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Abstract

We study the buckling of a thin compressed elastic �lm bonded to a compliant
substrate. We focus on a family of buckling patterns, such that the �lm pro�le is
generated by two functions of a single variable. This familyincludes the unbuck-
led con�guration, the classical primary mode made of straight stripes, as well the
pattern with undulating stripes obtained by a secondary instability investigated in
the �rst companion paper, and the herringbone pattern studied in last compan-
ion paper. A simpli�ed buckling model relevant for the analysis of these patterns
is introduced. It is solved analytically for moderate or for large residual compres-
sive stress in the �lm. Numerical simulations are presented, based on an e�cient
implementation. Overall, the analysis provides a global picture for the formation
of herringbone patterns under increasing residual stress.The �lm shape is shown
to converge at large load to a developable shape with ridges.The wavelength of
the pattern, selected in a �rst place by the primary buckling bifurcation, is frozen
during the subsequent increase of loading.
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1 Introduction

Buckling of thin plates is a classical subject in engineering mechanics. In par-
ticular, the buckling of multi-layered materials has received much attention
due to its importance in the design of sandwich panels (Allen, 1969). This
�eld has been the subject of recent work, in connection with the generation of
wrinkles in human skin or the templating and assembly of materials (see e.g.
Genzer and Groenewold, 2006, for a review). Here, we consider the buckling
of a thin and sti� �lm bonded to a compliant substrate. In typi cal experi-
ments, thin metallic �lms are deposited on an elastomer (Bowden et al., 1998;
Huck et al., 2000; Yoo et al., 2002). When the system is cooled, compressive
residual stress is induced in the �lm, caused by the mismatchin the thermal
expansion coe�cients of the two layers. This can lead to buckling into straight
wrinkles (Bowden et al., 1998), i. e. to a pattern that is invariant in one di-
rection and has cylindrical symmetry. Other patterns may also appear (see
e.g. Audoly and Boudaoud, 2007a). Here we focus on herringbone patterns,
also called chevron or zigzag patterns, which have been observed for instance
by Huck et al. (2000); in such patterns, the crests and valleys of the wrinkles
adopt characteristic zigzag shapes.

Herringbone patterns have been studied numerically. Chen and Hutchinson
(2004) simulated the elementary cell of a periodic herringbone pattern, as-
sumed to be a parallelogram; they investigated the dependence of energy on
the geometrical parameters of the cell. Huang et al. (2004) undertook simu-
lations on a grid much larger than the wavelength; they �rst considered the
case of a Winkler foundation ( a foundation made of linear springs) and later
(Huang et al., 2005) the case of a thick elastic foundation. They observed her-
ringbones in either of the following conditions: with isotropic 1 compressive
stress when the simulations is initialized with an array ofǹascent' herring-
bones, or with anisotropic compressive stress and random initialization.

In the �rst companion paper (Audoly and Boudaoud, 2007a), weinvestigated
the stability of the straight wrinkles (stripe pattern); we found that these
wrinkles soon become linearly unstable with respect to a pattern compris-
ing undulating stripes. In the last companion paper (Audolyand Boudaoud,
2007c), herringbones are recovered as a solution of the equations for plates
on an elastic foundation, based on an asymptotic analysis inthe limit of a
large buckling parameter. The present paper aims at bridging the gap be-
tween these limits of moderate (�rst paper) and large buckling parameters
(last paper), and shows that undulating stripes evolve smoothly towards her-
ringbones under increasing load. This analysis is based on asimpli�ed buckling

1 As in the companion papers, `isotropic' stress is used as a synonym for `equi-
biaxial' and anisotropic' as a synonym for biaxial but not equi-biaxial.
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model which, as in Audoly and Boudaoud (2003), addresses thebuckling in a
well-chosen subspace of con�gurations for which analytical and numerical so-
lutions can be derived. It provides a global picture of buckling into herringbone
patterns under increasing (from small to large) residual stress.

In this paper, our approach is to understand the formation ofherringbones at
large residual stress, characterized by faceted shapes with sharp folds, and the
selection of wavelengths. This involves following the evolution of a particular
pattern, not necessarily that with the lowest energy, underincreasing loads. We
do not include here the patterns that are unrelated to herringbones even if they
can be observed at small residual stress | this is the case forcheckerboards
for instance. They have been the subject of the �rst companion paper.

The present paper is organized as follows. In Section 2, we brie
y recall
the formulation of the problem, given in the companion paper(Audoly and
Boudaoud, 2007a). In Section 3, we introduce the simpli�ed buckling model
which is analyzed in the subsequent sections. In Section 4, we give the results
of the linear stability analysis and of the weakly post-buckled analysis based
on this approximate model, and compare with the exact results of the �rst
companion paper. In Section 5, we present comprehensive numerical simu-
lations of the model, which allow one to explore moderate to large load. In
Section 6, we undertake an asymptotic analysis of the limit of large load, and
derive solutions which describes patterns similar to herringbone, found in the
preceding numerical analysis. In Section 7, we point out theexistence of many
local equilibria at large load and discuss the selection of the pattern observed
in the experiments.

2 Formulation

We consider an thin elastic �lm bound to an elastic foundation. The dimen-
sions of the �lm are in�nite in its two in-plane directions. In the following,
we write the elastic energy of the system per unit area in the framework
of Hookean elasticity, that is assuming a linearly elastic response. The �lm is
loaded with a biaxial, uniform residual stress. We focus on the case of compres-
sive stress, which may make the �lm unstable. The �lm is described by the
F•oppl{von K�arm�an plate equations with moderate de
ecti ons (Timoshenko
and Gere, 1961). The foundation is assumed to be an in�nitelydeep, linearly
elastic solid.
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Fig. 1. Geometry of the problem and notations.

2.1 Film

We denote theE, � and h the Young's modulus, Poisson's ratio and thickness
of the �lm, respectively. The reduced Young's modulus is de�ned asE � =
E=(1 � � 2). The loading is given in terms of the di�erential strain 2 � x ,
� y between �lm and substrate, the x and y directions being chosen as the
principal directions of this di�erential strain (see Fig. 1 for the geometry and
notations). By this, we mean that the residual stress in the �lm is equivalent
to that obtained by starting from the stress-free con�gurations of the �lm
and substrate, contracting the �lm by a factor � x along the x direction and
� y in the y direction, and �nally binding the �lm to substrate. This de� nes
the reference con�guration of the system. We are interestedin the subsequent
deformation of the �lm and substrate in response to this loading.

We denote u(x; y), v(x; y) and w(x; y) the two components of the in-plane
displacements and the out-of-plane displacement of the center-surface of the
�lm, respectively. Then, the �lm in-plane strain in actual con�guration reads:

� xx = � � x +
@u
@x

+
1
2

 
@w
@x

! 2

, (1a)

� xy =
1
2

 
@u
@y

+
@v
@x

+
@w
@x

@w
@y

!

, (1b)

� yy = � � y +
@v
@y

+
1
2

 
@w
@y

! 2

. (1c)

Using the classical approximations of the F•oppl-von K�arm�an plate theory,
nonlinear terms involving the in-plane displacement (u; v) have been neglected.
For simplicity, the �lm material is assumed to be isotropic.The constitutive

2 Traditionally, the loading is characterized in terms of the residual stress in the �lm
which, from equation (2), are related to the di�erential str ain by � 0

xx = � E (� x +
� � y)=(1 � � 2) and � 0

yy = � E (� y + � � x )=(1 � � 2).
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equations for the �lm are those for plane-strain, two dimensional elasticity:

� xx =
E

1 � � 2
(� xx + � � yy ), (2a)

� xy =
E

1 + �
� xy , (2b)

� yy =
E

1 � � 2
(� yy + � � xx ). (2c)

The stretching energy per unit area of the �lm reads

Efs =
1

L x L y

h
2

Z
� �� � �� dx dy, (3)

while its bending energy per unit surface is given by the integral of the squared
mean curvature:

Efb =
1

L x L y

D
2

Z
(r 2w)2 dx dy, (4)

wherer denotes the gradient of a function of two variables, (x; y). According
to plate theory, the bending modulus is

B =
E h3

12 (1� � 2)
. (5)

Finally, we write the total energy of the �lm per unit area as

Ef = Efs + Efb . (6)

2.2 Substrate

The substrate, which �lls the half-spacez < 0, has Young's modulusEs and
Poisson's ratio� s. The substrate has linear elastic response. Introducing the
Fourier transform of the �lm de
ection

ŵ(kx ; ky) =
Z

dx dy w(x; y) exp[� i (kxx + kyy)]; (7)

the energy of substrate can be written as

Es =
1

L x L y

Z
dkx dky E �

s

q
k2

x + k2
y ŵ(kx ; ky)ŵ(� kx ; � ky). (8)

It depends on only one parameterE �
s , which is proportional to Es and is a

function of Poisson's ratio� s,

E �
s =

Es (1 � � s)
(1 + � s) (3 � 4� s)

. (9)
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For details, we refer to the �rst companion paper (Audoly andBoudaoud,
2007a).

2.3 Optimization problem

The goal of the paper is to derive equilibrium solutions describing buckled
states. This involves minimizing the total energy, which isthe sum of the �lm
and substrate energies:

Et (f u; v; wg) = Es(f wg) + Ef (f u; v; wg). (10)

This energy has to be minimized with respect to the three components of the
�lm's displacement,

(u(x; y); v(x; y); w(x; y)),

for given values of the material parameters and di�erentialstrain (� x ; � y).

3 A simpli�ed model for the analysis of buckling

As explained in the introduction, the �rst companion paper is concerned with
small to moderate residual stress, and the last one with large stress. In the
present one, we discuss the case of intermediate loading. Inparticular, we
study the selection of the herringbone pattern and its wavelength. This ques-
tion is of particular importance as we shall see that global energy minimization
does not provide a consistent selection mechanism. The general question we
address here is how undulating stripe patterns evolve when the di�erential
strain is progressively increased from the initial buckling threshold to much
larger values. This progressive increase of the loading does take place in typi-
cal experiments, whereby a sample obtained at high temperature cools down
progressively.

Pattern selection is di�cult to approach based solely on numerical simulations
(as in Huang et al., 2004, 2005) as it is impossible to vary systematically all
the parameters of the problem. Moreover, the �nal pattern depends largely
on the arbitrary initial condition. On the analytical side, we have exhausted
in the two companion papers all the methods that allow for exact results, by
exploiting the presence of a small parameter in the limits ofsmall or large
load. In contrast, no analytical solution for the buckling problem formulated
in Section 2 is available in the case of intermediate load. For this reason,
we introduce a simpli�ed buckling model. It is designed in such a way that
the essential features of the original model are retained; on the other hand, is
simple enough that it can be studied analytically and simulated very e�ciently.
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3.1 Motivation

To introduce our simpli�ed model, we shall �rst list the various exact solutions
that can be derived for the �lm shape, for di�erent values of the residual stress.
The �rst ones are the unbuckled solution, below the initial threshold, and the
cylindrical mode (stripes) just above it:

w(x; y) = 0 (11a)
w(x; y) = A cos(k x), (11b)

whereA is the amplitude of the mode andk the wavenumber. These classical
solutions are recalled in the �rst companion paper. The undulating stripe
pattern, introduced in the same paper, is another solution valid slightly above
the secondary threshold, which we rewrite as follows:

w(x; y) = A cos(k x) + b sin(k x) sin(k q y)

' A cos

"

k

 

x �
b sin(k q y)

k A

!#

+ O

 
b2

A

!

.
(11c)

Here, b is the amplitude of the perturbation to the cylindrical model, and
b � A slightly above threshold;q de�nes the aspect ratio of the pattern, that
is the ratio of the longitudinal and transverse wavenumbers.

Another analytical solution, derived in the last companionpaper for large
di�erential strain, is the Miura-ori pattern, de�ned by

w(x; y) = A S

0

@
x + a tan �

�
1
2 + S

�
y
a � 1

2

��

b

1

A , (11d)

where a and b now de�ne the dimensions of the unit cell of this periodic
pattern.

We now formulate a key remark: for all the analytical solutions in equa-
tions (11a{11d), the de
ection w(x; y) is of the form:

w(x; y) = f (x � g(y)), (12)

for some functionsf and g that depend on the pro�le considered (see Fig. 2).
Indeed, for the unbuckled con�guration,f (x) = 0 and g is arbitrary; for the
straight stripes, f (x) = A cos(kx) and g(y) = 0; for the undulating stripe
pattern, f (x) = A cos(kx) and g(y) = b sin(kqy)=(kA): for the Miura-ori
(herringbone) pattern, f (x) = A S(x=b) and g(y) = � a tan � (1=2 + S(y=a�
1=2)).
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a) b)

c) d) e)

xy

Fig. 2. All the patterns derived so far belong the class of quasi-1D patterns, as de-
�ned in equation (13a). (a) unbuckled, f (x) = 0 g(y) = 0; (b) straight stripes (cylin-
drical pattern), f (x) = :7 cosx, g(y) = 0; (c) undulating stripes, f (x) = :7 cosx,
g(y) = :6 siny; (d) developable surface with curvilinear ridges f (x) = :8S(x),
g(y) = :6 siny; (e) herringbone pattern (also called Miura-ori and zigzagpattern),
f (x) = :8S(x), g(y) = :7 (1=2 + S(y � 1=2)).

3.2 Kinematical constraints

Our aim is to study the transition from a 
at pattern to straig ht or undulating
stripes at small strain, and to a herringbone (Miura-Ori) pattern at large
strain. Since all these patterns are of the particular formw(x; y) = f (x �
g(y)), we propose to analyze the evolution of the pattern under increasing
loading within this reduced space of con�gurations. In other words, we suggest
to constrain the pro�le to be of the form w(x; y) = f (x � g(y)), even at
intermediate load values. This approximation provides a workaround to the
absence of analytical solutions to the full problem. It is natural given the
particular form of the various exact solutions.

Technically, we consider the buckling problem as a minimization problem
within a reduced space of con�gurations, which we callquasi-1D con�gu-
rations. This space is de�ned as

Q = f w(x; y) j w(x; y) = f (x � g(y))g, (13a)

where the vertical bar stands for `such that'. It has alreadybeen emphasized
that the planar, cylindrical, undulating stripes and Miura-Ori patterns all
belong to this class. Within this class, the de
ection is no longer an arbitrary
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function of two variables. Instead, it is fully speci�ed by two functions f and
g of a single variable. As a result, the Euler-Lagrange equations associated
with the condition of energy minimum takes the form of coupled ordinary
di�erential equations for f and g in the quasi-1D problem, instead of partial
di�erential equations in the original problem. In numeric calculations, the
number of degrees of freedom is (2N ) for a grid of sizeN � N , instead of
(N 2).

Even with the previous approximation, the Euler-Lagrange equations express-
ing the condition of energy minimum are not solvable analytically because
the in-plane displacementsu(x; y) and v(x; y) are required in addition to the
de
ection w(x; y). In order to avoid this di�culty, we shall further constrai n
the kinematics of the �lm and seek solutions within the classQ \ R , where

R = f u(x; y); v(x; y); w(x; y) j r � xx = 0 & � xy = 0g, (13b)

the strain being de�ned in terms of the displacement by equation (1). In this
class, the �lm has uniform strain component� xx and a vanishing in-plane
shear strain 3 . This approximation was successfully used for the analysisof
multiscale, self-similar buckling patterns (Audoly and Boudaoud, 2003). It is
a reasonable approximation for studying the evolution of the system under
increasing load; indeed, developable surfaces, such that� �� = 0 for � and
� = x; y, belong to the classR by de�nition, those developable solutions
being the preferred solutions of the original problem at large compressive
stress. Because of this, we avoid the di�culties associatedwith another popular
but much cruder approximation that consists in setting to zero the in-plane
displacements (see Jin and Sternberg, 2001, for a discussion of the drawbacks
of such models).

We do not claim that the two approximationsQ and R just proposed can be
justi�ed rigorously. As a matter of fact, solutions of the simpli�ed problem
are not solutions of the original problem and we do not expectthe simpli�ed
analysis of buckling that follows to agree in full details with that based on the
original theory. Our assumptions are merely a set of convenient and reason-
able approximations that allow for analytical calculations and fast numerical
simulations, provide good insights into the phenomena and capture the main
features of transition towards herringbone patterns. Thisview is supported by
the analysis of Section 4, where the analyses carried out in the �rst compan-
ion paper on the full model is repeated, with similar results, on the quasi-1D
model.

3 This classR treats di�erently the two in-plane directions x and y, as � yy may well
be nonzero. The resulting model is not covariant with respect to in-plane rotations.
This is not really a problem as the quasi-1D patternsQ that we consider are not
isotropic anyway.
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3.3 Analytical reconstruction of in-plane displacement

We shall �rst show that, using the kinematical hypothesisR, the in-plane dis-
placementsu and v can be reconstructed from the de
ectionw. The constrain
that the strain component � xx is uniform can be rewritten as� xx (x; y) = h� xx i .
Here and later, the bracketsh�i stand for the average overx and y of the quan-
tity inside, whereas the bracketsh�ix denote the average in thex direction only.
This allows one to expressu from equation (1a) as

@u
@x

= h� xx i + � x �
1
2

 
@w
@x

! 2

= h� xx i + � x �
1
2

f 02(x � g(y))

(14)

Let F (x) be the antiderivative of (f 02(x) �h f 02i ) with a constant of integration
chosen such thatF is zero on average:

F 0(x) = f 02(x) �
D
f 02

E
and hF i = 0. (15)

In the absence of ambiguity, the averages of functions of thevariable x only,
such ashf 02i , are notedh�i or h�ix indi�erently.

By integration along x of equation (14) for@u=@x, one obtains

u(x; y) =
�

h� xx i + � x �
1
2

D
f 02

E�

x �
1
2

F (x � g(y)) + � (y),

where� is an arbitrary function of y. Now, u(x; y) has to a bounded function
for the substrate energy to remain �nite. Therefore, the prefactor of x in the
expression above has to vanish:

h� xx i = � � x +
1
2

D
f 02

E
, (16)

which leads to

u(x; y) = �
1
2

F (x � g(y)) + � (y). (17)

Having computedu(x; y), we can now obtainv(x; y) by plugging the kinemat-
ical assumption� xy (x; y) = 0 into equation (1b):

@v
@x

= �
@u
@y

�
@w
@x

@w
@y

= �
1
2

g0(y) F 0(x � g(y)) � � 0(y) + g0(y) f 02(x � g(y)

=
1
2

g0(y) F 0(x � g(y)) + hf 02i g0(y) � � 0(y).
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As for u, the displacementv has to be bounded and this implies that the
averaged derivative ofv with respect to x is zero:h@v=@xi x = 0. This yields,
using hF 0i = 0 and hg0i = 0 (as g(y) is periodic hence bounded):

� 0(y) = hf 02i g0(y).

We have averaged over the variablex only to obtain this equation. Plugging
back the above expression for� 0 into the expression for@v=@xand carrying
out the integration with respect to x, one obtainsv(x; y) as

v(x; y) =
1
2

g0(y) F (x � g(y)) +  (y), (18)

where  is another arbitrary function, to be determined.

3.4 Energy

Having determined the displacement, we can compute the strain. The compo-
nent � xx , which is constant by construction, has already been given in equa-
tion (16). The shear component is zero by construction. The remaining com-
ponent, � yy , can be computed from equation (1c). This yields:

� xx (x; y) = � � x +

*
f 02

2

+

(19a)

� xy (x; y) = 0 (19b)

� yy (x; y) = � � y +
1
2

hf 02i g02(y) +
1
2

g00(y) F (x � g(y)) +  0(y). (19c)

Anticipating the rest of the calculation, we decompose the last component
into three contributions,

� yy (x; y) = � (1)
yy (x; y) + � (2)

yy (y) + � (3)
yy , (20)

de�ned by

� (1)
yy (x; y) = � yy (x; y) � h � yy(x; y)i x (21a)

� (2)
yy (y) = h� yy(x; y)i x � h � yy i (21b)

� (3)
yy = h� yy i . (21c)

By construction, these quantities satisfy

h� (1)
yy (x; y)i x = 0 for all y, and h� (2)

yy (y)i y = 0, (22)
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which in particular implies h� (1)
yy (x; y)i = h� (2)

yy (x; y)i = 0. From equation (19c),
one can �nd explicit expressions for these three terms:

� (1)
yy (x; y) =

1
2

g00(y) F (x � g(y)) (23a)

� (2)
yy (y) =

1
2

hf 02i (g02(y) � h g02i ) +  0(y) (23b)

� (3)
yy = � � y +

1
2

hf 02i hg02i . (23c)

Indeed, one can notice thath 0i = 0, as implied by the equality h@v=@yi = 0
which comes itself from the fact that the displacementv(x; y) is bounded.

With the aim to formulate a minimization problem with respect to the two
unknown functionsf (x) and g(y) and the auxiliary function  (y), we compute
the stretching the energy per unit area of the �lm, de�ned by equations (2a{2c)
and (3) in terms of the strain tensor:

Efs(f u; v; wg) =
Eh

2(1 � � 2)
1

L x L y

Z
dx dy (� 2

xx + � 2
yy + 2� � xx � yy ).

When the decomposition (20) for� yy is plugged into this expression, all the
cross-products of the form (� (i )

yy � (j )
yy ), with i 6= j vanish upon integration due

to equation (22). This leads to the following expression forthe �lm stretching
energy:

Efs(f u; v; wg) =
Eh

2(1 � � 2)

�
h� xx i 2 + h(� (1)

yy )2i + h(� (2)
yy )2i + ( � (3)

yy )2 + 2� h� xx i h� yy i
�

. (24)

Here, the last term has been rewritten using the following equalities:

1
L x L y

Z
dx dy � xx � yy = h� xx � yy i = hh� xx i � yy i = h� xx i h� yy i ,

since� xx is uniform by construction.

In the stretching energy (24), the function enters via a single term, namely
h(� (2)

yy )2i 2, whose value is given by equation (23b). Therefore, the optimality
condition of the stretching energy with respect to this function  , which writes
formally as

� Efs

� 0(y)
= 0,

leads to
� (2)

yy (y) = 0.
This equation allows one to determine the auxiliary function  ,

 0(y) = �
1
2

hf 02i (g02(y) � h g02i ).
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We can �nally write the stretching energy of the �lm for our reduced model
by combining the equations above:

Efs(w 2 Q \ R ) =
Eh

2 (1 � � 2)

0

@hg002i hF 2i
4

+

 
hf 02i

2
� � x

! 2

+

 
hf 02i hg02i

2
� � y

! 2

+ 2�

 
hf 02i

2
� � x

!  
hf 02i hg02i

2
� � y

! 1

A ; (25)

where the functionF is de�ned by equation (15). Thanks to our kinematical
assumptions, we have been able to write the �lm stretching energy in a simple,
closed form.

The other contributions to the energy are the �lm's bending energy and the
substrate energy. The bending energy can be computed by plugging the special
form of w(x; y) given in equation (13a) into equation (4). This yields

Efb(w 2 Q ) =
D
2

�

h[1 + g02(y)]2i hf 002(x)i

+ hg002i hf 02i �
2

L x L y
[g0+ g03=3]L y

0 [f 02=2]L x
0

�

: (26)

The last two terms are boundary terms, which vanish whenf and g are as-
sumed to be periodic and continuous, which is what we do in thesimulations.

The substrate energyEs(w 2 Q ), de�ned by equation (8), cannot be found
explicitly in terms of f and g. In the numerical simulations, it is computed
by a two dimensional Fourier transform of the pro�lew(x; y) = f (x � g(y)).
For the analyses of stability of Section 4, this substrate energy is computed
by expansion near the bifurcation threshold.

We have derived a simpli�ed model for the analysis of patterns in sti� �lms
bonded to a compliant substrate. In this model, the total energy is the sum of
the �lm stretching energy (25), the �lm bending energy (26),and the substrate
energy de�ned by equation (8) with a de
ection of the form (12):

Et (w 2 Q \ R ) = Efs(w 2 Q \ R ) + Efb(w 2 Q ) + Es(w 2 Q ) (27)

To study this reduced model, we shall now consider the problem of minimizing
this energy with respect to the two functionsf (x) and g(y), for di�erent values
of the di�erential strain ( � x ; � y).
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4 Linear stability and weakly nonlinear analyses

With the aim to validate our simpli�ed model, we repeated theweakly nonlin-
ear analyses carried out in the companion paper, which are relevant for small
loading, with the aim to compare to the results of the exact model.

4.1 Primary buckling bifurcation

Let us �rst consider the linear stability analysis of the unbuckled state. We
use the same rescalings as in the companion paper, and de�ne

h� =
h

q
12 (1� � 2)

as a unit of length. The sti�ness contrast between the two layers reads

C =
E � h
E �

s h�
. (28)

This large number is used to rescale the di�erential strain:

� x =
� x

C � 2=3
; � y =

� y

C � 2=3
. (29)

For the sake of brevity, we shall not give the details of the the analysis of
linear stability, which is a classical method. The optimal �lm shape predicted
by the simpli�ed model from equation (27) bifurcates from planar to buckled
state above a critical di�erential strain. The buckled state is characterized by
a harmonic pro�le w(x; y) with amplitude A and wavenumberk satisfying:

w(x; y) = A cos(kx)

A = 2h
q

� x + � � y � 3(1 � � 2)

kh� = C � 1=3.

(30)

The planar state becomes linearly unstable when the argument of the square
root de�ning the amplitude A becomes positive. As in the companion paper,
the initial buckling threshold under isotropic loading is noted

� I
c = 3 (1 � � )

Remarkably, the primary instability (30) predicted by the simpli�ed model
is identical to that predicted by the full model (see Audoly and Boudaoud,
2007a). In both cases, the buckled state involves a harmonicperturbation of
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the �lm with cylindrical symmetry; the instability thresho ld, and the ampli-
tude and wavenumbers of the unstable mode are identical. It may be surprising
that the analysis of linear stability based on the approximate model allows one
to recover the exact results. The reason is that the simplifying kinematical as-
sumptions Q and R hold both for the planar state, and for cylindrical stripe
pattern immediately above the primary threshold4 .

4.2 Secondary buckling bifurcation

Having studied the initial buckling bifurcation, we can analyze the secondary
bifurcations similarly. In the companion paper, this has been done based on the
exact equations and we found that a secondary instability leads to undulating
stripes; this secondary instability takes place:

� strictly above the initial buckling threshold under anisotropic loading (namely
when either � x or � y reaches� I

c),
� concomitantly with the initial buckling under isotropic loading.

Here again, we shall not give the details of the analysis of linear stability of
the stripe pattern based on the quasi-1D model. The outcome of this analysis
is that straight wrinkles become linearly unstable with respect to undulat-
ing stripes too. This secondary instability takes place at athreshold, denoted
� 0I

c in the isotropic case, which is always strictly above the initial threshold:
� 0I

c > � I
c . The di�erent predictions regarding these thresholds is apparent from

Fig. 3. We conclude that the analysis of the secondary bifurcation based on the
simpli�ed model is approximate, unlike that of the primary bifurcation. The
reason is that the solution describing undulating stripe pattern in the original
model does not satisfy the kinematical hypothesisR. There are fewer poten-
tially unstable modes in the quasi-1D model as only those compatible with
the kinematical assumptions are available; as a result, thebuckling threshold
is overestimated in the quasi-1D model. This discrepancy isin fact minor, for
two reason: �rst, we qualitatively recover the same type of secondary insta-
bility, leading to undulating stripes; second, the undulating stripes is actually
the optimal shape of the quasi-1D model just above the primary buckling
threshold � I

c , although this is not apparent from the present linear stability
analysis (see end of Section 5).

4 This is not a coincidence: the main motivation for the quasi-one dimensional
de
ection, of the form (12), that is encompasses analyticalsolutions for the �lm
pro�le, which includes the cylindrical pattern.
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Fig. 3. Linear stability analysis of the cylindrical patter n with respect to zigzags:
comparison of the predictions of the approximate quasi-1D model (solid curves) with
the exact result (dotted curves) from Audoly and Boudaoud (2007a). (a) Linearly
unstable longitudinal wavenumberq (dark grey region) and most unstable wavenum-
ber q (thick curve). (b) Rescaled amplitude b=A of the zigzag perturbation. Both
plots are made with Poisson's ratio� = 0 :3.

4.3 Post-buckling analysis

These analysis of linear stability can be complemented by the nonlinear anal-
ysis of post-buckled undulating stripes. The results, based on either the full
or the quasi-1D model, are compared in Fig. 3. For the sake of brevity, we
omit the details of the calculations for the quasi-1D model,which are similar
to those for the full model obtained by Audoly and Boudaoud (2007a).

Although the simpli�ed model does not yield exact predictions for the sec-
ondary instability threshold, it captures the most salientfeatures of the sys-
tem: the existence of a primary bifurcation leading to a stripe pattern and of
a secondary bifurcation leading to undulating stripes are captured correctly.
The thresholds and amplitudes relevant for the primary bifurcations are exact,
although those for the secondary bifurcations are approximate (and compa-
rable to the exact ones). This validates our suggestion to use the quasi-1D
model as a toy model for analyzing the buckling of a sti� �lm bonded to a
compliant substrate. This is the aim of the rest of the paper,where buckling
is investigated under intermediate to large loads.

5 Numerical simulations

The quasi-1D model is �rst studied numerically, at intermediate loads: we
assume the di�erential strain to be signi�cantly larger | bu t not larger by
orders of magnitude | than the primary and secondary thresholds � I

c and � 0I
c .

In the absence of analytical methods of solution applicableto this situation,
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Fig. 4. A typical simulation session of the quasi-1D model, for increasing values of
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and (b). The simulation extends over (x; y) 2 [0; L x ] � [0; L y ] with L x = L y = 4 � ,
and is for isotropic load.

we resort to numerical simulations.

5.1 Implementation

The energy of the quasi-one dimensional model (27) is minimized with respect
to the values of the functionsf (x) and g(y) discretized on even meshes, each
having a number of points that is a power of 2, in the range 64{256. The
stretching and bending energy of the �lm, given by equations(25) and (26),
are computed using �nite di�erences. The energy of the substrate (8) is com-
puted using a Fast Fourier transform algorithm (FFT). The energy is then
minimized by the method of conjugate gradient descent. The size L x � L y of
the squared simulation cell is chosen at the beginning of thesimulation. Using
periodic boundary conditions, we e�ectively simulate an in�nite array of such
elementary cells. Ideally, our simulation cell is much larger than the expected
size of the buckling pattern, which is of order 2� in dimensionless units (recall
that the wavenumber of the primary instability is 1 in dimensionless units);
in some cases, especially when using a �ne spatial discretization, the actual
dimensions of the simulation cell had to be lowered to valuescomparable to
wavelength of the buckling pattern in order to keep the simulation time rea-
sonable. We used rescaled quantities in all the numerical simulations, thereby
avoiding to introduce unnecessary errors caused by machineaccuracy.

In our simulations, we focused on the case of isotropic di�erential strain,
� = � x = � y . Then, the only control parameter in the simulation is the
rescaled di�erential strain, � . The result of a typical simulation session is
shown in Fig. 4. The functionsf and g are initialized with very small, ran-
dom values. Starting from� = 0, we progressively increase the di�erential
strain, and observe the pro�les of the numerical minimizersf (x) and g(y). As
explained earlier, the kinematical assumptions in the model allow for o�ine,
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symbolic calculations of the in-plane displacement. The calculations that re-
main to be done online are essentially the calculation of integrals involvingf , g,
their derivatives and powers, which is e�ectively a one-dimensional problem5 ,
and can be done very quickly, at an interactive rate on a standard personal
computer. This makes it quite easy to track solutions under increasing or de-
creasing loading, and to discriminate between continuous and discontinuous
bifurcations, as reported in the end of the present Section.

5.2 Results

In the simulation shown in Fig. 4, we �rst observe the unbuckled state for low
di�erential strain: f (x) � 0 for all x and g(y) � 0 for all y. When � is increased
above a primary threshold, the functionf starts to make undulations, although
the pro�le g(y) remains 
at. This corresponds to the stripe pattern. At a
secondary threshold, the functiong starts to make undulations, producing
undulating stripes. The values of the thresholds, amplitudes and wavelength
are studied in details next, see Fig. 5. They are consistent with the analytical
predictions of Section 4. When the loading is further increased, the functionf
changes progressively from a sinusoidal to a non-smooth, sawtooth-like shape.

In Fig. 5, we present a more detailed analysis of the simulation results, for
� = 0:3. When the loading is increased, starting from� = 0, the unbuckled
pattern, characterized by hf 02i = 0 and hg02i = 0 is �rst observed. At a
threshold very close to that predicted by the theory,� = � I

c = 3 (1 � � ) = 2 :1,
the function f (x) bifurcates. This corresponds to the emergence of a stripe
pattern, set inset (B), with a wavelength, 2� in rescaled units, consistent with
that predicted by the linear stability analysis. The squaredamplitude of the
pattern, hf 02i , is found to vary linearly with the distance to threshold� � � I

c ;
this is characteristic of a supercritical (continuous) bifurcation. This is all in
agreement with the results of the previous section and with those of the exact
model given in the �rst companion paper (Audoly and Boudaoud, 2007a).

The stripe pattern persists until a secondary threshold is reached. This thresh-
old is very close to the threshold,� 0I

c (� = :3) = 5:88, predicted by linear
stability analysis of the straight wrinkles, see Section 4.This secondary bi-
furcation turns out to be subcritical (discontinuous): both the energy and the
number hg02i change by a �nite amount in a single simulation step. Above

5 At every step in the minimization, we need to reconstruct the 2D pro�le of the
plate using equation (12) before we can carry out the fast Fourier transform nu-
merically. This is the only operation that is two-dimensional, i. e. that involves N 2

operations whereN is the number of discretization points). Being based on a highly
optimized algorithm, the fast Fourier transform, it remain s very quick and did not
slow noticeably the calculation down.
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Fig. 5. Simulations based on the quasi-1D model. In the upper-left part of the
diagram, the quantities hf 02i and hg02i are given as a function of the control param-
eter � , which is �rst increased and then decreased. Two bifurcations, involving f
�rst and then g, take place very close to the theoretical thresholds (vertical dotted
lines). A hysteresis curve is followed when the loading is �rst increased and then
decreased. In the lower left diagram, the energy of the solution is plotted. On the
right-hand sides, the 3D con�gurations of a few representative con�gurations are
shown. The rectangular simulation cell has dimensionsL x = L y = 4 � and resolution
Nx = Ny = 32. Poisson's coe�cient is � = 0 :3.

the secondary threshold, undulating stripes are obtained;the evolution of this
pattern when the loading is further increased is analyzed inthe next section.

When the loading is subsequently decreased, the solution follows a hysteresis
cycle. Below� 0I

c (but above � I
c), the �lm pattern is still given by undulating

stripes, although it was made of straight stripes during theloading stage
in the same range of di�erential strain. The energy pro�le atthe bottom of
Fig. 5 reveals that the undulating pattern has a lower energythan the straight
stripes. In retrospect, it appears that the system has remained trapped in a
local minimum of energy in the range� I

c < � < � 0I
c and under increasing

loading, which it could not escape until this local energy minimum became
linearly unstable, at � 0I

c .
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These numerical results are in complete agreement with the analysis of the
simpli�ed model presented in the previous section. Furthermore, the numerical
observation of a hysteresis cycle mitigates the main discrepancy found between
the exact model and the simpli�ed one. Recall that, with the exact model
under isotropic isotropic loading, straight stripes become linearly unstable
immediately above the initial buckling threshold� I

c, although in the quasi-1D
model they were found to remain linearly stable over a range� I

c < � < � 0I
c

which extends much beyond the initial buckling threshold. As revealed by
the numerics, undulating stripe patterns are actually present in the quasi-1D
model immediately above the initial threshold too, and are indeed the state
of lowest energy | however, they are not accessible by the analysis of linear
stability as they appear by a discontinuous bifurcation.

6 Analytical and numerical solution in the limit of large loa d

Numerical simulations have con�rmed the emergence of an undulating pattern
by a sequence of two bifurcations, namely an initial bifurcation towards a
cylindrical pattern and a secondary bifurcation leading toundulations. In the
present section, we investigate how this pattern evolves when residual stress is
further increased. We show in details how the pattern, emerging in a �rst place
as a small amplitude perturbation on top of the straight stripe pattern, evolves
progressively towards a developable shape with crests and valleys comprising
angular points. We shall also address the selection of the wavelengths of the
pattern obtained at large di�erential strain, a question which has remained
unsettled so far.

6.1 Penalization of the stretching energy

We shall show that the quasi-1D model can be solved analytically in limit
of large di�erential strain, � x � 1 and � y � 1. As explained before, this
model is based on approximations but is expected to provide good insights
into the behavior of the full model | in the last companion paper, we discuss
in detail the similarities and di�erences of the predictions of the two models
for large load. Note that, by large di�erential strain, we mean large rescaled
di�erential strain � � = � � =C� 2=3 � 1. The sti�ness contrast C is a large
number by assumption and so the rescaled strain can be large although the
physical strain remains small; in fact, this happens when

1 � � � � C2=3. (31)

In this regime, it is consistent to use the assumption of a linear elastic response
for the substrate and the F•oppl-von K�arm�an equations for the �lm. In the rest
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of this section, we consider this range of loading, de�ned byequation (31): we
derive the features of the energy minimizers analytically and compare with
numerical simulations.

A classical result of plate theory is that the stretching energy, associated with
a sti�ness E h directly proportional to the small parameterh, becomes dom-
inant over the bending energy whose sti�nessE h3 scales like the third power
of h. As a result, thin plates subjected to signi�cant load attempt to minimize
their stretching energy in a �rst place (mathematically, this de�nes a penal-
ization problem). Unless this is prevented by the boundary conditions or by
the geometry, their center-surface adopts a pro�le close toa developable sur-
face | this happens for instance in folds and d-cones analyzed by Lobkovsky
(1996); Ben Amar and Pomeau (1997). Therefore, we expect theoptimal �lm
shapes to make the �lm stretching energy (25) vanish at dominant order:

Efs(w 2 Q \ R ) =
Eh

2 (1 � � 2)

0

@hg002i hF 2i
4

+

 
hf 02i

2
� � x

! 2

+

 
hf 02i hg02i

2
� � y

! 2

+ 2�

 
hf 02i

2
� � x

!  
hf 02i hg02i

2
� � y

! 1

A :

The same argument will be used in the last companion paper where we study
a family of developable patterns. For large di�erential strain � x and � y, there
are two types of factors that become formally large in this expression, namely
(hf 02i =2� � x )2 and (hf 02i hg02i =2� � y)2. We conjecture that the functionsf (x)
and g(y) with lowest energy make these terms cancel:

hf 02i � 2 � x ; hg02i �
� y

� x
, (32)

as this the best way to lower the energy of the system. The prediction (32) is
con�rmed by the numerical simulations shown in Fig. 6. In these simulations,
the di�erential strain is isotropic, � x = � y and sohg02i is expected to converge
to 1 for large � x = � y.
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6.2 Optimal �lm pro�le

We are left with one single term in the stretching energy, proportional to
hF 2i . The function F has been de�ned in equation (15) as the antiderivative
of f 02 � h f 02i . In order to minimize hF 2i , the function f should be such that
f 02(x) � h f 02i almost everywhere. Combining with equation (32), this yields

f 02(x) � 2 � x for almost all x.

The solutions for this equation are sawtooth functions, with slope �
p

2� x .
One possibility is that the sign off 0 change periodically, as happens with the
following function:

f (x) ! (2 � x )1=2 `x S
� x

`x

�

, (33)

where `x is half the wavelength, a free parameter of the solution. In this
equation, we have introduced the sawtooth function with period 2,

S(t) =

8
>><

>>:

� 1 � t if � 1 � t � � 1=2;

t if � 1=2 � t � 1=2;

1 � t; if 1=2 � t � 1;

(34)

extended by periodicity for all t by S(t + 2) = S(t)

This function is plotted in Fig. 7.

Equation (33) is not the only possibility for f (x) as one can replaceS by
an irregular function ~S such that j ~S0(u)j = 1 almost everywhere. Irregular
sawtooth functions are likely to be less favorable as their bending energy is
unevenly distributed across the �lm area, but they may well lead to metastable
energy minima. The convergence off (x) towards the pro�le predicted by equa-
tion (33) has been observed in the simulations, see Fig. 8, left, with appropriate
initial data 6 . We shall limit ourselves to formal arguments, without attempt-

6 f (x) converges to the regular sawtoothS(x) when the load is gradually increased
past the secondary threshold� 0I

c , following the procedure discussed in Section 7.
If the simulation is started with a arbitrary value of the di� erential strain, f (x)
converges to an irregular sawtooth~S.
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ing to establish the convergence by rigorous arguments.

In order to derive the function g(y) in this limit of large applied loading, we
shall �rst assume that hF 2i converges to a nonzero value, a hypothesis that will
be checked to be consistent at the end. The optimization problem for g is that
the remaining term in the stretching energy, namelyhg002ihF 2i , is minimum
under the constrainthg02i = � y=� x coming from equation (32). Technically, this
constrained minimization problem can be solved using a Lagrange multiplier
� , and we seek the minimum of the functional

Z
g002dy � �

Z
g02dy.

The corresponding Euler-Lagrange condition is the di�erential equation g0000(y)+
�g 00(y) = 0; its bounded solutions are harmonic7 functions, up to an additive
constant that is unimportant as it corresponds to a translation of the pattern
along the x axis. For a similar reason, we �x the phase of the functiong(y)
arbitrarily, as it corresponds to a translation of the pattern along the y axis.
This yields, in the limit of large di�erential strain:

g(y) !

 

2
� y

� x

! 1=2

`y sin

 
y
`y

!

. (35)

Here, `y is the typical lengthscale forg, which is another free parameter of
the solution. The convergence ofg(y) towards the pro�le predicted by equa-
tion (35) is again con�rmed by numerical simulations, see Fig. 8, right.

At large di�erential strain, the minimizers of our simpli�e d model are given
by a sinusoidal functionf (x) and a sawtooth functiong(y), see equations (33)
and (35). From equation (12), the functionf determines the pro�le of the �lm
when cut along a vertical plane perpendicular to the averagedirection of the
ridges, although the graph ofg(y) yields the shape of the crest and valleys

7 For negative � , we also have solutions in the form of hyperbolic sine and cosine
functions but the latter are not bounded and so are discarded.
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of the pattern. Therefore, the optimal pattern at large loadin the quasi-1D
model is a developable surface obtained by folding a cylindrical shape along
sinusoidal ridges, similar to that shown in Fig. 2d.

6.3 Energy of the minimizers, width of the ridges

This argument can be pushed further: by studying in more detail what happens
near the angular points forf (x), we shall be able to estimate the energy of the
minimizers at large di�erential strain. The sawtooth pro�l e (33) for f (x) is
unphysical near the angular points, where the bending energy diverges. There
is a small layer near these angular points where bending has to be taken into
account. This results in a pro�le that is regularized over a typical length �
much smaller than`x . This length � is similar to the width of circular ridge
studied by Pogorelov (1988). We shall estimate the ridge width � along with
the total energy of the �lm for the problem at hand.

In the layer obtained by regularizing the angular points, which we call the
ridge, the order of magnitude off 0 is, like everywhere,� x

1=2. The second
derivative f 00is zero far from the ridges wheref has a linear dependence on
x; across a ridge,f 0 changes sign, and so varies by an amount comparable to
� x

1=2 over a length� . This yields the estimatef 00� � x
1=2=� in the ridge region.

As f 00is nonzero over a fraction�=` x of the x axis, the average of its square is
estimated as

hf 002 i �

 
� x

1=2

�

! 2
�
`x

�
� x

� ` x
: (36)

From this equation, we �nd that the bending energy (26) is of order:

Efb � D hf 002 i �
D �
� ` x

. (37)

For simplicity, we assume from now on that the di�erential strain is not
severely anisotropic,i. e. that � x and � y have the same order of magnitude,
called � : we write � � � x � � y .

Let us come back to the remaining term in the stretching energy (26), which
is proportional to hg002ihF 2i . The factor hg002i can be estimated easily, as equa-
tion (32) implies that g0 is a quantity of order 1. As a result,g00is comparable
to 1=`y, where `y is the typical length over which the smooth functiong(y)
varies, andhg002i � `y

� 2. In order to estimate the other factor,hF 2i , we note
that F is de�ned as the antiderivative off 02 � h f 02i , a quantity which is zero
everywhere, except in the ridge regions, of length� , where it is comparable to
� . This yields

F � � � .
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Combining these results, we estimate the �rst term in the stretching energy
as

hg002i hF 2i �
� 2 � 2

`y
2 (38)

Note in passing that we can validate the initial and main assumption of our
reasoning: if equation (32) were not satis�ed, the stretching energy would be of
order Eh � 2; when it is satis�ed, it is of order Eh � 2 (�=` y)2 by the calculation
above. Anticipating on the fact that � � `y, something that we shall check in
the end, we con�rm the fact that the constraints (32) allow a drastic decrease
in the stretching energy, by a factor (�=` y)2.

We have just shown that the stretching energy of the �lm is comparable to

Es � Ehhg002i hF 2i � Eh
� 2 � 2

`y
2 . (39)

The ridge width � results from a balance of two antagonistic e�ects. The
stretching energy above is lower when� is smaller, although the bending en-
ergy (37) is lower when� is larger. Balancing these two terms, we obtain an
estimate for this width:

�
`y

�

 
h2

`x `y �

! 1=3

. (40)

Noting � = 2�=k = 2� h � C1=3 the wavelength of the initial, cylindrical buck-
ling pattern, and rescaling the in-plane lengths̀x and `y using � , we have

`x =
`x

�
�

`x

h C1=3
; `y =

`y

�
�

`y

h C1=3
. (41)

Recalling the de�nition (29) of the rescaled di�erential strain, we rewrite the
estimate for � given above in equation (40) in terms of dimensionless quanti-
ties:

�
`y

�
1

�
`x `y �

� 1=3 . (42)

This expression con�rms that the ridge width is small compared to the wave-
length `y in the strongly nonlinear limit, � � 1, assuming that the wavelengths
of the pattern are comparable to the wavelength� of the stripe pattern at the
onset of bifurcation threshold (̀ x;y � � implies `x;y � 1). This makes our
approach consistent.

With the ridge width given in equation (42), the stretching energy (39) and
bending energy of the �lm are both of the same order of magnitude, and the
total energy of the �lm reads

Ef � Eh

 
h2

`x`y

! 2=3

� 4=3 = Eh
� 4=3

C4=3 (`x `y)2=3
. (43)
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We shall now show that the energy of the substrate is negligible, that is much
smaller than Ef in this limit. The typical de
ection w is found from equa-
tion (33) as w � f � � 1=2 `x , whereas the wavevectork that brings the domi-
nant contribution to the substrate energy is 1=min(`x ; `y). Plugging this into
the de�nition (8) of the substrate energy yields

Es � Es �
`x

2

min(`x ; `y)
.

The ratio of this substrate energy to the �lm energy (43) reads

Es

Ef
�

0

@ `x
8=3

`y
2=3

min(`x ; `y)

1

A 1
� 1=3 . (44)

Whenever the right-hand side in equation (44) is small, the energy of the
substrate is negligible,jEsj � jE f j, and the total energy is estimated as:

Et � E f � Eh
� 4=3

C4=3 (`x `y)2=3
; provided

`x
8=3

`y
2=3

min(`x ; `y)
� � 1=3. (45)

This happens in particular in the limit of large load,� � 1, when the pattern
wavelengths are comparable to the buckling wavelength� at the onset of
bifurcation | then, `x and `y are of order unity.

The main result of this scaling analysis of the ridge is that the total energy
of the pattern goes like� 4=3 at large di�erential strain, when all the other pa-
rameters remain unchanged, see equation (45). We have con�rmed this scaling
behavior with the numerical simulations shown in Fig. 6, right. In this �gure,
the numerical value ofhf 002i at large � is also compared to a prediction that
can be made by combining equations (36) and (40), namelyhf 002i � � 4=3, and
a good agreement is found.

6.4 Tentative prediction of wavelengths based on energy minimization

It is interesting to optimize the energy (45) of the pattern with respect to
its wavelengths,`x and `y. The result is somewhat surprising as we shall now
show that the optimal rescaled wavelengths arèx ! 0 and `y ! 1 . Indeed,
let us introduce a large number,� , which will soon be identi�ed with the
aspect ratio `y=̀ x � 1 of the pattern, and consider wavelengths that scale
like `y � (� )1=7 � 
 and `x � (� )1=7=� 1� 
 , where 
 is a number in the range

 2 [1

2; 5
7]. By plugging these expressions into equation (45), we �nd that the

energy scales likeEt � E h C � 4=3 � 24=21=�
4
3 (
 � 1

2 ) and therefore goes to zero
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at �xed � when � ! 1 , given that 
 > 1
2. The condition on the right-

hand side of equation (45) is satis�ed provided 1=�
5� 7 


3 ! 0, and this is
indeed the case with
 < 5

7. We have shown that the pattern that achieves
the absolute minimum of energy is made of curvilinear ridgeswith `x � `y :
the spacing between ridges is much smaller than than the wavelength of these
sinusoidal ridges. A similar oddity will be obtained with the full model (Audoly
and Boudaoud, 2007c). In contrast, the two wavelengths of the pattern are
comparable in the experiments. This points to the fact that the wavelengths
of the pattern are not selected by energy minimization at large load but instead
by a trapping mechanism, as explained in Section 7.

6.5 On the shape of crests and valleys

At large load, we have found that the quasi-1D model predictsa developable
pattern made of piecewise cylindrical shapes connected by sinusoidal ridges, as
in Fig. 2d. In the last companion paper, we shall show that theexact model
predicts a similar pattern in this limit, but with zigzag crests and valleys
comprising angular points. This discrepancy concerning the shape of crests
and valleys is caused by the kinematical assumptions at the basis of the quasi-
1D model, as discussed in detail in the forthcoming paper. Although it does not
predict the correct ridge shapes, the quasi-1D model shows how undulating
patterns, obtained by a sequence of two buckling bifurcation, progressively
evolve towards a piecewise developable shape. Even more importantly, this
approximate models explains how the wavelengths of the pattern are selected,
as investigated in the next Section.

7 Selection of wavelength, metastability and trapping

In our simulations of the quasi-one dimensional model, the di�erential strain
is progressively increased from zero. As explained in Section 5, we observe a
bifurcation to a straight stripe pattern which becomes unstable towards an
undulating zigzag pattern | sometimes, the stripe pattern is not observed at
all as the system jumps directly to the zigzag pattern, see Fig. 5. When the
di�erential strain is further increased, the smooth undulating pattern evolves
progressively into a pattern with sharp curvilinear ridges, as shown in the
previous Section. When the loading is increased by small increments and the
system is allowed to relax at each step, this smooth transition from undulating
stripes to a developable pattern with ridges does not involve any noticeable
change in the wavelengths of the pattern (this concerns boththe wavelength
along the average ridge direction and the spacing between neighboring ridges).
As a result, the piecewise developable patterns obtained atthe maximum
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loading that the simulation can handle, typically � � 103, have wavelengths
close to� = 2�=k , the wavelength of the cylindrical pattern at the onset of
buckling.

In contrast, we argued in Section 6.4 that the pattern with lowest energy is
a piecewise developable shape having widely di�erent longitudinal and trans-
verse wavelengths: its inter-crest spacing is much smallerthan � , although the
wavelength of the crests (and valleys) is much larger than� . This points to
the fact that the system has many local equilibrium con�gurations and that it
is unable to pick that with lowest energy in the simulation. In the presence of
a small amount of dissipation, or when the dimension of the �lm is large but
�nite, the wavelength of a pattern cannot not vary smoothly but by jumps,
by a local doubling of wavelength for instance. As a result, the system is able
to explore a limited set of wavelengths only. Consequently,the wavelength is
frozen during loading, and remains comparable to its value� at the onset of
buckling. We claim that the wavelengths observed at relatively large buckling
number in the experiments result from this trapping mechanism, and not from
a principle of energy minimization.

In the present section, we provide numerical evidence of this trapping mech-
anism and show that a pattern keeps its wavelengths and overall geometry
unchanged (unless severely perturbed) even though they areno longer the
ones with lowest energy. The simulations presented in this section are carried
out on a domain several times larger than the initial wavelength of the in-
stability, and so the unit simulation cell comprises many wavelengths of the
pattern.

In Fig. 9, we illustrate the existence of several local equilibria by showing two
numerical equilibria observed in the same loading conditions but following
di�erent loading histories. In the upper part of the �gure, the pattern has been
obtained with a slowly increasing loading and the resultingpattern is periodic.
In the lower part of the �gure, it has been obtained with a non-monotonic
loading varied by jumps; the resulting pattern is not periodic along the y
direction. The two patterns correspond to the same set of �nal parameters.
There are �ve wavelengths across the width of the unit cell inthe �rst case,
and seven in the second case. This illustrates the dependence of the pattern
on the loading history, and the existence of many local equilibria.

This trapping mechanism is clearly demonstrated by the simulations shown in
Fig. 10. The simulation is started with a di�erential strain � a few times above
the primary threshold, typically � � 5. Di�erential strain is then increased
smoothly. As explained earlier, the herringbone pattern obtained in this way
has periodic crests (or valleys) with a wavelength close to the initial buckling
wavelength � . The spacing between these crests and valleys is of the same
order of magnitude. When� is further increased, the geometry of the pattern
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Fig. 9. Existence of multiple equilibria with identical par ameters and loading. For
both simulations, the parameters areNx = Ny = 128, `x = `y = 10� , � = :3 and
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Fig. 11. Summary of patterns under increasing load� . (P) 
at, unbuckled state,
(C) straight wrinkles (cylindrical state), (U) undulating stripes, (D) Developable
pattern. The transitions from P to C and from P to U correspond to the primary
and secondary buckling at well-de�ned thresholds in compressive strain, whereas the
evolution from U to D is smooth. Pattern D has curvilinear rid ges in the quasi-1D
model (see Section 6) but piecewise straight zigzag ridges in the full model (see
analysis of the Miura-ori pattern in the last companion paper).

changes very little, and none of the wavelengths varies noticeably (see insets on
top of Fig. 10); the only di�erence is that the pattern has a higher and higher
contrast as the de
ection of the �lm increases. However, if the simulation is
reset to an almost 
at con�guration at large strain � , of the order of 1000, the
inter-crest spacing and longitudinal wavelength jump to the largest accessible
value, i.e. to the size of the simulation cellL x and L y . This is consistent
with the fact that the energy (45) decreases when the wavelengths `x or `y

increase8 . When the loading � is decreased from there, down to values as
small as� � 5, the wavelengths do not change either. We have computed the
energy along these two branches and found that the second pattern always has
a signi�cantly lower energy that the �rst one. This means that the solution
obtained under increasing loading has remained trapped in alocal equilibrium
con�guration all the way up to the maximum applied loading,� � 103.

The numerical observations in Fig. 10 con�rm the �ndings of Section 6.3,
namely that the optimal wavelengths are widely di�erent from the wavelength
� at the onset of buckling. When the residual stress is gradually increased, the
pattern is not selected by global energy minimization: the transverse and lon-
gitudinal wavelengths of a herringbone pattern remain locked in a metastable
minimum under increasing load. In the experiments, they areprobably �xed
by the initial and secondary buckling bifurcations, leading to undulating pat-
terns.
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8 Conclusion

In this paper, we investigated the formation of herringbonepatterns in com-
pressed thin �lms bonded to a compliant substrate, based on asimpli�ed
buckling model. This model is built by imposing kinematicalconstraints on
the �lm shape. These kinematical constraints were chosen soas to be compat-
ible with analytical solutions of the problem available in the limits of small
and large loads | the patterns such as the checkerboard that are unrelated
to the formation of herringbones, are not included in the present analysis.
This reduced model has the remarkable property that its stretching energy
vanishes whenever the actual stretching energy vanishes; as a result, smooth
developable surfaces are favored in the limit of large compression, as in the
exact model. A validation is provided by comparison of the results of a linear
stability analysis and of a weakly nonlinear analysis, based either on the sim-
pli�ed or exact models. A similar buckling model has been used to analyze
multiscale, self-similar buckling patterns in thin elastic plates (Audoly and
Boudaoud, 2003), and might be applicable to other buckling problems.

Using numerical simulations of the simpli�ed model, we recovered the initial
and secondary buckling bifurcations, �rst to a cylindricalpattern and second
to an undulating pattern. The undulating pattern evolves smoothly towards
a developable pattern with ridges at large di�erential strain. This developable
pattern is very similar to the Miura-ori pattern analyzed inthe last companion
paper, and to the experimental herringbone patterns; a minor di�erence, com-
ing from the approximations introduced, is that the numerical minimizers have
curved | and not sawtooth-like | crests and valleys in the qua si-1D model.
By the developability condition, the ratio of principal residual stresses can be
extracted from the pro�le g(y) of the crests and valleys; see equation (32).

Our numerical simulations reveal that many equilibrium states are possi-
ble. When the compressive strain is gradually increased, the system remains
trapped in a local minimum of energy which is not the global one. As a result,
the longitudinal and transverse wavelengths of herringbone patterns in real
experiments are expected to be comparable to the buckling wavelength � at
threshold; the precise value of its aspect ratio depends on the detailed history
of loading at the early stage of the experiment.

Our results are in qualitative agreement with the experiments showing herring-
bone patterns under approximately isotropic compression,by Bowden et al.
(1998) and Huck et al. (2000), and with the numerical simulations based on

8 Note that we do not obtain a pattern with a large aspect ratio `y � `x after
the jump, as could be expected from the analysis of Section 6.4. This is probably
because the system has jumped to metastable state with a lower energy that is still
not the absolute energy minimum.
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the �nite elements method by Chen and Hutchinson (2004) on the unit cell of
a periodic pattern. More speci�cally, we have rationalizedthe following obser-
vations. The existence of many metastable states accounts for the variability
of patterns in the experiments, as well as for the weak dependence of the
energy on the aspect ratio of the pattern in the simulations.The proposed
trapping mechanism accounts for the fact that the longitudinal wavelength of
the zigzags and the gap between them are comparable.

The simpli�ed model allows one to propose a global scenario for the evolution
of the pattern, from undulating stripes to developable surfaces with ridges,
reminiscent of herringbones. This scenario accounts for many previous exper-
imental and numerical observations, except for the fact that, the pro�le of
the ridges is sinusoidal in the approximate model, unlike inthe experiments.
This discrepancy will be resolved in the last companion paper (Audoly and
Boudaoud, 2007c), where exact solutions of the original equations are derived
in the limit of large buckling parameter.
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