at
large ~. Simulation parameters areLyx = Ly =2 , Ny =64, Ny =32 and =0:3,
with isotropic di erential strain.

of this section, we consider this range of loading, de ned gquation (31): we
derive the features of the energy minimizers analyticallyral compare with
numerical simulations.

A classical result of plate theory is that the stretching engy, associated with
a stiness E h directly proportional to the small parameterh, becomes dom-
inant over the bending energy whose sti nesg h?® scales like the third power
of h. As a result, thin plates subjected to signi cant load attenpt to minimize
their stretching energy in a rst place (mathematically, this de nes a penal-
ization problem). Unless this is prevented by the boundaryanditions or by
the geometry, their center-surface adopts a pro le close ta developable sur-
face | this happens for instance in folds and d-cones analyzkby Lobkovsky
(1996); Ben Amar and Pomeau (1997). Therefore, we expect thptimal Im
shapes to make the Im stretching energy (25) vanish at domant order:

0 1

Eh g% hF2i @i 2
= @
| 1 1
H @i hgi 2 ik H @i hg@i '
SR A S S 2

The same argument will be used in the last companion paper wieewe study
a family of developable patterns. For large di erential stain , and y, there
are two types of factors that become formally large in this gxession, namely
(F% =2 ,)?and (H ®ihg®i=2 )2 We conjecture that the functionsf (x)
and g(y) with lowest energy make these terms cancel:

H% 2, n% 2 (32)

X

as this the best way to lower the energy of the system. The prietion (32) is
con rmed by the numerical simulations shown in Fig. 6. In thee simulations,
the di erential strain is isotropic, x = , and sohg®i is expected to converge

to 1 for large™, = 7.
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Fig. 7. Sawtooth function, as de ned by equation (34).
6.2 Optimal Im prole

We are left with one single term in the stretching energy, poortional to
hF2i. The function F has been de ned in equation (15) as the antiderivative
of f® h f®i. In order to minimize hF?2i, the function f should be such that
f 2(x) h f 2 almost everywhere. Combining with equation (32), this yiels

fdz(x) 2 4 for almost all x.

The solutions for this equation are sawtooth functions, wit slope pz—x.
One possibility is that the sign off ° change periodically, as happens with the

following function:
F()! (2 )F2,Ss &, (33)
X

where *, is half the wavelength, a free parameter of the solution. Inhis
equation, we have introduced the sawtooth function with péod 2,

2 1t if 1 t 1=2;
S(t) = Bt if 1=2 t 1=2 (34)
10t if1=2 t 1
extended by periodicity for allt by S(t +2) = S(t)

This function is plotted in Fig. 7.

Equation (33) is not the only possibility for f (x) as one can replaces by
an irregular function S such that jSYu)j = 1 almost everywhere. Irregular
sawtooth functions are likely to be less favorable as theirelnding energy is
unevenly distributed across the Im area, but they may welléad to metastable
energy minima. The convergence 6f(x) towards the pro le predicted by equa-
tion (33) has been observed in the simulations, see Fig. &tlaevith appropriate
initial data . We shall limit ourselves to formal arguments, without attenpt-

6 f (x) converges to the regular sawtoothS(x) when the load is gradually increased
past the secondary threshold ¢, following the procedure discussed in Section 7.
If the simulation is started with a arbitrary value of the di erential strain, f (x)
converges to an irregular sawtoothS.
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Fig. 8. Numerical con rmation of the convergence of the fundions f (x) and g(y) to
the pro les given by equations (33-35) for large™. The parameters of the simulation
are the same as in Fig. 6.

ing to establish the convergence by rigorous arguments.

In order to derive the function g(y) in this limit of large applied loading, we
shall rst assume thathF?i converges to a nonzero value, a hypothesis that will
be checked to be consistent at the end. The optimization prédm for g is that
the remaining term in the stretching energy, namehhg®%hF2i, is minimum
under the constrainthg®i = y= x coming from equation (32). Technically, this
constrained minimization problem can be solved using a Lagrge multiplier
, and we seek the minimum of the functional
z z
g®dy g®dy.

The corresponding Euler-Lagrange condition is the di ereial equation g°°t%)+

g °Py) = 0; its bounded solutions are harmonic’ functions, up to an additive
constant that is unimportant as it corresponds to a translabn of the pattern
along the x axis. For a similar reason, we x the phase of the functiom(y)
arbitrarily, as it corresponds to a translation of the patten along they axis.
This yields, in the limit of large di erential strain:

| 12 !

ay)! 22  ysin L. (35)
X y
Here, " is the typical lengthscale forg, which is another free parameter of
the solution. The convergence of(y) towards the pro le predicted by equa-
tion (35) is again con rmed by numerical simulations, see Fi 8, right.

At large di erential strain, the minimizers of our simpli e d model are given
by a sinusoidal functionf (x) and a sawtooth functiong(y), see equations (33)
and (35). From equation (12), the functionf determines the pro le of the Im
when cut along a vertical plane perpendicular to the averagirection of the
ridges, although the graph ofg(y) yields the shape of the crest and valleys

’ For negative , we also have solutions in the form of hyperbolic sine and case
functions but the latter are not bounded and so are discarded

23



of the pattern. Therefore, the optimal pattern at large loadin the quasi-1D
model is a developable surface obtained by folding a cylindal shape along
sinusoidal ridges, similar to that shown in Fig. 2d.

6.3 Energy of the minimizers, width of the ridges

This argument can be pushed further: by studying in more detiawhat happens
near the angular points forf (x), we shall be able to estimate the energy of the
minimizers at large di erential strain. The sawtooth prole (33) forf (x) is
unphysical near the angular points, where the bending engrgiverges. There
is a small layer near these angular points where bending haslie taken into
account. This results in a pro le that is regularized over a {pical length
much smaller than . This length is similar to the width of circular ridge
studied by Pogorelov (1988). We shall estimate the ridge wid along with
the total energy of the Im for the problem at hand.

In the layer obtained by regularizing the angular points, with we call the
ridge, the order of magnitude off © is, like everywhere, ,*2. The second
derivative f ©is zero far from the ridges wheré has a linear dependence on
x; across a ridgef ° changes sign, and so varies by an amount comparable to
«2 over a length . This yields the estimatef ° 2= in the ridge region.
As f %is nonzero over a fraction=", of the x axis, the average of its square is

estimated as |
2 2

b 08

- = (36)

X X

From this equation, we nd that the bending energy (26) is of ader:

En D% b (37)

X
For simplicity, we assume from now on that the dierential stain is not
severely anisotropicj. e. that , and , have the same order of magnitude,
called : we write x y-

Let us come back to the remaining term in the stretching eneyg(26), which
is proportional to hg®®ihF 2i . The factor hg®®i can be estimated easily, as equa-
tion (32) implies that g°is a quantity of order 1. As a result,g®is comparable
to 1=y, where ', is the typical length over which the smooth functiong(y)
varies, andhg®®  °, 2. In order to estimate the other factor,hF2i, we note
that F is de ned as the antiderivative off ® h f @i, a quantity which is zero
everywhere, except in the ridge regions, of length where it is comparable to
. This yields
F
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Combining these results, we estimate the rst term in the swtching energy

as
2 2

hg®ihF3  — (38)
y

Note in passing that we can validate the initial and main assuaption of our
reasoning: if equation (32) were not satis ed, the stretchig energy would be of
order Eh ?2; when it is satis ed, it is of orderEh 2( =",)? by the calculation
above. Anticipating on the fact that 'y, something that we shall check in
the end, we con rm the fact that the constraints (32) allow a dastic decrease
in the stretching energy, by a factor (=" ).

We have just shown that the stretching energy of the Im is comparable to

2 2
E Ehhg®hF% Eh-—. (39)
y

The ridge width  results from a balance of two antagonistic e ects. The
stretching energy above is lower when is smaller, although the bending en-
ergy (37) is lower when is larger. Balancing these two terms, we obtain an

estimate for this width: |
h2 *1=3

y Xy
Noting =2 =k =2 h C?* the wavelength of the initial, cylindrical buck-
ling pattern, and rescaling the in-plane lengths, and "y using , we have

(40)

< _ ‘X X . - ‘y ‘y
=7 he®m YT hem 0

Recalling the de nition (29) of the rescaled di erential stain, we rewrite the
estimate for given above in equation (40) in terms of dimensionless quant
ties:

- —=. (42)

<
|

This expression con rms that the ridge width is small compad to the wave-
length ° in the strongly nonlinear limit, = 1, assuming that the wavelengths
of the pattern are comparable to the wavelength of the stripe pattern at the
onset of bifurcation threshold (., implies ~x.y 1). This makes our
approach consistent.

With the ridge width given in equation (42), the stretching energy (39) and
bending energy of the Im are both of the same order of magnitle, and the
total energy of the Im reads

|
h2 %3 —4=3

T~ 4= = Eh o~ — Ao 43
Xy C4=3( X y)2=3 ( )

E Eh
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We shall now show that the energy of the substrate is neglidgdy that is much
smaller than E in this limit. The typical de ection w is found from equa-
tion (33) asw f 122, whereas the wavevectok that brings the domi-
nant contribution to the substrate energy is £min("y; 'y). Plugging this into
the de nition (8) of the substrate energy yields

~ 2

E, — X .
= B i)

The ratio of this substrate energy to the Im energy (43) read

O\—8:3\—2:31 1
5 @x v _a

Ei min(yx;’y)

(44)

Whenever the right-hand side in equation (44) is small, thenergy of the
substrate is negligible jEj JE ¢j, and the total energy is estimated as:

—4=3 <—8=3<+2=3
E Eh ——————; provided >—Y— =, 45
"B BhemeyE PO ) )
This happens in particular in the limit of large load,” 1, when the pattern

wavelengths are comparable to the buckling wavelength at the onset of
bifurcation | then, ~x and ", are of order unity.

The main result of this scaling analysis of the ridge is thathe total energy
of the pattern goes like=*= at large di erential strain, when all the other pa-
rameters remain unchanged, see equation (45). We have caned this scaling
behavior with the numerical simulations shown in Fig. 6, rigt. In this gure,
the numerical value oftf %j at large ~ is also compared to a prediction that
can be made by combining equations (36) and (40), nametf/°®i 4= and
a good agreement is found.

6.4 Tentative prediction of wavelengths based on energy mization

It is interesting to optimize the energy (45) of the pattern vith respect to

its wavelengths,”, and "y. The result is somewhat surprising as we shall now

show that the optimal rescaled wavelengths arg ! Oand’y!1 . Indeed,

let us introduce a large number, , which will soon be identied with the

aspect ratio "= 1 of the pattern, and consider wavelengths that scale

ike -y (¥ and*y ()¥'=1! , where is a number in the range
2 [%; %]. By plugging these expressions into equation (45), we nchat the

energy scales likede EhC 48—2421= s( 2) and therefore goes to zero
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at xed “~when ! 1 | given that > % The condition on the right-
5 7

hand side of equation (45) is satised provided 4 3~ ! 0, and this is

indeed the case with < % We have shown that the pattern that achieves
the absolute minimum of energy is made of curvilinear ridgesith ", "y:

the spacing between ridges is much smaller than than the wadeegth of these
sinusoidal ridges. A similar oddity will be obtained with tte full model (Audoly

and Boudaoud, 2007c). In contrast, the two wavelengths of ¢hpattern are
comparable in the experiments. This points to the fact that he wavelengths
of the pattern are not selected by energy minimization at laye load but instead
by a trapping mechanism, as explained in Section 7.

6.5 On the shape of crests and valleys

At large load, we have found that the quasi-1D model predicta developable
pattern made of piecewise cylindrical shapes connected lgusoidal ridges, as
in Fig. 2d. In the last companion paper, we shall show that thexact model
predicts a similar pattern in this limit, but with zigzag crests and valleys
comprising angular points. This discrepancy concerning ¢hshape of crests
and valleys is caused by the kinematical assumptions at thesis of the quasi-
1D model, as discussed in detail in the forthcoming paper. thbugh it does not
predict the correct ridge shapes, the quasi-1D model showsvh undulating
patterns, obtained by a sequence of two buckling bifurcatip progressively
evolve towards a piecewise developable shape. Even more ongntly, this
approximate models explains how the wavelengths of the patin are selected,
as investigated in the next Section.

7 Selection of wavelength, metastability and trapping

In our simulations of the quasi-one dimensional model, the drential strain
is progressively increased from zero. As explained in Secti5, we observe a
bifurcation to a straight stripe pattern which becomes unsible towards an
undulating zigzag pattern | sometimes, the stripe pattern is not observed at
all as the system jumps directly to the zigzag pattern, see &i 5. When the
di erential strain is further increased, the smooth unduldéing pattern evolves
progressively into a pattern with sharp curvilinear ridgesas shown in the
previous Section. When the loading is increased by small nements and the
system is allowed to relax at each step, this smooth transin from undulating
stripes to a developable pattern with ridges does not invadvany noticeable
change in the wavelengths of the pattern (this concerns botihe wavelength
along the average ridge direction and the spacing betweenigt@boring ridges).
As a result, the piecewise developable patterns obtained #te maximum

27



loading that the simulation can handle, typically= 10°, have wavelengths
close to = 2 =k, the wavelength of the cylindrical pattern at the onset of
buckling.

In contrast, we argued in Section 6.4 that the pattern with lavest energy is
a piecewise developable shape having widely di erent lomgdlinal and trans-
verse wavelengths: its inter-crest spacing is much smalklwan , although the
wavelength of the crests (and valleys) is much larger than. This points to
the fact that the system has many local equilibrium con guréions and that it
is unable to pick that with lowest energy in the simulation. h the presence of
a small amount of dissipation, or when the dimension of the nh is large but
nite, the wavelength of a pattern cannot not vary smoothly hut by jumps,
by a local doubling of wavelength for instance. As a resulthe system is able
to explore a limited set of wavelengths only. Consequentlihe wavelength is
frozen during loading, and remains comparable to its value at the onset of
buckling. We claim that the wavelengths observed at relataly large buckling
number in the experiments result from this trapping mechasim, and not from
a principle of energy minimization.

In the present section, we provide numerical evidence of ghtrapping mech-
anism and show that a pattern keeps its wavelengths and ovérgeometry
unchanged (unless severely perturbed) even though they ame longer the
ones with lowest energy. The simulations presented in thigdion are carried
out on a domain several times larger than the initial wavelegth of the in-
stability, and so the unit simulation cell comprises many welengths of the
pattern.

In Fig. 9, we illustrate the existence of several local eqiltia by showing two

numerical equilibria observed in the same loading conditis but following

di erent loading histories. In the upper part of the gure, the pattern has been
obtained with a slowly increasing loading and the resultingattern is periodic.

In the lower part of the gure, it has been obtained with a nonmonotonic
loading varied by jumps; the resulting pattern is not periott along they

direction. The two patterns correspond to the same set of rigparameters.
There are ve wavelengths across the width of the unit cell inhe rst case,

and seven in the second case. This illustrates the dependeraf the pattern

on the loading history, and the existence of many local eqiltia.

This trapping mechanism is clearly demonstrated by the sintations shown in
Fig. 10. The simulation is started with a di erential strain — a few times above
the primary threshold, typically = 5. Di erential strain is then increased
smoothly. As explained earlier, the herringbone pattern dhined in this way
has periodic crests (or valleys) with a wavelength close tté initial buckling
wavelength . The spacing between these crests and valleys is of the same
order of magnitude. When™ is further increased, the geometry of the pattern
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Fig. 9. Existence of multiple equilibria with identical par ameters and loading. For
both simulations, the parameters areNy = Ny =128, 'y = 'y =10 , = :3 and
—=6:36 () ;= 319 (b) &t = 231. Note the di erence in wavelengths.
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Fig. 10. Tracking of numerical solutions for a loading cycle The system is “shaken'
at the maximum loading to allow better relaxation of the energy, and jumps to

a pattern with large wavelengths. The energy is plotted alorg this loading cycle,
revealing a hysteresis: under increasing loading, the nunmizal solution is trapped in

a local minimum of energy. Simulation parameters areLy =4 , Ly =8 , Ny =32,

Ny =64, =3
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Fig. 11. Summary of patterns under increasing load . (P) at, unbuckled state,
(C) straight wrinkles (cylindrical state), (U) undulating stripes, (D) Developable
pattern. The transitions from P to C and from P to U correspond to the primary
and secondary buckling at well-de ned thresholds in compresive strain, whereas the
evolution from U to D is smooth. Pattern D has curvilinear rid ges in the quasi-1D
model (see Section 6) but piecewise straight zigzag ridges ithe full model (see
analysis of the Miura-ori pattern in the last companion paper).

changes very little, and none of the wavelengths varies no#iably (see insets on
top of Fig. 10); the only di erence is that the pattern has a hgher and higher
contrast as the de ection of the Im increases. However, ifiie simulation is
reset to an almost at con guration at large strain —, of the order of 1000, the
inter-crest spacing and longitudinal wavelength jump to tk largest accessible
value, i.e. to the size of the simulation cellLy and L,. This is consistent
with the fact that the energy (45) decreases when the wavelgihs ", or °y
increasé . When the loading ~ is decreased from there, down to values as
small as— 5, the wavelengths do not change either. We have computed the
energy along these two branches and found that the second feath always has

a signi cantly lower energy that the rst one. This means tha the solution
obtained under increasing loading has remained trapped in@cal equilibrium
con guration all the way up to the maximum applied loading,~ 1C°.

The numerical observations in Fig. 10 conrm the ndings of $&ction 6.3,
namely that the optimal wavelengths are widely di erent fron the wavelength

at the onset of buckling. When the residual stress is graduglincreased, the
pattern is not selected by global energy minimization: theransverse and lon-
gitudinal wavelengths of a herringbone pattern remain lo@d in a metastable
minimum under increasing load. In the experiments, they arprobably xed
by the initial and secondary buckling bifurcations, leadig to undulating pat-
terns.
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8 Conclusion

In this paper, we investigated the formation of herringbon@atterns in com-
pressed thin Ims bonded to a compliant substrate, based on simpli ed
buckling model. This model is built by imposing kinematicalconstraints on
the Im shape. These kinematical constraints were chosen as to be compat-
ible with analytical solutions of the problem available in he limits of small
and large loads | the patterns such as the checkerboard that ee unrelated
to the formation of herringbones, are not included in the psent analysis.
This reduced model has the remarkable property that its sttehing energy
vanishes whenever the actual stretching energy vanishes, a result, smooth
developable surfaces are favored in the limit of large congssion, as in the
exact model. A validation is provided by comparison of the sailts of a linear
stability analysis and of a weakly nonlinear analysis, badeeither on the sim-
plied or exact models. A similar buckling model has been udeto analyze
multiscale, self-similar buckling patterns in thin elastt plates (Audoly and
Boudaoud, 2003), and might be applicable to other bucklingrpblems.

Using numerical simulations of the simpli ed model, we recered the initial
and secondary buckling bifurcations, rst to a cylindricalpattern and second
to an undulating pattern. The undulating pattern evolves snoothly towards
a developable pattern with ridges at large di erential stran. This developable
pattern is very similar to the Miura-ori pattern analyzed inthe last companion
paper, and to the experimental herringbone patterns; a mimali erence, com-
ing from the approximations introduced, is that the numerial minimizers have
curved | and not sawtooth-like | crests and valleys in the qua si-1D model.
By the developability condition, the ratio of principal resdual stresses can be
extracted from the pro le g(y) of the crests and valleys; see equation (32).

Our numerical simulations reveal that many equilibrium stées are possi-
ble. When the compressive strain is gradually increased,ebsystem remains
trapped in a local minimum of energy which is not the global an As a result,
the longitudinal and transverse wavelengths of herringb@npatterns in real
experiments are expected to be comparable to the buckling vedength  at

threshold; the precise value of its aspect ratio depends olmet detailed history
of loading at the early stage of the experiment.

Our results are in qualitative agreement with the experimes showing herring-
bone patterns under approximately isotropic compressiofgy Bowden et al.
(1998) and Huck et al. (2000), and with the numerical simulans based on

8 Note that we do not obtain a pattern with a large aspect ratio Ty "y after
the jump, as could be expected from the analysis of Section 4. This is probably
because the system has jumped to metastable state with a lowenergy that is still
not the absolute energy minimum.
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the nite elements method by Chen and Hutchinson (2004) on g unit cell of
a periodic pattern. More speci cally, we have rationalizedhe following obser-
vations. The existence of many metastable states accounty the variability
of patterns in the experiments, as well as for the weak depesite of the
energy on the aspect ratio of the pattern in the simulationsThe proposed
trapping mechanism accounts for the fact that the longitudial wavelength of
the zigzags and the gap between them are comparable.

The simpli ed model allows one to propose a global scenariorfthe evolution
of the pattern, from undulating stripes to developable sudces with ridges,
reminiscent of herringbones. This scenario accounts for maprevious exper-
imental and numerical observations, except for the fact thathe prole of

the ridges is sinusoidal in the approximate model, unlike ithe experiments.
This discrepancy will be resolved in the last companion pap€Audoly and

Boudaoud, 2007c), where exact solutions of the original egfions are derived
in the limit of large buckling parameter.
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