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Abstract

We derive solutions of the Kirchhoff equations for a knot tied on an infinitely long
elastic rod subjected to combined tension and twist, and held at both endpoints
at infinity. We consider the case of simple (trefoil) and double (cinquefoil) knots;
other knot topologies can be investigated similarly. The rod model is based on
Hookean elasticity but is geometrically nonlinear. The problem is formulated as a
nonlinear self-contact problem with unknown contact regions. It is solved by means
of matched asymptotic expansions in the limit of a loose knot. We obtain a family
of equilibrium solutions depending on a single loading parameter U (proportional
to applied twisting moment divided by square root of pulling force), which are
asymptotically valid in the limit of a loose knot, ǫ → 0. Without any a priori
assumption, we derive the topology of the contact set, which consists of an interval
of contact flanked by two isolated points of contacts. We study the influence of the
applied twist on the equilibrium.

Key words: A. Knots, B. Rods and cables, B. Elastic material, B. Contact
mechanics, C. Asymptotic analysis

1 Introduction

Knots are found in everyday life, shoe lacing being probably the most common
example. They are also essential in a number of activities such as climbing and
sailing. In science, knots have long been studied in the field of mathematics,
the main motivation being to propose a topological classification of the various
knot types, see the review by Tabor and Klapper (1994). Recently, there has
been an upsurge of interest in knots in the biological context: knots form
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spontaneously in many long polymers chains such as DNA (Katritch et al.,
1996) or proteins, and have been tied on biological filaments (Arai et al.,
1999). Knotted filaments have a lower resistance to tension than unknotted
ones and break preferably at the knot (Saitta et al., 1999; Pieranski et al.,
2001a). Despite a wide range of potential applications, the mechanics of knots
is little advanced. The present paper is an attempt to approach knots from a
mechanical perspective by using a well-established model of thin elastic rods.

The problem of finding so-called ideal knot shapes has received much attention
in the past decade (Katritch et al., 1996; Stasiak et al., 1998). In this geomet-
rical description of tight knots, a impenetrable tube with constant radius is
drawn around an inextensible curve in Euclidean space and one seeks, for each
knot type, the configurations of the curve such that the radius of the tube is
maximum. The case of open knots, where the curve does not close upon itself,
has been studied by Pieranski et al. (2001b) in connection with the breakage
of knotted filaments under tension (Pieranski et al., 2001a).

To go beyond a purely geometrical description of knots, it is natural to for-
mulate the problem in the framework of the theory of elasticity. The case
of tight knots, or even of moderately tight knots, leads to a problem of 3D
elasticity with geometrical nonlinearities (finite rotations), finite strains, and
self-contact along an unknown surface: there is no hope to derive analytical so-
lutions. Numerical solution of this problem raises considerable difficulties too,
which have not yet been tackled to the best of our knowledge. In the present
paper, we study the limit of loose knots, when the total contour length cap-
tured in the knot is much larger than the radius of the filament. In this limit,
it is possible to use a Cosserat type model and describe the rod as an inexten-
sible curve embedded with a material frame, obeying Kirchhoff equations; as
we show, the equilibria of open knots can be solved analytically in this limit.

Self-contact in continuum mechanics, and in the theory of elastic rods in par-
ticular, leads to problems that are both interesting and difficult. This comes
from the fact that the set of points in contact is not known in advance —
in fact, not even the topology of this set is known. This paper builds up on
prior work by von der Mosel (1999); Schuricht and von der Mosel (2003),
who characterizes the smoothness of the contact force in equilibria of elastic
rods, and by Coleman and Swigon (2000), who write down the Kirchhoff equa-
tions for rods in self-contact explicitly, including the unknown contact force.
These equations have been solved by numerical continuation in specific geome-
tries by Coleman and Swigon (2000); van der Heijden et al. (2003); Neukirch
(2004). In these papers, the authors simultaneously solve for the nonlinear
Kirchhoff equations and for the unknown contact forces. In the present paper,
we show that, under the same set of assumptions that warrant applicability of
the Kirchhoff equations, one can in fact neglect the geometrical nonlinearities
in the region of self-contact. As a result, nonlinearities and contact can be
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addressed in well separated spatial domains. This brings in an important sim-
plification and, as the result, we are able for the first time to derive analytical
solutions of a self-contact problem for rods undergoing finite displacement,
exhibiting a non-trivial contact set topology.

Our solution is constructed by matched asymptotic expansions with respect
to a small parameter ǫ which is zero for a perfectly thin rod. As is done rou-
tinely in boundary layer analysis, we use qualitative reasonings (dimensional
analysis) to justify how the various quantities scale with the small parame-
ter ǫ. We emphasize that our final solution is exact and does not involve any
other assumption than the smallness of the parameter ǫ : it is asymptotically
exact. Our presentation is based on formal expansions; proofs of convergence
are beyond the scope of the present paper and can hopefully be established
in the future. For an introduction to matched asymptotic expansions, see the
book by Hinch (1991) or Audoly and Pomeau (2009).

The mechanical problem considered here is the following. We solve the Kirch-
hoff equations for an infinite rod, with clamped boundary conditions at both
endpoints at infinity. The rod is inextensible, unshearable and its weight is ne-
glected; bending and twisting moments are related to curvature and twist by a
linear constitutive law given in equation (3) but geometric non-linearities are
retained. Topology of the centerline is a prescribed knot shape (we consider
trefoil and cinquefoil knots). This knotted shape is enforced by self-contact
forces, which are taken into account in the equations of equilibrium. The rod
is loaded under combined tension force T and twisting moment U at its end-
points; this loading is captured by a single dimensionless parameter, U , defined
in equation (19). We derive a family of solutions of the boundary-value prob-
lem depending on the loading parameter U , which is asymptotically valid for
small ǫ. In a previous short paper (Audoly et al., 2007), we have announced
some of the results reported here, for the case of a purely tensile loading,
U = 0; in addition to presenting a justification of these results, we address
here the influence of twist on the knot shape.

The outline of the present paper is as follows. In Section 2, we introduce
the Kirchhoff equations for rods in equilibrium, including the contact forces
relevant for the knotted geometry; we discuss the equivalent formulation as a
minimization problem with topological constraints. In Section 3, we discuss the
singular limit of vanishing thickness when the region of contact collapses to a
point connecting a circular loop and two straight tails. In Section 4, we propose
a perturbation scheme of the original equations in powers of ǫ. Following the
general methodology of matched asymptotic analysis, the solution is given by
different expansions in different regions — here we have three regions, namely
a loop, two tails and a braid. The form of these expansions is motivated by
dimensional analysis for small but nonzero thickness. Next the expansion is
carried out by solving the equations in the various regions: the tails are solved
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Fig. 1. Two knot types are considered here: (a) simple open knot, also known as
trefoil knot, noted 31, and (b) double open knot, also known as cinquefoil knot,
noted 51. The theory can be extended to other knot types.

in Section 5, the loop in Section 6. The solution in the braid region is the
most challenging as this is where contact occurs, and in Section 7 we obtain a
universal solution describing the shape of the rod in this region. In Section 8
we build a global solution by matching the solutions derived previously in each
region. Thereby, we obtain a unique equilibrium solution for any given value
of the loading parameters (pulling force and twisting moment). In Section 9,
this theory is validated by experiments. Appendix A discusses the topology of
the contact set in more details.

2 Model

We seek equilibrium solutions of a thin elastic rod bent into an open 1 knot
with a prescribed type, and subjected to tensile end force and torsional end
moment, as shown on Fig. 2. In the present paper, we focus on two specific
knot types, which are open trefoil knots, also called simple knot and noted 31,
and open cinquefoil knots, also called double knot and noted 51, see Fig. 1.
Other knot types can be handled similarly. The rod is infinitely long and the
loading is applied at infinity.

Our model is based on the Kirchhoff equations for the mechanical equilibrium
of elastic rods. We consider the case of an unshearable 2 , inextensible rod
with circular cross-section — this is the standard model for elastic rods, which
can be derived under fairly general hypotheses from 3D elasticity theory 3 .
Contact of the rod with itself is assumed to be frictionless. The mathemati-
cal formulation of the problem is based on classical models and is relatively
straightforward; the challenge of the present analysis is to deal with geometri-

1 In topology, a knot is defined as a closed, non self-intersecting curve. Here we
consider curves having two infinite tails, hence the name ‘open knots’.
2 By unshearable, we mean that the rod satisfies the Euler-Bernoulli kinematical
hypothesis, also known as the Navier-Bernoulli hypothesis.
3 Extensions of the present results to different rod models do not raise any funda-
mental difficulty.
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cal nonlinearities and self-contact — one of our contributions is to determine
the topology of the contact set which is not known in advance.

In the present section, we recall the Kirchhoff equations for rods and show how
they can be applied to the geometry considered. We emphasize the minimiza-
tion problem underlying the equations of equilibrium, and put the equations
in a dimensionless form.

2.1 Kinematics

We consider an infinite isotropic elastic rod, bent into an open knot as shown
in Fig. 2, with a circular cross section of radius h, a bending modulus B and a
twisting modulus C. Centerline of the rod is parameterized by the arc-length
s and is defined by its Cartesian equation,

r(s) = (x(s), y(s), z(s)) ,

where the orientation of the axes is specified below. The tangent to the cen-
terline is noted

t(s) =
dr

ds
. (1)

Since the rod is assumed inextensible, the tangent is a unit vector,

|t(s)| = 1 (2)

for all s. We note m(s) the internal moment in the rod and n(s) the inter-
nal force — these variables describe stress distribution in the cross-section in
Kirchhoff theory of rods.

Note that the Cosserat directors di of the cross-section do not appear in our
equations: for isotropic rods, the directors can be eliminated from the equa-
tions of equilibrium. This classical elimination follows from the conservation
of the moment of twist. We emphasize that twist is correctly described in
our equations; it appears in the constitutive relations (3) given below, and is
coupled to bending through geometric non-linearities.

2.2 Constitutive relations

We assume a linear elastic response (Hookean elasticity), which is consistent
with the small strain approximation underlying Kirchhoff theory. The con-
stitutive law for a rod with symmetric (e. g. circular) cross-section can be
conveniently written in vector form (Landau and Lifshitz, 1981):

m(s) = B t(s) × t′(s) + C τ(s) t(s), (3)
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where τ(s) is the twist of the rod, defined as the rate of rotation 4 of the
material frame about the tangent with respect to arc-length s. The above
expression is a condensed form of the constitutive relations for a rod that
are usually written in coordinates in the material frame. The first term in
the right-hand side is the bending moment and lies in the cross-section; for a
symmetric rod, this bending moment is the binormal, t×t′, times the bending
stiffness B. The second term in the right-hand side is the twisting moment
and is along the tangent: the twisting moment is given by the twist, τ , times
the twist stiffness C. Since the rod is considered inextensible and unshearable,
the internal force is the Lagrange multiplier associated with these kinematical
constraints, and it not given by a constitutive law.

2.3 Loading

At the end of the rod corresponding to s → +∞, a tensile force T and a
torsional moment U are applied, see Fig. 2. These two vectors are assumed to
be collinear, and are used to define the axis z. Global mechanical equilibrium
requires that an opposite force −T and moment −U are applied at the other
end, s → −∞. At equilibrium, the two long tails of the rod will be aligned
with the direction z of the force. Owing to our choice of axis, we write

T = T ez and U = U ez.

Stability of the long tails require T > 0 but the twisting moment U can be
positive or negative.

2.4 Symmetry

Given the symmetry of the loading, we focus 5 on equilibrium solutions that
are symmetric. More accurately, we assume that the knotted rod is invariant
by rotation with angle π about an axis perpendicular to the axis z defined
by the loading. This is consistent as the endpoints at infinity are swapped
by this transformation, and so the loading is globally invariant under this
transformation 6 .

4 An equivalent definition for the twist τ(s) is that it is the tangential projection
of the Darboux vector associated with infinitesimal motion of the directors upon
moving along the centerline.
5 Since the equations are nonlinear, one could argue that some solutions having no
symmetry at all could exist, as happens in buckling problems. We would miss such
solutions since we restrict the analysis to the symmetric case from the beginning.
6 Note that the knot is not invariant by a reflection with respect to a plane perpen-
dicular to the z axis: this reflection leaves the loading globally invariant but changes
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Fig. 2. An infinitely long rod is bent into a knot with a given type, here a trefoil
knot (31), and loaded with combined twisting moment U and axial force T . In this
paper, we derive equilibrium solutions for this nonlinear self-contact problem.

Let us call y the axis defining this symmetry by rotation with an angle π.
The intersection of the perpendicular axes z and y defined so far will be the
origin O of our Cartesian coordinates. The direction perpendicular to y and z
defines the third axis x, in such a way that (x, y, z) is direct and orthonormal.
Intersection of the axis of symmetry y with the centerline defines what can
be called the midpoint of the rod — intuitively, this is the bottom of the loop
in Fig. 2. This midpoint is taken as the origin of the arc-length coordinate,
s = 0. With this convention, the symmetry by rotation about y with angle π
maps a point on the centerline with coordinate s onto the point with opposite
coordinate (−s). Using this property, it is sufficient to find the equilibrium
shape of the rod over one half, say the positive half 0 ≤ s < +∞: the other
half can be found by applying the symmetry.

2.5 Variational formulation, constraints

The equilibrium shape of the knotted rod can be found be solving a mini-
mization problem: this equilibrium shape is a minimizer of the total energy of
the rod (potential energy associated with loading at endpoints plus elastic en-
ergy) under the combined constraints of inextensibility, non-penetration and
prescribed knot topology. This variational view of the problem will be useful
later for solving the braid region in Section 7.

The total energy of the rod is defined as:

E =
∫ +∞

−∞

(

B

2
κ2 +

C

2
τ 2
)

ds + T D∞ − U R∞, (4)

where κ and τ stand for the curvature and the twist of the rod. The integral
term in the right-hand side is the elastic energy associated with the constitu-

the knot type, turning a left-handed knot into a right-handed one.
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tive law (3). The bending term depends on the scalar curvature

κ = |t′(s)|. (5)

The last two terms in equation (4) represent the work of the applied tensile
force Tez, related to the end-to-end shortening D∞, and of the applied twisting
moment Uez, related to the relative rotation R∞ of the ends.

The minimization of this energy is subjected to a series of constraints. First,
the inextensibility constraint is expressed by equation (2). Second, the topol-
ogy of the knot is prescribed (this topological constraint cannot be written
down easily in the general case; it will be shown to impose the value of a
winding index in the braid when we focus on loose knots later on). Third
and lastly, one has to consider the non-penetration constraint which can be
expressed as:

|r(s1) − r(s2)| ≥ 2 h, (6)

for any s1 and s2 such that |s1 − s2| > 4h. Note that the radius of the rod h
enters in the equation at this point in the right-hand side of equation (6). The
trick of restricting the penetration test to couples of points (s1, s2) separated
by a curvilinear distance greater than 4 h is due to von der Mosel (1999), and
avoids mistaking close neighbors on the centerline for points violating the non-
penetration condition — it is given for mathematical consistency but is not
needed in the following: for the problem we consider, we know a priori that
the arc-length separation of two points in contacts is large, namely of order
2π R where the radius R of the loop is a known quantity of order 1.

2.6 Equilibrium: Kirchhoff equations

The equilibrium equations for a rod can be derived from the energy (4) by
the Euler-Lagrange method (Bourgat et al., 1988; Steigmann and Faulkner,
1993). This leads to the following equations:

r′(s) = t(s) (7a)

t′(s) =
m(s)

B
× t(s) (7b)

m′(s) + t(s) × n(s) = 0 (7c)

n′(s) + p(s) = 0 (7d)

where primes denote derivation with respect to arc-length s. The first equa-
tion is the definition of the tangent, already encountered in equation (1). The
second equation combines the constitutive relations (3) with the definition (5)
of curvature. The last two equations express the equilibrium of moments and
forces on an infinitesimal rod element, and are known as the Kirchhoff equa-
tions (Landau and Lifshitz, 1981). The vector p(s) is the density of distributed
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force per unit length applied on the rod, sometimes referred to as the contact
pressure. In the present problem, gravity is neglected and the only force p(s)
to be considered is the one arising from the contact pressure in the regions of
contact — if there is no contact, p(s) = 0.

2.7 Contact set, contact force

Doing numerical experiments, similar to those described in Section 8.4, we
found that self-contact of the rod seems to be required to enforce a knotted
topology. We were not able to find stable solutions of the Kirchhoff equations
representing an infinitely long, open knot without contact 7 . Therefore, we
shall assume that there is some contact.

Let us define the contact set as the set of couples of arc-lengths, (s1, s2),
defining cross-sections that are in contact:

C =
{

(s1, s2) such that |s1 − s2| > 4h and |r(s1) − r(s2)| = 2 h
}

, (8)

where the first inequality, |s1 − s2| > 4h, is to avoid mistaking close neighbors
for regions of penetrations, as explained earlier, and the second inequality
|r(s1) − r(s2)| = 2 h is the contact criterion.

We are touching here the main challenge of self-contact problems: the profile of
the contact pressure p(s) is required to compute the centerline by integration
of the Kirchhoff equations, but it depends itself non-linearly on the geometry
of contact, that is on the shape of the centerline. In other words, p(s) and the
contact set C must be determined in a self-consistent way but none is known a
priori. In particular, the topology of the contact set is not known in advance.
It will be obtained later as an outcome of our calculations.

For any couple (s1, s2) in the set C, the corresponding cross-section are in
contact. By the action-reaction principle, we have p(s1) = −p(s2). In addition
we assume frictionless contact: the force p has to be normal to the rod surface,
and so is aligned with (r(s2) − r(s1)). This implies that the contact force is

7 We did find some numerical solutions representing open knots without contact,
but only for a rod of finite length; furthermore these solutions are unstable. Similarly,
in the case of a closed knot Langer and Singer (1984) conjectured that stable knotted
equilibria require contact.
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aligned with the vector joining the points r(s1) and r(s2):

p(s1) = p(s1)
(r(s1) − r(s2))

2h
= p(s1)















(x(s1) − x(s2))/(2h)

(y(s1) − y(s2))/(2h)

(z(s1) − z(s2))/(2h)















, (9)

for (s1, s2) ∈ C. In this equation we have introduced the scalar contact pressure
p(s); since the rod is a 1D object, the contact force has the dimension of a
force per unit length but we shall nevertheless call it a contact pressure. For
the solution to be physical, the pressure must be positive:

p(s) ≥ 0. (10)

In terms of the scalar contact pressure, the action-reaction principle can be
rewritten as

p(s1) = p(s2). (11)

2.8 Boundary conditions

Thanks to the symmetry introduced in Section 2.4, the equations of equilib-
rium (7) need be solved over half the rod only, that is for 0 ≤ s < +∞. These
equations form a boundary value problem as there are conditions to be satis-
fied at both ends of the interval. The following conditions must be satisfied at
the endpoint s = +∞:

t(+∞) = ez, (12a)

m(+∞) = U ez, (12b)

n(+∞) = T ez, (12c)

r(+∞) × t(+∞) = 0. (12d)

The asymptotic conditions holding at the opposite end of the rod, s → −∞,
can be found by symmetry. The first equation (12a) imposes that the tangent
is asymptotically aligned with the applied force, which is an obvious necessary
condition for minimizing the energy. The next two conditions above enforce
the loading applied at infinity. The last one (12d) defines the z axis as the
asymptote of the centerline far away from the knot — without this convention
there would be infinitely many solutions, corresponding to the invariance of
the system under rigid-body translations perpendicular to the z axis.

The boundary conditions at the midpoint s = 0 of the rod derive from the
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invariance of the solution by a rotation of angle π about the y axis:

t(0) · ey = 0 (13a)

m(0) · ey = 0 (13b)

n(0) · ey = 0 (13c)

r(0) × ey = 0 (13d)

The justification for each of these three equations is similar, and will be given
here for the first one only. Let us write the Cartesian coordinates of the tangent
t(0) at midpoint as t(0) = (tx0 , t

y
0, t

z
0). According to our symmetry assumption,

rotating the system by an angle π about the y axis is equivalent to reversing
the orientation of the centerline. The first operation changes the tangent to
(−tx0 , +ty0,−tz0), while the second one changes it to its opposite, (−tx0 ,−ty0,−tz0).
Equality of these two vectors imposes ty0 = 0, which yields equation (13a).

2.9 Invariants

Due to their variational nature, the equilibrium equations (7) are associated
with several invariants as discussed by Maddocks and Dichmann (1994). These
invariants are known to be conserved in the absence of distributed force, p = 0.
In the present case, the distributed force can be nonzero but remains every-
where perpendicular to the tangent t(s). Under this assumption, it is straight-
forward to check that the following expressions are still invariants:

I1 = m(s) · t(s) and I2 =
|m(s)|2

2 B
+ n(s) · t(s). (14)

The first invariant is directly proportional to the twist τ(s) = I1/C, and is
known to be uniform for a rod with symmetric cross-section in equilibrium
in the absence of distributed torques. The famous Kirchhoff analogy identifies
the equations of equilibrium of a symmetric rods to the equations of motion of
a table top subjected to gravity. According to this analogy, the first invariant
expresses conservation of the angular moment about the axis of the top; the
second invariant expresses conservation of the energy of the top.

The constant values of these invariants are imposed by the boundary condi-
tions (12):

I1 = U = Cτ(s) and therefore τ(s) =
U

C
, (15a)

and

I2 =
U2

2 B
+ T . (15b)

Note that conservation of these invariants requires frictionless contact.
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2.10 Counting equations and unknowns

Having written down the equations for the boundary-value problem for the
knot, we now check that the number of equations and unknown are consistent.
Equations (7) are a set of first-order equations for 4×3 = 12 scalar unknowns.
These equations are subjected to an equal number of independent conditions:
(i) the inextensibility condition (2) counts 1; (ii) equations (13a–13c) involve
one scalar condition each, and count 3 total; (iii) equation (13d) can be rewrit-
ten rx(0) = 0 and rz(0) = 0 and so counts 2; (iv) the boundary condition (12a)
fixes the direction of the vector t which is already known to be a unit vector,
and so counts only 2; (v) the same equation (12a) imposes that t′ → 0 for
s → +∞; together with equation (7b) this implies m × t → 0 and as result
equation (12b) counts for just 1 independent condition; (vi) similarly, equa-
tion (12b) implies m′ → 0 and so equation (7c) yields t× n → 0; as a result,
equation (12c) counts for just 1 independent condition; (vii) equation (12d) is
equivalent to rx(+∞) = 0 and rx(+∞) = 0 and counts 2. Overall, we have 12
independent conditions. This count confirms that the problem is well-posed.

2.11 Dimensionless form

The problem has been formulated so far in terms of the loading parameters
T and U , of the thickness h, and of the elastic stiffnesses B and C. In this
section, we use dimensional analysis and rewrite the equations in a form that
depends on two dimensionless parameters, U and ǫ, only.

To this end, we introduce the characteristic length L⋆, force F ⋆ and moment
M⋆ as follows:

L⋆ =

√

B

T
, F ⋆ = T, M⋆ =

√
B T . (16)

These quantities are used to define dimensionless variables, noted with a bar.
For instance, we define the dimensionless arc-length s and position r as

s =
s

L⋆
= s

√

T

B
, r(s) =

r(sL⋆)

L⋆
= r(s)

√

T

B
. (17)

Note that rescaled functions, such as r, are always considered to be a function
of a rescaled argument, here s and not s: a prime on a barred function implies
that derivation is with respect to the rescaled arc-length. For instance, the
rescaled tangent is defined by

t(s) = r′(s) =
dr

ds
=

d(r/L⋆)

d(s/L⋆)
= r′(s) = t(s) = t(sL⋆),
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and happens to be the same unit vector as the physical tangent t, evaluated at
the corresponding point s = s L⋆. Similarly, the rescaled curvature is defined
as κ = |t′|:

κ(s) =
κ(sL⋆)

1/L⋆
. (18)

The rescaled internal moment and torsional couple are:

m(s) =
m(s L⋆)

M⋆
=

m(s L⋆)√
B T

and U =
U

M⋆
=

U√
B T

. (19)

The internal force n is naturally rescaled using the typical force F ⋆ = T , while
the contact force per unit length, p, is rescaled using the dimension F ⋆/L⋆:

n(s) =
n(s L⋆)

T
and p(s) =

p(s L⋆)

T

√

B

T
. (20)

Having defined the rescaled form of the various quantities, we proceed to
rewrite the equations of the problem in dimensionless form. We start with the
constitutive relation (3):

m(s) = t(s) × t
′
(s) + U t(s). (21)

The kinematical relations and equilibrium equations (7) write:

r′(s) = t(s), (22a)

t
′
(s) = m(s) × t(s), (22b)

m′(s) + t(s) × n(s) = 0, (22c)

n′(s) + p(s) = 0. (22d)

For the asymptotic conditions (12) we obtain:

m(+∞) = U ez, (23a)

n(+∞) = ez, (23b)

t(+∞) = ez, (23c)

r(+∞) × t(+∞) = 0, (23d)

while the midpoint conditions take the same form as the original expres-
sions (13), with original variables replaced by barred ones:

t(0) · ey = 0, (24a)

m(0) · ey = 0, (24b)

n(0) · ey = 0. (24c)

r(0) × ey = 0 (24d)
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In rescaled form, the invariants (15) read:

I1 = m(s) · t(s) = U, (25a)

I2 =
m2(s)

2
+ n(s) · t(s) =

U
2

2
+ 1. (25b)

We now turn to the non-penetration constraint. In terms of r = r/L⋆, Eq. (6)
can be rewritten as

|r(s1) − r(s2)| ≥ 2
h

L⋆

In the right-hand side a fundamental dimensionless number of the problem has
appeared, namely the ratio of the rod thickness to the characteristic length
built from the traction force T and the bending stiffness B of the rod. It will be
convenient to deal with this dimensionless number using an auxiliary number
ǫ defined as

ǫ = 21/4

√

h

L⋆
=

(

2 h2 T

B

)1/4

. (26)

This details of the present definition of ǫ will be motivated later in Eq. (31).
In terms of ǫ, the non-penetration condition can be written as

(

r(s1) − r(s2)
)2 ≥ 2 ǫ4 (27)

In equations (21) to (27), we have rewritten all the equations of the problem
in terms of two dimensionless parameters only, U and ǫ, defined in Eqs. (19)
and (26) respectively. The first parameter U is the rescaled torsional moment;
the second parameter ǫ is the aspect-ratio of the rod. In this paper, we focus
on the limit of thin rod, or a loose knot, ǫ → 0, and build an asymptotic
solution of the set of equations above, for arbitrary values of U .

3 Limit of a perfectly thin rod

In the present section, we propose solutions of the equations in the tail and
loop regions which are relevant to the limit of a perfectly thin rod (h = 0, that
is ǫ = 0). Even though the rod is twisted, these solutions are planar. This is
consistent with the experiments presented in Section 9, which reveal that the
shape of a very thin, knotted rod is almost planar. The limit ǫ = 0 is singular
and the braid shrinks to a point for ǫ = 0. Therefore, we shall not expect to
have a solution available in the braid when ǫ = 0, and we will not attempt to
derive one.

As explained in the introduction, our approach is based on formal expansions.
Therefore, we shall offer no proof that the solution of the problem with non-
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Fig. 3. Case of zero thickness, h = 0. The equilibrium solution is planar and made
up of two semi-infinite straight tails connected to a perfectly circular loop with
radius R. The top of the loop is connected to the tails across a singular point O,
shown in gray, where both the internal force and moment are discontinuous.

zero ǫ converges to a solution of the form proposed in this Section when ǫ → 0,
even though this can probably be established. The point of the present Section
is simply to motivate the form of the expansions introduced in Section 4, which
will be the starting point of our asymptotic analysis. As usual in matched
asymptotic analysis, our initial assumptions (planarity, existence of a point-
like contact for ǫ = 0) will be validated in the end when we confirm that there
exists a solution to the matching problem — wrong initial assumptions would
make it impossible to match the solutions at the boundaries of the regions.

3.1 Explicit solution

In the limit of zero thickness h = 0, we consider a solution made up of a circu-
lar loop connected to two straight, semi-infinite tails. Owing to the assumed
symmetry of the solution, we focus on one half the rod and consider a half-
circle starting from the midpoint, connected to a single straight, semi-infinite
tail. There is no contact, except at the singular point O where the loop and
tail merge, see Fig. 3. By our previous definition of axes, this point O is the
origin of the Cartesian frame, the loop is contained in the (y, z) plane and the
tails lie along the z axis.

Any quantity pertaining to the limit of a zero thickness, h = 0 or ǫ = 0,
introduced in the present Section will be denoted with a superscript ‘0’. A
subscript ‘L’ refers to the loop region, and ‘T ’ to the tail region. Let R be
the radius of the loop, which will be given in Eq. (30), and R = R/L⋆ the
rescaled radius. The loop region is given by the classical circular solution of the
Kirchhoff equations. The centerline is a circle given in parametric equation:

r0
L(s) =

(

0, −
(

R + R cos(s/R)
)

, −R sin(s/R)
)

, (28a)

t
0
L(s) =

(

0, sin(s/R), − cos(s/R)
)

. (28b)
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Note that the constants of integration are such that the top of the loop, s = π R
is at the origin: r0

L(π R) = 0. The tangent at midpoint is t
0
L(0) = −ez, and

that at the top is t
0
L(π R) = +ez. The internal force and moment in the loop

can be found by plugging these expressions into equations (21–24) with p = 0:

m0
L(s) =

(

1/R, U sin(s/R), −U cos(s/R)
)

, (28c)

n0
L(s) = (U/R, 0, 0). (28d)

These equations hold in the loop region, −π R ≤ s ≤ π R. Note that this
solution is twisted but planar – centerline is an arc of circle. As can be shown
directly from the equations, there are solutions to the Kirchhoff equations for
isotropic rods which are both twisted and planar; such solutions have constant
curvature: this yields arcs of circles (as in the loop) or straight segments (as
in the tails).

The solution in the tail is even simpler and describes a straight rod under
combined axial tension and twisting moment:

r0
T (s) = (s − πR)ez, (29a)

t
0
T (s) = ez, (29b)

m0
T (s) = U ez, (29c)

n0
T (s) = ez, (29d)

these expressions being applicable for s ≥ π R.

3.2 Singular braid point

At the point connecting the loop and tail regions, s = π R, the solution is
discontinuous. Across this point, the internal force jumps from n0

L(π R) =
U ex/R to n0

T (π R) = ez, while the bending moment, defined as the cross-
sectional projection of m, drops from ex/R to 0. These discontinuities point
to the presence of contact forces in this region, and will be explained by our
analysis of the braid region for finite ǫ, see Section 7.

For this solution to be complete, there remains to compute the radius R of
the loop. This can be done by writing the conservation of the second invariant
given by Eq. (25b) across the singular point:

1

2

(

1

R
2 + U

2

)

=
U

2

2
+ 1,

where the left-hand side comes from the loop region and the right-hand side
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from the tail. This implies

R =
1√
2
, that is R =

√

B

2 T
. (30)

This result was previously obtained by Arai et al. (1999) based on energy
minimization of the energy (4) with respect to R.

4 Perturbation scheme

In Section 2.11, the equilibrium of a knotted rod has been written as a sys-
tem of coupled, nonlinear, ordinary differential equations depending on two
dimensionless parameters, U and ǫ. In this paper, we consider the limit of a
small ǫ, ǫ ≪ 1. This limit is in fact the only one consistent with Kirchhoff (or
Cosserat) description of the rod as a 1D elastic object. Indeed, Kirchhoff the-
ory comes from a reduction of 3D elasticity, and is justified when the thickness
h is much smaller than the typical radius of curvature of the centerline 8 . This
typical radius of curvature is L⋆, meaning that Kirchhoff approximation makes
sense in the limit h ≪ L⋆, that is ǫ ≪ 1. The opposite limit of a perfectly
tight knot defines a geometrical problem which has extensively been studied,
see Pieranski et al. (2001b); Katritch et al. (1996); Cantarella et al. (2005).

The limit ǫ ≪ 1 under consideration corresponds to a rod whose radius h
becomes infinitely small while its elastic moduli are kept constant, or equiva-
lently to the case of a fixed radius h and elastic moduli when the pulling force
becomes very small. We refer to this limit generically as the limit of a loose
knot. Our somewhat arbitrary definition of the perturbation parameter ǫ in
Eq. (26) has in fact been motivated by the simple relation

ǫ =

√

h

R
, (31)

where h is the rod thickness and R the loop radius defined in Eq. (30). The
limit of a loose knot corresponds to ǫ → 0.

In Section 3, we introduced a solution corresponding to the limit h = 0, that
is to ǫ = 0. This solution features a singular point where some contact occurs.
One of the main contributions of the present paper is to come up with a
detailed description of this contact region, called the braid later on, for small

8 Our approach here is to start from the Kirchhoff equations and next take the
limit ǫ ≪ 1. We shall not prove that the resulting equations can be justified from
3D elasticity in one step — even though this seems very likely given our set of
scaling assumptions.
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braid

loop

tailtail

Fig. 4. In the limit of a loose knot considered here, ǫ ≪ 1, the equilibrium solution
can be decomposed into three domains: an almost circular loop, two almost straight
tails, and a braid region where self-contact takes place. In the vocabulary of asymp-
totic analysis, the braid region is an inner layer, with typical length ℓ much smaller
than the typical size R of the loop and tail regions (outer layers). Note the existence
of so-called intermediate region, in darker gray, at the overlap between braid and
tails, and between loop and braid.

but finite h. A key remark, formulated by Gallotti and Pierre-Louis (2007), is
that the contact region remains very localized for small ǫ. Together with the
explicit solution for h = 0 given in Section 3, this suggests the decomposition
of the knot solution in three domains shown in Fig. 4: a quasi-circular loop, two
quasi-rectilinear tails and a braid region in between. We shall now study the
orders of magnitudes of the displacement relevant to these different regions.
This is an important preliminary step for the quantitative analysis presented
in the following sections. A simple scaling argument, given in our preliminary
paper (Audoly et al., 2007), shows that the size ℓ of the contact region is of
order of the geometric mean of the loop radius R and the rod thickness h,
which we write

ℓ ∼
√

h R.

This defines an intermediate length scale, between the ‘large’ length R and the
small length h. To justify this scaling, we note that the transverse displacement
in the braid is fixed by contact and is of order h; over a typical length ℓ, this
yields a typical curvature h/ℓ2. At the exit of the braid, this curvature has
to be matched with that in the loop, of order 1/R. Balancing h/ℓ2 with 1/R
yields ℓ ∼

√
h R as proposed above.

By this argument the solution features three widely different length scales,
R ≫ ℓ ≫ h. The large scale R is relevant in the loop and tail regions. In the
braid region, the relevant length scale is ℓ along the braid axis, and h in the
perpendicular direction. Defining the rescaled, typical braid length ℓ and the
rescaled radius h by

ℓ =
ℓ

L⋆
, h =

h

L⋆
,
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we note the orders of magnitude associated with the three fundamental lengths
in rescaled form:

h ∼ ǫ2 ≪ ℓ ∼ ǫ1 ≪ R ∼ ǫ0

In the vocabulary of inner or boundary layer analysis, the loop and tail regions
are both called outer regions, while the braid is called the inner region 9 .

The above argument clearly shows that the limit ǫ → 0 is singular and that a
uniform expansion of the solution with the parameter ǫ is not possible. This
is typical of boundary layer problem — or inner layer problems in the present
case. The classical approach to such problems is to use matched asymptotic
expansions, that is to build a solution domain by domain using different ap-
proximations in the outer and inner domains, and to match these solutions in
the regions of overlap between two adjacent domains.

As mentioned earlier, the outer regions undergo a regular perturbation. This
suggests the following, simple expansions in the tail region (subscript T ) and
in the loop region (subscript L):

rT (s) = r0
T (s)+ǫ















x̂T (s)

ŷT (s)

ẑT (s)















+ . . . and rL(s) = r0
L(s)+ǫ















x̂L(s)

ŷL(s)

ẑL(s)















+ . . . (32)

The functions r0
T and r0

L relevant to the zero thickness case have been given
in Eqs. (28a) and (29a). The six unknown functions x̂T (s), ŷT (s), . . . , ẑL(s)
describe the first-order perturbation in the tail and loop regions, and will be
found later by solving the linearized Kirchhoff equations.

For the inner region (braid, with subscript B), there is no solution available
in the limit of zero thickness and the above scaling argument suggests an
expansion of the form:

rB(σ) =















0

ǫ τB

0















+















ǫ2 x̂B(σ)

ǫ2 ŷB(σ)

ǫ σ















+ . . . (33)

The first term in the right-hand side represents an infinitesimal rigid-body
translation along the y axis: the center of symmetry of the braid does not

9 Outer regions are those that are present in the zero thickness solution of Section 3:
they undergo a regular perturbation for small but nonzero ǫ. In contrast, the inner
region (braid) is undefined in the ǫ = 0 solution and so has to be built from scratch
when ǫ > 0.
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need to remain at the origin when ǫ is nonzero, but can only move along the
y axis due to the symmetry. The second term is not a rigid-body motion. It
makes use of the stretched coordinates x̂ = x/ǫ2, ŷ = (y−ǫ τB)/ǫ2 and σ = z/ǫ
suggested by the above scaling analysis: the axial dilation factor 1/ǫ and the
transverse one 1/ǫ2 comes from the lengths scales ℓ ∼ ǫ and and h ∼ ǫ2 found
earlier. The use of stretched variables is classical in problems of elasticity with
a small parameter, such as those that arise in the analysis of slender elastic
bodies. The number τB and the functions x̂B and ŷB are unknowns which will
be determined later.

Note that we use the stretched coordinate σ as the parameter for the centerline
in the braid region, and this σ = z/ǫ is not the arc-length (in the absence of
ambiguity it is common to use the same notation rB for the functions mapping
arc-length s to centerline position r, or stretched axial variable σ to centerline
position r). The above scalings imply that the braid is almost parallel to
the z axis, and so the tangent can nowhere be perpendicular to ez: in the
braid region, there is a one-to-one mapping between the arc-length and the
parameter σ, which is proportional to z, and it makes sense to use σ as a
parameter along the braid.

The equations (32) and (33) provide a starting point for our analysis. These
expansions will be plugged into the general equations for the knot derived
earlier in Section 2. The resulting equations for the perturbed tail will be solved
in Section 5; those for the perturbed loop in Section 6; finally, the leading-
order braid solution, which is more difficult to derive, will be given Section 7.
As implied by the name ‘matched asymptotics’, the last step is to match
the solutions obtained in the different regions; this is done in Section 8 by
requiring consistency of the expansions coming from the two adjacent domains
in the regions of overlap. This provides a smooth solution of the Kirchhoff
equations over the entire domain, which will be shown to be unique under
some hypotheses.

5 Tail solution

In this section we solve the linearized Kirchhoff equations in the tails, which are
given by an infinitesimal perturbation near the straight solution, see Eq. (32).
These linearized equations are classical and arise in the analysis of linear
stability of a straight, twisted rod under helical buckling. We characterize the
first-order perturbation to the straight configuration due to the presence of the
knot by computing the functions (x̂T , ŷT , ẑT ). As explained earlier, we focus
on the tail located on the positive side of the z axis.
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5.1 Linearized Kirchhoff equations near a straight configuration

To start with, let us plug Eq. (32) into the definition (7a) of the tangent and
compute

|tT (s)|2 = |ez|2 + 2 ǫ ez · (x̂′
T (s), ŷ′

T (s), ẑ′T (s)) + · · · = 1 + 2 ǫ ẑ′T (s) + · · ·

where the dots stand for higher order terms in ǫ. By the inextensibility con-
dition (2), the left-hand side has to be equal to 1 for any value of ǫ and so
ẑ′T (s) = 0 in the right-hand side:

ẑT (s) = ẑc
T , (34)

where ẑc
T is a real constant. This constant can be interpreted as an infinitesimal

rigid-body translation of the tail along its axis, accommodating the change of
curvilinear length captured in the loop and braid regions.

There is no contact in the tail regions and so the contact force p is zero. By
Eq. (22d), the internal force n is then uniform over the whole tail. Now, this
constant value of the internal force is set by the asymptotic condition (23b),
and so

nT (s) = ez (35)

a quantity that does not depend on ǫ. This makes is possible to integrate the
equation for the equilibrium of moments:

mT (s) = mK
T + ez × rT (s),

where mK
T is a constant of integration whose value, mK = U ez, is provided

by the boundary conditions (23):

mT (s) =















0

0

U















+ ǫ















−ŷT (s)

x̂T (s)

0















+ . . . (36)

Equation (22b) for the rate of rotation of the tangent is automatically satisfied
at order zero; at first order in ǫ, it writes:

0 + ǫ















x̂′′
T (s)

ŷ′′
T (s)

0















= U ez × ǫ















x̂′
T (s)

ŷ′
T (s)

0















+ ǫ















−ŷT (s)

x̂T (s)

0















× ez.
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This vector equation is automatically satisfied along the z axis. Projection
along x and y axis yields a system of two equations:

x̂′′
T (s) − x̂T (s) + U ŷ′

T (s) = 0, (37a)

ŷ′′
T (s) − ŷT (s) − U x̂′

T (s) = 0. (37b)

Here we have written the equations for a rod in the small deflection approxima-
tion. In the problem at hand, it turns out that the tension term 10 dominates
over the bending term in the balance of transverse forces; this explains why we
have a second-order equation rather than the classical fourth-order equation
of beam problems.

These equations for a twisted rod linearized near a straight configuration
are identical to the ones obtained in the linear analysis of helical buckling,
see van der Heijden and Thompson (2000). Eqs. (37) can be put in a compact
form when expressed in terms of the complex variable ŵT (s) = x̂T (s)+ i ŷT (s):

ŵT (s)′′ − ŵT (s) − i U ŵ′
T (s) = 0 , (38)

where i2 = −1. We seek solutions of this linear differential equation with
constant coefficients in the form of exponential functions ŵT (s) = Γ ek (s−π R),
where k and Γ are complex constants. Note that we are free to incorporate
the constant term −k π R in the argument of the exponential; this amounts to
change the definition of the undetermined constant Γ and will turn out to be
convenient later on. The possible values of the complex number k are given
by the roots of the characteristic polynomial of Eq. (38):

k2 − i U k − 1 = 0.

These roots are noted k1 = −a + i b and k2 = a + i b where:

a(U) =

√

√

√

√1 −
(

U

2

)2

and b(U) =
U

2
, (39)

The general solution of the equation for ŵT could be written as a linear com-
bination of the functions

e−a s (cos(b s) + i sin(b s)) and e+a s (cos(b s) + i sin(b s))

but, as said above, it is more convenient to use s−π R as argument. Without
no loss of generality, we write the general solution as

ŵT (s) = Γ− e−a (s−π R)
(

cos[b (s − π R)] + i sin[b (s − π R)]
)

+ Γ+ e+a (s−π R)
(

cos[b (s − π R)] + i sin[b (s − π R)]
)

. (40)

10 The value of the tension T 6= 0 does not appear in the equation as it has been
effectively set to 1 by our choice of dimensionless variables.
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Here, Γ− and Γ+ are two complex constants of integration. The exponentially
large solutions are incompatible with the boundary conditions (23) and so are
discarded: Γ+ = 0.

Noting λ and µ the real and imaginary parts of the unknown complex am-
plitude Γ− = λ + i µ, we can write the general solution for the displacement
as

x̂T (s) = ℜ(ŵT (s)) =
(

λ cos[b (s − π R)] − µ sin[b (s − π R)]
)

e−a (s−π R),

ŷT (s) = ℑ(ŵT (s)) =
(

µ cos[b (s − π R)] + λ sin[b (s − π R)]
)

e−a (s−π R).

By equations (29a), (32), and (34) the arc-length s is related to the z coor-
dinate by

z = zT (s) = (s − π R) + ǫ ẑc
T + . . .

We can use this relation to introduce a change of variable and parameterize
the centerline by z instead of s. For instance, the above expression for x̂T (s)
can be rewritten x̂T (z) = (λ cos(b z)−µ sin(b z)) e−a z +O(ǫ), where the O(ǫ)
notation means that the equality is exact up to terms of order ǫ. This leads
to the following parameterization of the tail, which is valid to first order in ǫ
included:

rT (z) = z ez + ǫ (x̂T (z) ex + ŷT (z) ey) + · · ·
where

x̂T (z) = (λ cos(b z) − µ sin(b z)) e−a z + · · · (41a)

ŷT (z) = (µ cos(b z) + λ sin(b z)) e−a z + · · · (41b)

This solution depends on two real parameters, λ and µ, which we call the
internal parameters of the tail. They are referred to collectively as ΨT :

ΨT = (λ, µ) , (42)

and will be determined later by matching with the other regions.

5.2 Asymptotic expansion near junction with braid

The matching problem, studied later in Section 8, is based on the expansion
of the tail solution given above in Eqs. (41) near the junction with the braid,
that is near the origin z = 0. This expansion is computed here.

The rescaled x and y coordinates of a current point rT on the centerline are
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noted xT and yT . By Eqs. (41), their expansion is of the form

xT (z) = ǫ XT + ǫ X ′
T z + O(ǫ2, ǫ z2) (43a)

yT (z) = ǫ YT + ǫ Y ′
T z + O(ǫ2, ǫ z2). (43b)

As implied by the O(.) notation, the right-hand side is the beginning of an
expansion where we have neglected terms of order ǫ2 coming from the next
order in the global expansion with respect to ǫ, and of order ǫ z2 coming from
quadratic terms in the expansion of Eqs. (41a) and (41b) with respect to z.

In equations (43) above, the four coefficients (XT , X ′
T , YT , Y ′

T ) are found by
identification with the series expansion of x̂T (z) and ŷT (z) given in Eqs. (41)
near z = 0:

XT = x̂T (z = 0) = λ

YT = ŷT (z = 0) = µ

X ′
T = x̂′

T (z = 0) = −a λ − b µ

Y ′
T = ŷ′

T (z = 0) = b λ − a µ.

For the matching problem studied later, it is convenient to put these expres-
sions into matrix form:





















XT

X ′
T

YT

Y ′
T





















= MT (U) · ΨT where MT (U) =





















1 0

−a(U) −b(U )

0 1

b(U) −a(U)





















. (44)

Note that this equation defines the matrix MT (U) explicitly as a function of
the loading parameter U = U/

√
B T . This matrix MT (U) captures the elastic

response of the tail to perturbations applied at its end z = 0; it is the only
quantity relevant to the tail that will be used in the matching problem of
Section 8.

5.3 Helical instability

We mentioned that the linearized equations (41) arise in the classical analysis
of linear stability of a straight, twisted rod under helical buckling. For U = ±2,
a(U) = 0 in Eq. (39) and the two complex roots k1 and k2 collide: this is the
threshold of linear stability for this helical buckling mode. This instability will
show up in the analysis of the knot later on.
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6 Loop solution

In this section, we solve the Kirchhoff equation linearized near the planar,
circular configuration relevant for the loop region. This problem comes from
applying perturbation (32) to the zero thickness solution (28a) for the loop.
It is somewhat similar to the classical analysis of stability of a circular rod
under twist, known as Michell’s instability, see Michell (1890). We focus on
one half loop, corresponding to the interval 0 ≤ s ≤ π R. Deformation of the
other half can be found by symmetry. The point with arc-length s = 0 is the
bottom of the loop and that with coordinate s = π R describes the junction
with the braid (up to first order corrections in arc-length, as discussed below).

6.1 Linearized Kirchhoff equations near a circular configuration

For the loop solution, it is convenient to use the following cylindrical basis in
the (y, z) plane:







er(θ) = − cos θ ey − sin θ ez

eθ(θ) = sin θ ey − cos θ ez

. (45)

These vectors defines an orthonormal frame (er, eθ, ex) for any value of θ.
With the choice

θ(s) =
s

R
,

this basis is adapted to the zero thickness solution in the sense that eθ(θ(s)) =

t
0
L(s). In the absence of ambiguity, the dependence of θ on s is not always

written explicitly In the rest of this Section. The following derivation rules
apply:

der

ds
=

eθ(θ)

R
,

deθ

ds
= −er(θ)

R
. (46)

Vectors decomposed in the basis (er, eθ, ex) are denoted with square brackets.

We introduce the first order perturbation of the tangent of the loop in the
moving frame using two functions û and v̂:

tL(s) = t
0
L(s) + ǫ















û(s)

0

v̂(s)















(r,θ,x)

= eθ(s) + ǫ (û(s) er(s) + v̂(s) ex) . (47)

By the inextensibility constraint (2), the perturbation to tL(s) along eθ van-
ishes. The functions û and v̂ are related to the functions x̂L, ŷL and ẑL intro-
duced in Eq. (32):

x̂′
L(s) = v̂(s), ŷ′

L(s) = − cos(s/R) û(s), ẑ′L(s) = − sin(s/R) û(s). (48)
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These equations will be used later to compute to x̂L, ŷL and ẑL.

To use the constitutive relation (21), we first need to compute the deriva-
tive of the perturbed tangent given by Eq. (47). Using the derivatives of the
cylindrical vectors in Eq. (46), we find

t
′
L(s) = −er

R
+ ǫ















û′(s)

û(s)/R

v̂′(s)















(r,θ,x)

+ · · · . (49)

Plugging this expression into the constitutive equation, we obtain:

mL(s) =















0

U

1/R















(r,θ,x)

+ ǫ















v̂′(s) + U û(s)

−v̂(s)/R

−û′(s) + U v̂(s)















(r,θ,x)

, (50)

an expression which is valid up to first order in ǫ.

Like the tails, the loop is free of contact. As a result, the contact force vanishes,
p = 0, and the internal force n(s) takes on a constant value over the whole
loop. At dominant order, this value has to match that given in Eq. (28d) for
the zero thickness solution. In addition, its linear correction in ǫ has to be
consistent with the symmetry conditions (24). This shows that the internal
force in the loop is of the form

nL(s) =
U

R
ex + ǫ (α ex + β ez) , (51)

where α and β are two constants to be determined.

Combining Eqs. (50) and (51), we find that the equilibrium of moments (22c)
can be expressed as a set of linear equations for the loop perturbation (û, v̂):

v̂′′(s) + U û′(s) +
v̂(s)

R
2 = −α (52a)

−û′′(s) + U v̂′(s) = −β sin
s

R
. (52b)

To integrate this differential system of total order four, we need to find four
initial conditions.

To this end, we proceed as in Eq. (51) and write down the centerline position,
tangent and internal moment at the bottom of the loop which are compatible
both with the zero radius solution, see Eqs. (28), and with the symmetry
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conditions (13):

rL(0) = −2 R ey + ǫ ρ ey, (53a)

tL(0) = −ez − ǫ φ ex, (53b)

mL(0) =
(

1

R
ex − U ez

)

+ ǫ (γ ex + δ ez) (53c)

The constants ρ, φ, γ and δ introduced here will be determined later: ρ rep-
resents an infinitesimal motion of the bottom of the loop along the axis y of
symmetry; φ represents an infinitesimal rotation of the bottom of the loop
about the axis y. Writing the two invariants, given in Eqs. (25) at s = 0 we
can eliminate to two other constants:

γ = β R and δ = − φ

R
. (54)

There remain four internal parameters for the loop, namely α and β introduced
in Eq. (51), and ρ and φ in Eq. (53). Using a notation similar to that for the
tails, we collect these unknown parameters into a vector ΨL:

ΨL = (α, β, ρ, φ) (55)

The initial condition for the set of differential equations (52) can now be
written as a function of the loop parameters. They read

û(0) = −1

ǫ

(

tL(0) − t
0
L(0)

)

· ey = 0, (56a)

û′(0) = −1

ǫ

(

mL(0) − m0
L(0)

)

· ex + U v̂(0) = −β R − U φ, (56b)

v̂(0) =
1

ǫ

(

tL(0) − t
0
L(0)

)

· ex = −φ, (56c)

v̂′(0) = −1

ǫ

(

mL(0) − m0
L(0)

)

· ey − U û(0) = 0 (56d)

Equations (52) with initial conditions (56) are linear differential equations
with constant coefficients. Their solution reads

û(s) = α
R

3
U

K
2
L(U)

(

1

KL(U)
sin

(

s

R
KL(U)

)

− s

R

)

(57a)

− R

KL(U)
sin

(

s

R
KL(U)

)

(

β R + φ U
)

v̂(s) =
β R

U
cos

(

s

R

)

+ α
R

2

K
2
L(U)

(

cos
(

s

R
KL(U)

)

− 1
)

(57b)

− cos
(

s

R
KL(U)

)

(

β R

U
+ φ

)

,
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where we have introduced the auxiliary function KL(U) = (1 + R
2
U

2
)1/2.

Integrating Eq. (48), one can find an explicit expression for the functions
x̂L(s), ŷL(s) and ẑL(s) (the calculation is not difficult but the final expressions
are long and the result is not given here). The constants of integration are
provided by Eq. (53a) and are x̂L(0) = 0, ŷL(0) = ρ and ẑL(0) = 0.

6.2 Asymptotic expansion near junction with braid

To match this solution with the braid, we shall need an asymptotic expansion
of this solution near the top of the loop. In principle, this step is not difficult
as it involves computing series expansion of the explicit solution just derived;
in practice, the calculation is too tedious to be tractable by hand and was
carried out with the help of a symbolic calculation language.

It is convenient to describe the asymptotic shape of the top of the loop using
a Cartesian equation. To do so, we eliminate the variable s in favor of z
and expand the previous solution in series when s is close to π R. Let us
consider a current point on the centerline near the top of the loop with arc-
length coordinate s = π R + η, where η is a small quantity. We shall make
a fundamental assumption, justified at the end, namely that η is at most of
order

√
ǫ:

|η| <∼ ǫ1/2. (58)

To prepare the change of variable, we work out the relation between z and s

z = zL(s) = z0
L(s) + ǫ ẑL(s) + O(ǫ2),

= z0
L(π R + η) + ǫ ẑL(π R + η) + O(ǫ2),

= −R sin
(

π +
η

R

)

+ ǫ ẑL(π R + η) + O(ǫ2)

= η + O(η3) + ǫ
(

ẑL(π R) + η ẑ′L(π R) + O(η2)
)

+ O(ǫ2)

= η + ǫ ẑL(π R) + O(ǫ3/2)

In the last line we have used ẑ′L(π R) = 0, see Eq. (48). We have also collected
all the O terms into a dominant contribution, of order ǫ3/2 or smaller, using
Eq. (58). Elimination of the arc-length variables s and η is then possible using
the equality

η = s − π R = z − ǫ ẑL(π R) + O(ǫ3/2). (59)

The term ẑL(π R) is known explicitly from the last section. Setting z = 0 in
Eq. (59) above yields the arc-length sO of the point on the rod closest to the
origin O:

sO = π R − ǫ ẑL(π R), (60)

where the quantity ẑL(π R) in the right-hand side will be given at the end of
Section 8.
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We expand xL and yL similarly to zL:

xL(π R + η) = ǫ
(

x̂L(π R) + η x̂′
L(π R)

)

+ O(ǫ2)

yL(π R + η) = − η2

2 R
+ ǫ

(

ŷL(π R) + η ŷ′
L(π R)

)

+ O(ǫ2).
(61)

The first term in the right-hand side of the second equation, −η2/(2 R), arises
from curvature of the loop in the zero thickness solution. This term has to be
retained as it is of the same order of magnitude as the other terms when η is
of order

√
ǫ.

We can now use Eq. (59) to eliminate the arc-length η. This leads to a Carte-
sian equation of the top of the loop in the form:

xL(z) = ǫ XL + ǫ z X ′
L + O(ǫ2), (62a)

yL(z) = − z2

2 R
+ ǫ YL + ǫ z Y ′

L + O(ǫ2), (62b)

Because of Eq. (58), this expansion is valid when z is of order
√

ǫ or smaller:

|z| ∼
< ǫ1/2. (62c)

The coefficients (XL, X ′
L, YL, Y ′

L) of the asymptotic expansion are found by
identification with Eq. (61):

XL = x̂L(π R) YL = ŷL(π R)

X ′
L = x̂′

L(π R) Y ′
L = ŷ′

L(π R) +
ẑL(π R)

R

The quantities in the right-hand side are all known explicitly from the analysis
of the loop given in Section 6.1. Being solutions of a set of linearized differential
equations, they all depend linearly on the loop parameters ΨL = (α, β, ρ, φ),
as revealed by Eqs. (57). The linear mapping giving the expansion coefficients
as a function of the loop parameters reads





















XL

X ′
L

YL

Y ′
L





















= ML(U)·ΨL, where ML(U) =























−π KL+K
s

L

(KL/R)3
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s
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U KL

0 −R K
s

L

KL

−1+K
c

L

(KL/R)2
−(1+K

c
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U/R

0 −K
c
L
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U

2
+K

c

L

U (KL/R)2
(1+K

c
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U

2
/R

1 1+K
c

L

U

RK
s

L

U KL

−KLK
s

L

U
2 0 −KL K

s

L

R U























.

(63)

To keep the notations compact, we have noted KL = KL(U) = (1 + R
2
U

2
)1/2

and introduced the shorthand notations K
c
L = K

c
L(U) = cos(π KL(U)) and

K
s
L = K

s
L(U) = sin(π KL(U)). This explicit expression for the matrix ML(U)

comes from the analytical solution for the loop given in the previous section.
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Fig. 5. Braid geometry. We call a the strand having positive arc length s (s ≈ πR
in the center of the braid), and b the strand with negative arc length (s ≈ −πR in
the center).

Recall also that R = 1/
√

2 by Eq. (30). The matrix ML(U) defined above 11

plays a role similar to MT (U) for the tails: it captures the elastic response of
the loop to the perturbation induced by the presence of the braid.

7 Braid solution

The solutions in the outer domain (loop and tails) have been derived in the two
previous sections. We now proceed to solving the internal region (braid), which
is more difficult as it involves self-contact. A key remark is that the scaling
relations expressed in Eq. (33) imply that the tangent deflects from the z axis
by a small angle, of order h/ℓ ∼ ǫ ≪ 1. As a result, the approximation of
small displacements hold and the Kirchhoff equations can be linearized; by
linearity, the braid problem can then be decomposed into an average problem
without contact, and a difference problem where contact takes place with a
fixed, virtual cylinder. Equilibria for rods in contact with a fixed obstacle have
been well studied, see for instance the work by Plaut et al. (1999); Seemann
(1996); Goriely and Neukirch (2006), and are much easier to compute than in
the case of self-contact.

7.1 Centerlines

As earlier, a subscript B denotes quantities associated with the braid. The two
strands composing the braid are labeled with superscripts a and b, as shown
in Fig. 5.

We have introduced a rescaled axial displacement consistent with the scalings
for the braid:

σ =
z

ǫ
=

z

ǫ L⋆
(64)

11 Note that the matrix MT (U) has a smooth limit for U → 0. Even though there
are some powers of U in the denominators, the following expressions are smooth

near U = 0: 1+K
c

L

U
2 → 0 and K

s

L

U
2 → −π

4 .
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The leading order term of the expansion in the braid was given in equa-
tion (33). For the first strand, labeled a, it reads

ra
B(σ) =















xa
B(σ)

ya
B(σ)

za
B(σ)















=















ǫ2 x̂a
B(σ)

ǫ τB + ǫ2 ŷa
B(σ)

ǫ σ















. (65)

The centerline of the other strand is defined by a similar formula with a
replaced by b (note that the constant τB, which represents a global translation
of the braid, is common to both strands and so has no index a or b). Our
unknowns for the braid problem are the translation τB and the four functions
x̂a

B, ŷa
B, x̂b

B and ŷb
B, defined in terms of stretched coordinates.

Recall that the strands a and b are mapped onto each other by a symmetry
of angle π about the z axis. By our choice of axes, σ = 0 is the center of the
braid: the symmetry is expressed by the following relations,

x̂b
B(σ) = −x̂a

B(−σ) (66a)

ŷb
B(σ) = +ŷa

B(−σ), (66b)

which implies that there are only two independent functions to be determined,
say x̂a and ŷa.

It is useful to introduce an auxiliary quantity, the velocity ca(σ) at which the
centerline is swept out in this parameterization — we do not use arc-length
parameterization here:

ca(σ) = |ra
B
′(σ)| = ǫ + O(ǫ3).

The unit tangent is then defined by

t
a
B(σ) =

ra
B
′(σ)

ca(σ)
= ez + ǫ (x̂a

B
′(σ) ex + ŷb

B
′(σ) ey) + · · · (67)

and a similar equation for the other strand. Note that primes applied to func-
tions such as x̂B, ŷB or t

a
B denote derivatives with respect to their argument,

σ here.

7.2 Contact

For any pair of points in contact in the braid, let σa and σb be the rescaled
coordinates of the point on braid a and on braid b, respectively. The contact
condition writes

∣

∣

∣ra
B(σa) − rb

B(σb)
∣

∣

∣ =
2h

L⋆
=

√
2 ǫ2, (68)

31



We square both sides of the equation and use the the centerline parameteri-
zation given in equation (65):

ǫ4
[

(x̂a
B(σa) − x̂b

B(σb))2 + (ŷa
B(σa) − ŷb

B(σb))2
]

+ ǫ2 (σa − σb)2 = (
√

2 ǫ2)2

In this equation, there is only one term of order ǫ2 and no lower order term;
this term has to cancel, which implies:

σa = σb (for points in contact) (69)

At next order, we obtain

(x̂a
B(σ) − x̂b

B(σ))2 + (ŷa
B(σ) − ŷb

B(σ))2 = 2 (for points in contact) (70)

By equation (69), contact occurs only between points lying in the same plane
perpendicular to the z axis at the leading order in ǫ. Let us define the locus
of the contact in physical space as

D =
{

σ such that
∣

∣

∣ra
B(σ) − rb

B(σ)
∣

∣

∣ =
√

2 ǫ2
}

This set D is composed of the rescaled z coordinate, called σ, of the points in
contact, unlike the original set C which describes contact points based on pairs
of arc-lengths. In the limit ǫ ≪ 1, the set D provides a description of contact
much simpler than the generic one, based on C. In Eq. (88), we shall compute
the set D explicitly, and show that it has non-trivial topology (it has ‘holes’
in it). For reference, we mention that the initial set C can be reconstructed by

C =
⋃

{s1,s2}∈C′

{(s1, s2), (s2, s1)} where C
′ =

⋃

σ∈D

{((sO +ǫ σ)L⋆, (−sO +ǫ σ)L⋆)}

and sO was defined in Eq. (60) as the arc-length of the point on strand a
closest to origin, that is such that z = 0.

We shall now express the contact pressure p. First note that the action-
reaction principle in Eq. (11) can be rewritten as pa(σ) = pb(σ); we can there-
fore omit the superscript and note p(σ) the scalar contact pressure associated
with contact occurring at coordinate z = ǫ σ. According to equation (9), the
(vector) contact pressure is the scalar pressure p(σ) times the unit vector join-
ing the barycenters of two cross-sections that are in contact; in rescaled form
this reads, see Eq. (20),

pa(σ) = p(σ)
ra

B(σ) − rb
B(σ)√

2 ǫ2
=

p(σ)√
2















x̂a
B(σ) − x̂b

B(σ)

ŷa
B(σ) − ŷb

B(σ)

0















+ · · · (71)

This quantity appears to be orthogonal to the z axis at this order, as expected.
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7.3 Equations of equilibrium at leading order

Combining the constitutive relation (21) with the formula (67) for the tangent,
we obtain the internal moment as:

ma
B(σ) = t

a
B(σ) × t

a
B
′(σ)

ca(σ)
+ U t

a
B(σ) =















−ŷ′′
B(σ)

x̂′′
B(σ)

U















+ · · · (72)

Note the normalization factor 1/ca in the above expression for the normal cur-
vature vector, dt/ds = (dt/dσ)/ca, which is required since parameterization
does not use arc-length.

For any vectors a and u such that u has unit length (u2 = 1), the following
identity holds a = (a · u)u− u× (u× a). With a = na

B(σ) and u = t
a
B(σ), it

can be used to compute the internal force:

na
B(σ) = (t

a
B(σ) · na

B(σ)) t
a
B(σ) − t

a
B(σ) × (t

a
B(σ) × na

B(σ)).

The factor (t
a
B(σ) · na

B(σ)) can be expressed using the second invariant I2 =

U
2
/2+1 given in Eq. (25b), while the balance of moments (22c) allows one to

rewrite the vector in the last term as (t
a
B(σ) × na

B(σ)) = −m
a

B

′(σ)

ca(σ)
, this right-

hand side being given itself by Eq. (72). This yields the following expression
for the internal force in the braid

na
B(σ) =





U
2

2
+ 1 − ma

B
2(σ)

2



 t
a
B(σ) + t

a
B(σ) × ma

B
′(σ)

ca(σ)
(73)

The first term in the right-hand side is of order ǫ0 (it is bounded for small ǫ)
and is dominated by the second term, of order 1/ǫ because of the denominator
ca(σ) = ǫ + · · · . This yields the leading order term for the internal force:

na
B(σ) = − x̂a

B
′′′(σ) ex + ŷa

B
′′′(σ) ey

ǫ
+ · · · (74)

where the ellipsis stands for negligible terms that are bounded for small ǫ. The
internal force nb

B in the other braid is given by a similar formula.

The balance of forces (22d) writes na
B
′(σ)/ca(σ) + p(σ) = 0 in the current

parameterization. Using Eq. (71) for the contact force, this yields

− 1

ǫ2
x̂a

B
′′′′ +

p√
2

(x̂a
B − x̂b

B) = 0,

and similar equations for the y direction and for the other strand. This equa-
tion shows that the rescaled contact pressure p has to be of order 1/ǫ2 in
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order to balance bending. Therefore, we define the final rescaling for the con-
tact pressure by:

p̂(σ) = ǫ2 p(σ) =
ǫ2 B1/2

T 3/2
p(σ).

By the previous argument, this p̂(σ) has a finite limit for ǫ → 0. The equations
of equilibrium then take the form

x̂a
B
′′′′(σ) =

1√
2

p̂(σ)
(

x̂a
B(σ) − x̂b

B(σ)
)

(75a)

ŷa
B
′′′′(σ) =

1√
2

p̂(σ)
(

ŷa
B(σ) − ŷb

B(σ)
)

. (75b)

This is a set of fourth-order differential equations for the deflection, which are
coupled through contact. The contact pressure p̂(σ) is the Lagrange multiplier
associated with the non-penetration condition, and is not known in advance.
The rest of Section 7 is devoted to solving these equations with appropriate
boundary conditions.

Equations (75) stand for an elastic rod in the small deflection approximation,
subjected to the normal distributed force given by the right-hand side. Note
that the twist loading parameter U does not appear in the equations for the
braid at the leading order, as bending effects dominate twist. A nice conse-
quence is that the braid problem is universal: unlike the tail and loop problems
studied earlier, the formulation of the rescaled braid problem involves no pa-
rameter (except for the knot type which is a discrete parameter).

7.4 Decomposition into average and difference problems

Taking advantage of the linearity, we can combine Eqs. (75) and the two
similar equations for x̂b

B and x̂b
B into a difference and an average problem.

The average variables (f, g) and the difference variables (u, v) are defined as
follows:

f(σ) =
1√
2

(

x̂a
B(σ) + x̂b

B(σ)
)

u(σ) =
1√
2

(

x̂b
B(σ) − x̂a

B(σ)
)

(76a)

g(σ) =
1√
2

(

ŷa
B(σ) + ŷb

B(σ)
)

v(σ) =
1√
2

(

ŷb
B(σ) − ŷa

B(σ)
)

(76b)

Summing Eq. (75a) and the similar equation for strand b, namely x̂b
B
′′′′ =

p̂ (x̂b
B − x̂a

B)/
√

2, we find f ′′′′ = 0. By the same argument, g′′′′ = 0. The
unknown contact force disappears from the average problem:

f ′′′′(σ) = 0 (77a)

g′′′′(σ) = 0. (77b)
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In the next section, we derive the asymptotic conditions associated with these
equations, which are then solved in Section 7.6.

For the difference problem we obtain

u(σ)′′′′ = (
√

2 p̂(σ)) u(σ) (78a)

v(σ)′′′′ = (
√

2 p̂(σ)) v(σ) (78b)

Although the contact force p̂(σ) is still present in the difference problem,
the contact condition (70) takes a very simple form when formulated as a
function of the difference variables: u2+v2 = 1. As a result the non-penetration
condition is expressed by the inequality

u2(σ) + v2(σ) ≥ 1, (79)

and the problem is much easier to solve. The average and difference variables
are subjected to the following parity conditions, deriving from equation (66):

f(−σ) = −f(σ) u(−σ) = u(σ) (80a)

g(−σ) = g(σ) v(−σ) = −v(σ) (80b)

7.5 Asymptotic conditions

We have derived in the previous section the differential equations for the braid.
These equations make use of a stretched variable σ. In the present section we
derive the asymptotic conditions the solutions must satisfy for large values of
the stretched variable σ. As usual in matched asymptotic analysis, the asymp-
totic conditions for the inner problem are required for the inner solution to
match the outer solutions in the region of overlap (intermediate region), where
both the inner and outer solutions are valid — see Section 8 for a detailed
discussion of this matching procedure. Given our conventions, summarized in
Fig. 5, the strand a of the braid connects to the loop for σ → −∞, and to the
tail for σ → +∞.

Let us start with the condition for matching the internal moment. At the top
of the loop θ ≃ π and so eθ ≃ ez; the internal moment, given by Eq. (50),
then reads mL(π R) = ex/R+U ez + . . .. Comparison with the braid moment,
given by Eq. (72), yields the asymptotic condition x̂a

B
′′ → 0 and ŷa

B
′′ → − 1

R

as σ → −∞. Using the value of R = 1/
√

2 given by Eq. (30), we write

x̂a
B
′′ → 0 for σ → −∞,

ŷa
B
′′ → −

√
2 for σ → −∞.
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The asymptotic condition for σ → +∞ is obtained by matching the moment
at the origin of the tail, mT = U ez, with Eq. (72). It yields:

x̂a
B
′′ → 0 for σ → +∞,

ŷa
B
′′ → 0 for σ → +∞.

A similar argument gives the matching condition for the internal force. The
force is bounded for small ǫ in the two outer regions, see Eqs. (35) and (51).
In contrast the force in the braid diverges for small ǫ, as shown by the term
of order (1/ǫ) in Eq. (74). This term must therefore vanish when strand a
reaches the loop (σ → −∞) or the tail (σ → +∞):

x̂a
B
′′′ → 0 for σ → ±∞,

ŷa
B
′′′ → 0 for σ → ±∞.

Using the parity conditions (66), we obtain the same equations for the other
strand. The asymptotic conditions are then expressed in terms of the average
variables:

f ′′(±∞) → 0 g′′(±∞) → −1 (81a)

f ′′′(±∞) → 0 g′′′(±∞) → 0 (81b)

and of the difference variables:

u′′(±∞) → 0 v′′(±∞) → ∓1 (82a)

u′′′(±∞) → 0 v′′′(±∞) → 0, (82b)

where we used a shorthand notation meaning that v′′ goes to −1 for σ → +∞,
and to +1 for σ → −∞.

7.6 Solution of average problem

The average problem being insensitive to contact forces, its solution is straight-
forward. The general solution of Eqs. (77) yields for f(σ) and g(σ) polynomials
of order 3. To satisfy the parities, see Eq. (80), we write:

f(σ) = c1 σ + c3 σ3,

g(σ) = c0 + c2 σ2,

where c0, c1, c2 and c3 are real constants. Two of these four constants are set
by the asymptotic conditions (81) and we have:

f(σ) = c1 σ, (83a)

g(σ) = c0 −
σ2

2
. (83b)
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The two remaining constants c0 and c1 will be found by solving the matching
problem, see Section 8.

7.7 Solution of difference problem

We proceed to solve the equations for the difference problem (78), subjected
to the asymptotic conditions (82). In the right-hand sides of Eqs. (78), the
unknown contact pressure p̂(σ) has to be determined, in a way that is consis-
tent with the contact set D: p̂(σ) can be nonzero for those σ that are elements
of D only. By Eq. (79) the contact set D depends on the difference variables
only:

D =
{

σ such that u2(σ) + v2(σ) = 1
}

. (84)

This set will be found as an outcome of the solution of the difference problem.

7.7.1 Variational formulation

Solution of the difference problem is greatly eased by pointing out the sim-
ple variational structure underlying the equations. We shall now show that
solutions of the difference problems are minimizers of the following energy:

E =
∫ +W

−W

u′′2(σ) + v′′2(σ)

2
dσ + v′(W ) + v′(−W ). (85)

Minimization is done with respect to the functions u(σ) and v(σ) which are
defined over the interval [−W, W ], are twice differentiable, and are subjected
to the non-penetration condition (79) — here, W is large but fixed number.
We shall also include an additional constraint, related to the knot type: the
parametric curve (u(σ), v(σ)) has to make a prescribed number of turns around
the origin; this topological constraint is discrete and so does not affect the
Euler-Lagrange equations.

Before we show that solutions of the braid equations (78) subject to asymp-
totic conditions and constraints are minimizers of the energy (85) for large
enough real numbers W , we shall first give a physical interpretation of this
energy. To this end, we define a virtual rod, called the difference rod, by the
following Cartesian equation: {x = u(σ), y = v(σ), z = σ/ǫ}. Being based on
the difference variables u and v, this difference rod winds around the z axis
exactly in the same way as the strand b winds around the strand a in the
original problem. Note that this difference rods extends from z = −W/ǫ to
z = +W/ǫ: because of the factor 1/ǫ in the definition the rod deviates only
slightly from the z axis and its arc length is approximately z ≈ σ/ǫ. Using the
small deflection approximation for this difference rod, one can easily compute
the unsigned curvature of its centerline, κ = ǫ2 (u′′2+v′′2)1/2. By definition, the
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difference rod has zero twist, and we define its bending modulus to beBdiff = 1.

Then its elastic energy (4) reads
∫+W/ǫ
−W/ǫ

κ2

2
dz = ǫ3

∫+W
−W

u′′2(σ)+v′′2(σ)
2

dσ. Up to

the factor ǫ3, which is irrelevant for the minimization problem, this is exactly
the first term in our energy (85). The two remaining terms, v′(±W ), can be
interpreted as the work of the bending moments on the endpoints: the unit
tangent to the rod is {ǫ u′, ǫv′, 1} and so a moment (ǫ2 ex) applied on either
end of the rod is associated with the potential energy ǫ3 v′(±W ). The quantity
ǫ3 is then factored out of the total energy. The constraint (79) is interpreted
by the fact that the difference rod winds around a virtual cylinder whose axis
is the z axis, with unit radius. To sum up, we have identified the energy (85)
as that of a virtual, twistless, naturally straight rod winding around a fixed
cylinder, of unit radius and axis ez, and subjected to bending moments at
its endpoints. We have transformed the self-contact problem into a contact
problem with a fixed, external body, and this an important simplification.

We shall now establish the equivalence of the constrained minimization prob-
lem and the original braid equations (77), by working out the Euler-Lagrange
equations for the minimization problem. First, let us rewrite the constraint (79)
as Q ≥ 0, where

Q(σ) =
u2(σ) + v2(σ)√

2
− 1√

2
.

Constrained minimization problems are classically solved by introducing La-
grange multipliers, here the function π(σ), and enforcing stationarity of the
augmented energy,

δE −
∫ +W

−W
π(σ) δQ(σ) dσ = 0.

Using the explicit expressions of E and Q given above and integrating by
parts, this yields:

∫ +W

−W

[(

u′′′′ −
√

2π(σ) u
)

δu +
(

v′′′′ −
√

2π(σ) v
)

δv
]

dσ

+

[

u′′ δu′ − u′′′ δu − v′′′ δv

]+W

−W

+ (v′′(W ) + 1) δv′(W ) + (−v′′(−W ) + 1) δv′(−W ) = 0. (86)

Here, square brackets with subscript and superscript denote boundary terms
coming from the integration by parts, [f ]ba = f(b) − f(a). The quantity in
the left-hand side has to be zero for arbitrary variations δu(σ) and δv(σ).
Therefore, the factors in front of δu(σ) and δv(σ) in the integral have to vanish:
after identification of the Lagrange multiplier π(σ) with the rescaled contact
pressure p̂, one recovers the equations (78) of the difference problem. The
remaining boundary terms in the variation above yield the following boundary
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conditions:

u′′(±W ) = 0 v′′(±W ) = ∓1 (87a)

u′′′(±W ) = 0 v′′′(±W ) = 0. (87b)

For large 12 W , we recover the boundary conditions (82) derived earlier for the
difference problem. This establishes the equivalence of the two formulations.

7.7.2 Numerical solution of the universal braid problem

We have just reformulated the difference problem as a constrained minimiza-
tion problem. We now take advantage of this variational formulation and
present a numerical solution which is very easy to implement. The differ-
ence problem has been formulated without any parameter: for any given knot
type, the solution of the braid problem is universal. In particular, note that the
twist parameter U has been removed from the braid equations at dominant or-
der: the braid is insensitive to the applied twist. These universal solutions are
computed below, once for all, for the trefoil (31) and cinquefoil (51) topologies.

We first implemented the minimization problem using the symbolic calcula-
tion language Mathematica which has built-in capabilities for nonlinear con-
strained optimization. The implementation is straightforward. The problem
is first reformulated in polar variables (w, φ), such that u = w cos φ and
v = w sin φ: the advantage is that the winding number about the z axis is
readily available from the end value of φ. Values of the functions w and φ
are sampled on a uniform mesh covering the positive axis, σ ∈ [0, W ], and
their values for negative σ are reconstructed using the parity condition (80).
Finite differences are used to evaluate the objective function (85). The non-
penetration condition (79) is enforced by a constraint w ≥ 1 written at every
point of the mesh. In addition, we use a series of non-physical constraints: (i)

we require that
(

n − 1
4

)

π ≤ φ(W ) ≤ (n + 1) π, where n = 1 for a trefoil knot

and n = 2 for a cinquefoil knot; (ii) we require that |φ(σi) − φ(σi+1)| ≤ π
2

for any pair of neighboring mesh points σi and σi+1. Constraint (i) is used to
direct convergence towards the solution having the required winding number,
as the difference rod has to make one and a half turn around the z axis in the
trefoil case and two and a half turns in the cinquefoil case — note that the
winding number is given by (φ(W )−φ(−W ))/(2π) = 2 φ(W )/(2π). Constraint
(ii) warrants that φ, defined modulo 2π, varies smoothly along the rod which
is required for the end value φ(W ) to express the total number of turns. We
carefully checked that the non-physical constraints (i) and (ii) are non-active

12 Convergence of our variational problem for large W is extremely simple: as we
shall show, the minimizer becomes independent of W when W is larger than a fixed
number, which can be interpreted as the coordinate of the last point of contact with
the cylinder.
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knot type σe σp σg Λ

31 0.348 2.681 1.823 0.022

51 4.504 6.814 5.962 0.021

Table 1
Numerical values of the contact-set parameters for 31 and 51 knots.

when the minimization procedure exits, i. e. all inequalities are strict : their
role is simply to guide convergence towards a physically relevant solution.

We found that the minimization always converges to the same type of solution
for both knot types, n = 1 or n = 2. We used a typical mesh size of ∆σ ∼
0.1 and interval width W ∼ 9 — we observed that the numerical solution
does not vary with W when W becomes larger than 4, something that we
shall explain soon. In Fig. 6, the difference rod is visualized for the trefoil
topology. By inspecting where the constraint w ≥ 1 is active in the numerical
minimizers, we can determine which mesh points belong to the contact set
D. When the mesh is not exceedingly coarse ∆σ . 1.5, and for both knot
types, we found an interesting contact topology: the contact set is composed
of an interval centered around the origin and two symmetric isolated points
(each corresponding to a single mesh point). Starting at σ = 0, the difference
rod is in continuous contact with the cylinder, then lifts off from the cylinder
and eventually touches it again at an isolated point. This contact set is shown
in Fig. 6. Note that this topology remains the same when the mesh size is
decreased. This leads to the following topology for the contact set D of the
difference problem:

D = {−σp} ∪ [−σe, σe] ∪ {σp} where 0 < σe < σp. (88)

Here σe is half the width of the central region with continuous contact and
σp is the rescaled coordinate of the isolated point of contact. We stress that
this topology arises from the numerical minimization without any a priori
assumption on our part. In a problem where contact occurs along straight line
in space, Coleman and Swigon (2000) have assumed a topology of this form
and checked that it was consistent.

By our definition of the difference variables, the distance w of difference rod to
the z axis is also the rescaled distance between the centerlines of the strands
a and b in the original problem: contact of the difference rod with the virtual
cylinder (w = 1) means that the physical strands a and b are in contact. Like
the virtual bodies, the two physical strands experience continuous contact in
a central region; on both sides of this central region, they separate by a small
but finite distance, contact again at a point, and finally separate for good.
The maximal reopening Λ is given by the extremum of the function (w − 1)
in the interval [σe, σp], see Fig. 6; the corresponding value of σ is called σg.
These numerical values are given in Table 1. Values of Λ are very close for
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Fig. 6. Numerical solution of the difference problem of the braid for the trefoil
topology (n = 1). The difference rod, shown in red, describes position of strand b
with respect to strand a — compare with Fig. 5. It is held by bending moments
applied at its endpoints, and enlaces an impenetrable cylinder of unit radius drawn
around the z axis. The problem has no parameter and the solution depends on
the knot type only. (a) 3D view, (b) projection onto the plane (u, v) perpendicular
to the cylinder axis, (c) distance w =

√
u2 + v2 of difference rod to cylinder axis:

w = 1 when there is contact, and w > 1 otherwise. The contact set is denoted
by shaded regions (in blue) along the solution. Note the interval of contact around
the center of symmetry (−σe ≤ σ ≤ σe), flanked by two isolated points of contact
(σ = ±σp). Close examination of (b) reveals reopening in the intermediate regions
(σe ≤ |σ| ≤ σp).
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trefoil and cinquefoil knots, Λ ≈ 0.021; in physical units, this corresponds
to an inter-strand reopening of (0.043 h), that is 43 µm for a rod of radius
h = 1 mm. The experiments reported in Section 9.2 confirm the presence of
these openings.

In order to confirm our hypothesis on the topology of the contact set, we
implemented an independent numerical solution for the difference problem,
assuming a topology of the form (88). This independent solution relies on
nonlinear shooting: in contrast to the energy minimization scheme, it involves
a numerical integration of the equations of equilibrium; this new approach is
much more accurate but requires the contact topology to be known. Numer-
ical integration is carried out on each interval σ ∈ [0; σe], [σe; σp] and [σp;∞]
in turn. In the first interval the difference rod lies on the surface of the virtual
cylinder with unit radius, and we use the polar variables (w, φ), introduced
earlier, with w = 1. The polar variable φ(σ) satisfies the differential equation
φ′′′′ = 6(φ′)2 φ′′. Four initial conditions are required to integrate this equa-
tion, two of which are fixed by the symmetry condition (80), φ(0) = 0 and
φ′′(0) = 0; the other two, φ′(0) and φ′′′(0), are unknowns of the shooting
procedure. All the other quantities can be reconstructed from φ(σ). At σe a
jump Pe in the internal force is introduced. It represents a Dirac contribution
to the contact pressure 13 . The values of φ and its derivatives at the end of
the first interval are combined with Pe to evaluate the initial conditions for
the second interval. In the second interval, there is no contact and Eqs. (78)
are integrated with p̂(σ) = 0. At σp the rod touches the cylinder and there
is another discontinuity Pp in the internal force. In the last interval [σp; +∞]
there is no contact and the internal force is again constant. By the asymp-
totic conditions (82) this constant force has to be zero. This implies in turn
that the internal moment is constant. In view of this the four asymptotic
conditions (82), which concern the internal force and moment, have to be be
satisfied over the entire third interval. Overall, the shooting scheme involves
six unknowns {φ′(0), φ′′′(0), σe, σp, Pe, Pp} which must satisfy six equations,
namely two geometric contact conditions at σp and four conditions coming
from Eq. (82). For the trefoil knot the nonlinear shooting procedure converges
to {φ′(0) = 0.769, φ′′′(0) = 0.033, σe = 0.348, σp = 2.681, Pe = 0.170, Pp =
0.442}. The contact pressure can be reconstructed in the first interval as
π(σ) = p̂(σ) = (φ′4 − 3φ′′2 − 4φ′ φ′′′)/

√
2. It is plotted over the full contact set

D in Fig. 7a: it is everywhere positive and this validates our assumption on
the topology (in Appendix A, we test different contact topologies and show
that they lead to negative pressure and/or residual penetration).

The internal force is given by Eq. (74) for strand a and a similar equation

13 Dirac contributions to the contact pressure appear generically at the boundary of
the contact set in contact problems for elastic rods, as shown for instance by Cole-
man and Swigon (2000), or Audoly and Pomeau (2009).
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Fig. 7. Forces in braid for the trefoil geometry, same solution as in Fig. 6: (a) rescaled
contact pressure; (b) rescaled internal force. The pressure is everywhere non-nega-
tive and this validates the assumption on the contact topology. The internal force
is proportional to u′′′ and v′′′ by Eq. (89). The localized contact forces Pe and Pp

are represented by columns in (a), and manifest themselves as jumps in (b).

holds for b. Noticing that the third derivatives of the average solution given
by Eq. (83) vanish, we find the nonzero components of the internal force in
each strand:

(na
B)x = −(nb

B)x = +
u′′′(σ)√

2 ǫ
, (na

B)y = −(nb
B)y = +

v′′′(σ)√
2 ǫ

. (89)

The rescaled internal force is plotted in Figure 7b. Note the discontinuities of
the internal force at the boundaries of the contact set, where Dirac pressure
forces are present.

7.7.3 Polynomial expression beyond last contact point

In Fig. 7, the rescaled internal force appears to be zero beyond the isolated
contact point, that is for |σ| > σp. From Eq. (89), the third derivatives of the
functions u(σ) and v(σ) vanish in this region. As a result, both u and v are
polynomials functions of σ of order at most three. In addition their cubic term
has to be zero for the asymptotic conditions (82a) to be satisfied. Therefore
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knot type Λn Πn

31 (n = 1) −0.87759 2.089

51 (n = 2) −0.87738 6.223

Table 2
Numerical values of braid constants Πn and Λn.

both u(σ) and v(σ) are second order polynomials for |σ| > σp. The quadratic
term is fixed by the other asymptotic conditions (82a): it is zero for u(σ),
which is therefore an affine function, and it is −1

2
for v(σ). Consequently, for

σ > σp, u is of the form u(σ) = Λn σ + qn for some real constants Λn and qn,

and v is of the form v(σ) = −σ2

2
+ Πn σ + q′n for some constants Πn and q′n.

The expressions for σ < −σp are found using the parity conditions (80). The
following condensed notation summarizes both cases σ > σp and σ < −σp

(which are denoted generically as ±σ > σp):

u(σ) = ±Λn σ + qn, (90a)

v(σ) = ∓σ2

2
+ Πn σ ± q′n. (90b)

In this condensed notation, one should use the upper sign on the positive side,
for +σ > σp, that is replace ± with (+) and ∓ with (−), and the lower sign
on the negative side, for −σ > σp.

The coefficients Λn, Πn, qn and q′n are available from the numerical solution
of Section 7.7.2. The values of Λn and Πn are given in Table 2. As we shall
see later, the values of qn and q′n are irrelevant at dominant order and are not
given here.

7.8 Asymptotic expansions at braid-tail and braid-loop junctions

In order to match this inner solution with the outer solutions computed earlier,
we shall need its expansion far away from the braid, that is for large values
of σ. In Eq. (76) the inner solution is decomposed into an average and a
difference solution. The average solution is a polynomial given by Eq. (83).
The difference solution is polynomial as well for large enough values of σ, see
Eq. (90). It is straightforward to combine these polynomials to obtain the
expansion of the braid solution for σ → ±∞:

xa
B(z) = ǫ2 x̂a

B(σ) =
ǫ2

√
2

(f(σ) − u(σ))

=
ǫ2

√
2

((c1 ∓ Λn) σ − qn) = ǫ z

(

∓Λn + c1√
2

)

+ O(ǫ2). (91a)
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Here, we use the same condensed notations as in Eqs. (90), whereby the com-
pound signs ± and ∓ must be replaced by the upper symbol when σ → +∞,
and by the lower one when σ → −∞. Note that we have replaced the stretched
variables x̂a

B and σ with the barred variables xa
B and z using Eq. (65), as the

matching has ultimately to be done using a common set of variables for the
inner and outer solutions.

A similar calculation for ya
B yields:

ya
B(z) = ǫ τB + ǫ2 ŷa

B(σ) = ǫ τB +
ǫ2

√
2

(g(σ) − v(σ))

= ǫ τB +
ǫ2

√
2

(

(−1 ± 1)
σ2

2
− Πn σ + (c0 ∓ q′n)

)

=
z2

√
2

(−1 ± 1

2

)

+ ǫ

(

τB − z
Πn√

2

)

+ O(ǫ2). (91b)

In this equation, the coefficient τB represents an infinitesimal translation of
the braid along the y axis. The term proportional of c1 in Eq. (91a) is very
similar: it represents an infinitesimal rotation of the braid about the y axis.
We rename it ωB,

ωB =
c1√
2
. (92)

The two other coefficients in Eqs. (91) have been computed in Table 2. We
call internal parameters of the braid the two remaining free parameters in the
above expansions:

ΨB = (τB, ωB). (93)

In the next section, we shall show how these parameters ΨB can be found as
a function of the applied loading and knot type, together with the loop and
tail parameters ΨL and ΨT .

We can rewrite the expansions (91a) and (91b) in the form

xa
B(z) = ǫ X±

B + ǫ z X±′
B + · · · (94a)

ya
B(z) =

(−1 ± 1

2

)

z2

2 R
+ ǫ Y ±

B + ǫ z Y ±′
B + · · · (94b)

where R is a shorthand for 1/
√

2 by Eq. (30). Note that the factor in paren-
thesis in Eq. (94b) is equal to (−1 − 1)/2 = −1 on the negative side, and to
(−1 + 1)/2 = 0 on the positive side. As a result, the quadratic term in ya

B(z)
is equal to −z2/(2 R) for large negative σ, which is consistent with expan-
sion (62b) for the loop, and is absent for large positive σ, which is consistent
with expansion (43b) for the tail.

The coefficients of the polynomial expansions just written are given by iden-
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tification with Eqs. (91):
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B(n) =





















0
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2

0

−Πn√
2





















.

(95)
Equation (95) defines two constant matrices M−

B and M+
B, and two vectors

V−
B(n) and V+

B(n) depending on the knot type n. These vectors are defined
in terms of the braid constants found in Section 7.7.

For the matching problem studied in the next Section, it is useful to give a pre-
cise description of the range of values of z where the expansions (94) hold, that
is where the omitted terms denoted by ellipses are actually negligible. These
expansions have been obtained 14 by taking the limit |σ| → ∞: they obviously
require |σ| ≫ 1, that is |z| ≫ ǫ. However, this is not the only assumption.
Recall that the braid has been studied based on the small displacement ap-
proximation, which assumes that the tangents t

a
B or t

b
B remain close to the

vector ez — see for instance the tangent expansion (67). This assumption
breaks down in the inside of the loop, for values of z of order 1: as shown by
the quadratic term in Eq. (94b) or directly by the loop solution (28b), the
tangent deflects from the z axis by an angle (z/R) there. Therefore, the braid
solution accurately describes the upper part of the loop, where it merges with
the braid, but does not accurately describe the whole loop: it assumes |z| ≪ 1.
To summarize, the range of validity of the braid expansions (94) is

ǫ ≪ |z| ≪ 1. (96)

The linear relations in Eq. (95) yield the braid expansions in the regions where
it connects with the loop (−1 ≪ z ≪ −ǫ) and with the tail (ǫ ≪ z ≪ 1). These
relations depend on the internal parameters of the braid, ΨB = (τB, ωB), and
on the knot type n. These equations (94) and (95) capture all what we need to
know about the inner solution (braid) to be able to solve the problem globally.

14 As explained in Section 7.7.3, the braid actually reaches its asymptotic behavior
exactly as soon as the last point of contact is passed, |σ| > σp. This is not important
and we shall continue to write the less severe requirement |σ| ≫ 1, which holds in
general in boundary or inner layer analysis.
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8 Matching

So far we have solved the equilibrium equations in the tail, loop, and braid re-
gions independently. The unknowns of the problem are the internal parameters
coming from the various regions 15 , namely ΨT = (λ, µ), ΨL = (α, β, ρ, φ)
and ΨB = (τB, ωB): we have eight unknowns, and need to write eight equa-
tions.

Figure 4 illustrates the fact that the domains overlap in the so-called inter-
mediate regions. There are two types of intermediate regions, one where the
loop merges with the braid, and the other one where the tail merges with
the braid. By writing down the matching condition of the local solutions ob-
tained in the previous sections, we make sure that we have constructed an
asymptotic, smooth global solution of the original problem. These matching
conditions, given in equations (99) and (104), provide the 8 missing equations
which enable us to solve for all the unknowns uniquely, see equations (101)
and (107).

8.1 Matching braid and tail

In the end of our analysis of the tail regions, in Eq. (43), we have obtained
the following expansion:

xT (z) = ǫ XT + ǫ z X ′
T + · · · , (97a)

yT (z) = ǫ YT + ǫ z Y ′
T + · · · (97b)

where the terms that have been dropped, of order ǫ2 and ǫ z2, are negligible if
z ≪ ǫ1/2. In Eq. (94), we have found a similar expansion based on the braid
solution:

xa
B(z) = ǫ X+

B + ǫ z X+′
B + · · · (98a)

ya
B(z) = ǫ Y +

B + ǫ z Y +′
B + · · · (98b)

which is valid for ǫ ≪ |z| ≪ 1. These two expansions have to be consis-
tent in the region of overlap, defined by ǫ ≪ z ≪ ǫ1/2, and this implies the
equality of the coefficients. We obtain the following matching condition in the

15 The 4 × 4 = 16 expansion coefficients (XT , X ′
T , YT , Y ′

T , XL, X ′
L, YL, Y ′

L, X+
B ,

X+′
B , Y +

B , Y +′
B , X−

B , X−′
B , Y −

B , Y −′
B ) given by the relations (44), (63) and (95) are

viewed as dependent quantities and so are not counted as unknowns.
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intermediate region between braid and tail:





















XT

X ′
T

YT

Y ′
T





















=





















X+
B

X+′
B

Y +
B

Y +′
B





















. (99)

Using the reduced matrices and vectors of the tail and braid problems defined
in Eqs. (44) and (95), this matching condition is rewritten as a linear system
for the tail variables ΨT = (λ, µ) and the braid variables ΨB = (τB, ωB):

MT (U) ·ΨT = M+
B · ΨB + V+

B(n),

which reads:
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−Πn√
2





















. (100)

The functions a(U) and b(U) were defined in Eq. (39).

This is a set of four linear equations for the four unknowns λ, µ, τB and ωB.
As can be checked easily, the determinant of this linear system is a(U). For
U 6= ±2, a(U) 6= 0 and this system has a unique solution, which can be found
explicitly by elimination:

λ(U, n) = 0 µ(U, n) =
Πn

√

2 −U
2

2

, (101a)

τB(U, n) =
Πn

√

2 −U
2

2

ωB(U, n) =
Λn√

2
− U Πn
√

2
(

4 − U
2
)

, (101b)

after using the detailed expressions for a(U) and b(U ).

We have just found the internal parameters of the tail and of the braid, ΨT

and ΨB, as a function of the dimensionless parameters of the problem, the
loading parameter U and the knot type n — recall that the braid constants
Πn and Λn were given in Table 2 for trefoil (n = 1) and double knots (n = 2).
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8.2 Matching braid and loop

A similar argument holds for the intermediate region between braid and loop.
In Section 5.2, we found that the top of the loop is accurately described by
the expansion

xL(z) = ǫ XL + ǫ z X ′
L + · · · (102a)

yL(z) = − z2

2 R
+ ǫ YL + ǫ z Y ′

L + · · · (102b)

This expansion is accurate up to terms of order ǫ2, provided (−z) ≪ ǫ1/2, and
of course z < 0. On the other hand, the braid solution has been expanded as

xa
B(z) = ǫ X−

B + ǫ z X−′
B + · · · (103a)

ya
B(z) = − z2

2R
+ ǫ Y −

B + ǫ z Y −′
B + · · · (103b)

in the domain defined by −1 ≪ z ≪ −ǫ. The intermediate region between
braid and loop is defined by −ǫ1/2 ≪ z ≪ −ǫ. There, the two expansions have
to be compatible, which leads to the matching condition:
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. (104)

As earlier, we arrive at a linear system which can be written in terms of the
reduced matrices and vectors of the loop and braid problems, defined earlier
in Eqs. (63) and (95):

ML(U) ·ΨL = M−
B · ΨB + V−

B(n).

We arrive at a linear system for the loop parameters:
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, (105)

where the quantities τB and ωB in the right-hand side are given by Eq. (101b)
and the 4 × 4 matrix ML(U) is defined in Eq. (63). The determinant of the
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matrix ML(U) can be computed exactly; it vanishes for

detML(U) = 0 iff U = ±
√

2 (j2 − 1), for some integer j ≥ 2. (106)

For any other value of U , one can solve the linear system in Eq. (105) by
elimination. This yields the following expressions for the internal parameters
of the loop:

α(U, n) = −Πn

π
U, (107a)

β(U, n) = U



−2 Λn +
U Πn

√

4 − U
2

+
U
√

2 Πn

π
(

2 + U
2
) − U

√

2 + U
2

Πn

tan
(

π KL(U)
)



 ,

(107b)

ρ(U, n) = Πn
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π
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 , (107c)

φ(U, n) =
√

2 Λn − Πn U





1

2
√

2 − U
2
/2

+
2

π
(

2 + U
2
) −

cot
(

π
2
KL(U)

)

2 KL(U)



 ,

(107d)

where the braid constants Λn and Πn are given in Table 2. These functions are
plotted in Fig. 8 for the trefoil topology. We recall that α and β measure the
first order perturbation to the internal force in the loop, see Eq. (51); ρ and
φ measure the infinitesimal rigid-body translation and rotation of the loop,
respectively, see Eq. (53).

8.3 The global solution

Based on the asymptotic expansion method, we have reformulated the nonlin-
ear boundary-value problem for the knot as a set of linear equations. We have
just shown that the corresponding linear system is regular as long as |U | < 2,
when the tails buckle. By solving this linear system, we have uniquely deter-
mined all the unknowns, and found a unique solution to the problem stated in
Section 2. The internal parameters in the various regions are given by equa-
tions (101) and (107)

The solution in the tail is then given by equation (41), where the quantities
a(U) and b(U) are defined by equation (39) and the internal parameters λ
and µ by equation (101a). To reconstruct the solution in the loop, one has
to plug the expressions of α, β, φ and ρ given in equation (107) into equa-
tions (57), integrate the resulting expressions as explained at the end of Sec-
tion 6.1 to find the functions x̂L(s), ŷL(s) and ẑL(s), and plug the result into
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Fig. 8. Loop internal parameters α, β, ρ and φ as functions of reduced loading
parameter U , for a trefoil knot (n = 1). By Eq. (107a), α varies linearly with U .
The other parameters, β, ρ and φ, all diverge at U = ±2, as denoted by the dashed
lines (red). This divergence points to the helical instability undergone by the tails
as the applied torque approaches the critical value U = ±2.

the expansion (32). In the braid, the solution of average problem is given by
equation (83), where c1 depends on the known quantity ωB by equation (92),
and c0 can be set to zero (it appeared that this quantity is irrelevant at the
dominant order). The solution of the difference problem is universal, and has
been computed in Section 7.7. The equation for each strand in the braid is
found by superposition of the average and difference problems, in stretched
variables first by solving equations (76) for x̂a

B, ŷa
B, x̂b

B and ŷb
B, and in physical

variables next by plugging the result into the expansion (33).

These local solutions have all an expression in closed-form and depend on the
arc-length σ, on the loading parameter U , on the knot type n = 1 or 2, and on
the expansion parameter ǫ. For every knot type (n fixed), our solution is a one-
parameter family of asymptotic solutions indexed by the loading parameter
U . This family is visualized in Fig. 9 for the case of a simple knot.

As usual in matched asymptotic analysis, our global solution is smooth in
an asymptotic sense. Indeed, the matching conditions warrant that in the
intermediate regions, the first terms in the expansions of the local solutions
coming from adjacent regions will coincide. This smoothness requirement is
quite strong as it involves a whole region of overlap and not just a single point.

51



Fig. 9. 3D representation of our family of solutions for a simple knot (n = 1), for
different values of the twist parameter: (a) U = −1.65, (b) U = −1.1, (c) U = −.55,
(d) U = 0, (e) U = .55, (f) U = 1.1 and (g) U = 1.65. Rotation of the loop about
the y axis is visible here, and takes place with the angle ǫφ which has been plotted
as a function of U in Fig. 8. These 3D plots are based on the analytical solutions
of the matched asymptotic expansion in each region, and are rendered here with
ǫ = .2. Note that the continuity of the solution across the different regions is only
satisfied asymptotically for small ǫ; in this rendering, ǫ is non-zero and there is a
slight mismatch at the junction between tails (red) and braid (blue), and between
braid (blue) and loop (black). The same holds for the inextensibility condition,
which is only approximately satisfied in the figure.
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Note that this smoothness holds in an asymptotic sense only: for finite values
of ǫ, the local solutions do not match in a continuous manner (see the slight
gaps in Fig. 9).

8.4 Validation by direct numerical integration

In order to check the analytical results, we have performed numerical sim-
ulations of knotted rods in the finite ǫ case. Kirchhoff equations (7) were
integrated numerically to find equilibrium configurations of a rod of finite
thickness, knotted in an open trefoil, with a simplified contact topology (iso-
lated contact points). Numerical continuation was then used to reduce the rod
thickness and the leading orders for the position, tangent, internal moment
and force were confirmed, up to a small error due to the small penetration
taking place in this approximate contact topology, see Appendix A.2.

8.5 Instability of the knot

We have formulated the problem of finding the equilibria of the knotted rod
as a set of linear equations expressing matching conditions between tail and
braid, and between loop and braid. This linear system is regular except for
some critical values of the loading U :

|U | = 2,
√

6, 4,
√

30, · · ·

The first and lowest value, |U | = 2, comes from the matrix MT (U) expressing
the response of the tail in Eq. (100). As explained in Section 5.3, the tails be-
come unstable with respect to helical buckling when the applied twist reaches
the critical value |U | = 2. This explains the divergences observed in Fig. 8,
and the large rotation of the loop in the first and last frames of Fig. 9, when
U approaches ±2. We have confirmed this instability by direct numerical so-
lutions of the Kirchhoff equations for dynamic rods (Bergou et al., 2008); it is
analyzed in more details in a follow-up paper.

The other critical values given in the list above, namely
√

6, 4, . . . come
from Eq. (106). They correspond to the well-known Michell’s instability of a
twisted elastic ring, also known as Zajac instability, see Michell (1890). The
lowest critical value that makes the loop unstable, |U | =

√
6, is still larger

than that for helical buckling |U | = 2: in the case of infinite tails, the tails
of the knot always buckles first. In the case of tails with a finite length, the
threshold for helical buckling becomes larger than 2; for short enough tails,
Michell’s instability eventually sets in first.
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Fig. 10. (a) Hat angle ϕ of a cinquefoil (51) knot locked by friction on a Nitinol
rod with radius h = .44 mm. No force is applied on the tails (T = 0) which are
perfectly straight. (b) Datapoint obtained by repeating the experiments with various
knot types (open symbols for 31 knot, filled symbols for 51 knots) and rod radii.
In addition, the single datapoint shown by an empty circle is extracted from the
work of Tong et al. (2003). The two straight lines are the predictions of our theory,
Eq. (108), with no adjustable parameter.

9 Experiments

We present some validation experiments for the twistless case (U = 0). These
new experiments complement those reported previously by Audoly et al. (2007).
They were performed using naturally straight, superelastic wires made of Niti-
nol, an alloy of nickel and titanium, of radii in the range h = 0.17mm to
0.44mm, and of length 2 m. In Section 9.1, we study the angle of the tails
in a knot locked by friction, when no force is applied on the endpoints of
the rod (T = 0). In Section 9.2, we confirm the existence of the two sym-
metric openings in the braid region predicted by the theory, and study them
quantitatively.

9.1 Hat angle

For our first series of experiments, we use the geometry in Fig. 10. A trefoil or
cinquefoil knot is tied on a Nitinol rod and its ends are gently released. If the
knot has been formed with a small loop, its radius increases as the tails slide
along each other in the braid region, until it reaches an equilibrium value. If
the knot has been formed with a big enough loop, it stays in equilibrium when
the rod is released. In either case, this leads to equilibrium configurations such
as the one shown in Fig. 10a. No force is applied on the endpoints, T = 0, as
friction in the braid region prevents the loop from further expanding. We are
interested in the angle ϕ, called the hat angle, made by the tails in the presence
of frictional locking. This angle ϕ has been measured in experiments with rods
of various diameters, both for simple (trefoil) and double (cinquefoil) knots.
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These measurements are summarized by the symbols in Fig. 10.

The analytical method derived in this paper has been established in the fric-
tionless case, when the knot is held by a tension force T 6= 0. As we show now,
it can easily be extended to configurations of the knot locked by friction. Let
us first analyze in order of magnitude how the equilibrium radius of a locked
knot depends on the coefficient of self-friction, which we call ν. By our previ-
ous scalings, the internal force nB in the braid is of order 1/ǫ, and the braid
length is of order ǫ. This implies that the contact force per unit length is of
order 1/ǫ2. By Coulomb’s law, the tangential contact force per unit length is
of order ν/ǫ2, and the total friction force integrated along the braid is ∼ ν/ǫ.
The internal force is now zero in the tails: like the external tension T in the
frictionless case, the integrated friction force must balance the internal stress
in the loop to allow global equilibrium. Therefore ν/ǫ must be comparable to
the loop stresses, which are of order 1. We conclude that ν = O(ǫ). In other
words if friction is weak, ν ≪ 1, the radii R compatible with equilibrium are

those such that ǫ =
√

h/R = O(ν); if friction is not weak, ν = O(1), then

ǫ = O(1) too, meaning that equilibrium configurations of the knot are tight
and the present theory does not apply. In the experiments reported here, the
friction coefficient was independently measured as ν ≈ 0.1; this is consistent
with the loop radii observed at equilibrium, which are such that .05 < ǫ < .20.
This reasoning shows that we must view the friction coefficient as a quantity
of order ǫ in our theory in order to consistently account for frictional locking.

Knowing that ν must be seen as a quantity of order ǫ, it is now straightfor-
ward to adapt our matched asymptotic expansions. Indeed, the braid solution
is not modified at dominant order by friction. The generic loop solution is ob-
viously not modified either. The only change concerns the tails whose loading
geometry has changed; its ends are now free of any applied force or moment,
and so both nT and mT are everywhere zero. As a result, U = 0 and the per-
turbed tail solution given in Section 5 has to be replaced by perfectly straight
tails. The functions xT (z) and yT (z) are affine functions of z and the expan-
sion (43) is recovered, but with arbitrary coefficients XT , X ′

T , YT and Y ′
T .

When the pulling force T is zero, the axis z no longer plays a special role and
the system becomes invariant by infinitesimal, rigid-body rotations about the
y axis and translations along the y axis. We can use the rotation to make the
tails perpendicular to the x axis; this amounts to set X ′

T = 0 by convention.
Similarly, the translation can be used to set YT = 0 by a convenient choice of
origin. With these conventions, XT and Y ′

T can be chosen arbitrarily while X ′
T

and YT are zero. This change can be accounted for by redefining the matrix
MT (U) in Eq. (44) as follows: MT = {{1, 0}, {0, 0}, {0, 0}, {0, 1}}. This is the
only change required to account for friction and self-locking.

The matching procedure can then be repeated with the new tail matrix MT .
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5 cm

1 cm

Fig. 11. (a) Trefoil knot tied in a Nitinol rod of radius h = .44 mm and viewed
from side. Loop radius is R = 7.95 cm and ǫ =

√

h/R = .075. (b) Close-up view
of the same experiment revealing the two symmetric openings around the center of
the braid. The bars of length ∆z =

√
2hR ∆σ = 3.86 mm indicate the predicted

apparent length of the openings, with no adjustable parameter. (c) Prediction for
the apparent length of the openings is based on the fact that the endpoints σa and
σ′

a, are such that |yb − ya| = 2h.

The hat angle is given by ϕ = 2 |y′
T (0)| and we find:

ϕ = Πn

√

2 h

R
=

√
2Πn ǫ. (108)

The value of Πn depends on the knot type and is given by Tab. 2. The pre-
diction (108) appears in Fig. 10 as the two straight lines for n = 1 and n = 2.
There is a good agreement with experiments for both knot types, especially
in the range ǫ . 0.1 — for larger values of ǫ, the loose knot approximation
appears to be less accurate, which is not surprising.

9.2 Apparent length of openings in braid

The second validation experiment concerns the two symmetric openings in
the braid region, corresponding to σe < |σ| < σp in Eq. (88). The presence
of these symmetric openings has been reported in our previous experiments,
see Audoly et al. (2007). Here, we propose a quantitative validation: we con-
sider the apparent length of these openings when the knot is viewed from the
side, and compare the experimental measurements to the theoretical value.
An experiment where these openings are visible is shown in Fig. 11.

To predict the apparent length of the openings from our theory, we note that
the endpoints of this region correspond to |yb−ya| = 2 h, as shown graphically
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in Fig. 11c. In view of the rescalings (33) and (76b), this corresponds to v(σ) =
+1 (endpoints of the apparent opening on the positive side of the z-axis) or
to v(σ) = −1 (opening on the negative side). From Fig. 6b, the function v(σ)
has a maximum slightly above 1 in the interval σe < σ < σp. We call σa and
σ′

a the two roots of v(σ) = 1 located on both sides of this maximum. Using the
numerical solution of the universal difference problem given in Section 7.7.2,
numerical root-finding yields the values of σa and σ′

a for a trefoil knot, as well
as their separation ∆σ:

σa = 1.771, σ′
a = 2.230, ∆σ = (σ′

a − σa) = .459

In physical variables, this corresponds to an apparent 16 length of the openings
∆z =

√
2 h R ∆σ whose numerical value is ∆z = 3.86 mm in this particular

experiment. This prediction is shown by the two horizontal bars in Fig. 11b
and is in good agreement with the experiments, with no adjustable parameter.

10 Conclusion

We have considered the equilibrium of a knotted elastic rod under combined
pulling force and twisting moment. In general this problem should be expressed
as a self-contact problem in 3D elasticity with finite strains and rotations. In
this paper, we have considered the case where the theory of thin elastic rods

is applicable, namely h ≪
√

B/T where h is the small filament radius, T is
the applied tension and B the bending stiffness. A crucial remark allowed us

to derive analytical solutions of this problem: the assumption h ≪
√

B/T
warranting applicability of the thin rod model implies that the centerline is
almost straight in the contact region. As a result, we could linearize the Kirch-
hoff equations in the region of contact, and formulate an equivalent contact
problem with a fixed external obstacle. Our solution features a non-trivial
topology of contact consisting of an interval flanked by two isolated points.

We stress that, for all values of the parameters, the linearization of the equa-
tions in the region of contact is an approximation that is at least as good
as the thin rod approximation itself. This remark could be applied to solve
other geometries of rods in self-contact, such as the coiled configurations of
elastic rings. This problem has been studied by numerical continuation by
Coleman and Swigon (2000). We expect that it can be solved by the same
semi-analytical method as the knot. One of the benefits of the analytical ap-
proach over a numerical one is that the behavior of the equilibria can be

16 Note that the actual length of the opening is much larger than the apparent
length observed when looking along the x axis: in this particular experiment, the
actual length of each opening is

√
2hR (σp − σe) = 19.5 mm.
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captured for arbitrary values of the small thickness h and not just for specific
values of h.

Another interesting perspective opened up by the present work concerns the
instability obtained for U = ±2, when helical bucking sets in in the tails. In
a follow-up paper, we shall study this instability in detail. Based on a refined
version of the present theory, tailored to the case U ≈ ±2, we shall show that
the instability, which is driven by the tails, is strongly affected by the presence
of the loop; we also study what happens above the instability threshold.

A Ruling out alternative contact-set topologies

Contact problems are often solved by first inferring the topology of the con-
tact set. Validation of this assumption requires checking that there is no pen-
etration and that the contact pressure is everywhere positive. The approach
we took in Section 7.7.2 is different as the topology of the contact set was
found from constrained numerical minimization with no a priori assumption.
We found an interval of contact flanked by two isolated points, see Eq. (88).
Here, we investigate two alternative, simple contact topologies, namely a sin-
gle interval of contact or three isolated points, and show that they lead to
inconsistencies (negative pressure and/or self-penetration).

A.1 A single interval of contact

Assume that the contact set is the interval σ ∈ [−σ1; σ1]. In this interval, the
difference rod lies on the surface of the cylinder and can be parameterized as

u(σ) = cos φ(σ), v(σ) = sin φ(σ). (A.1)

Introduce the azimuthal vector eφ = (− sin φ(σ), cos φ(σ)). By deriving Eq. (A.1)
three times, we find

(u′′′(σ), v′′′(σ)) · eφ(σ) = φ′′′(σ) − φ′3(σ).

Now, the discontinuity of the the third derivatives (u′′′, v′′′) at the lift-off point
is given by the point-like contact force, which is perpendicular to eφ(σ1) in the
absence of friction. Therefore, (u′′′, v′′′)·eφ is continuous across σ1, even though
(u′′′, v′′′) is not. In addition, note that the asymptotic boundary conditions (82)
for the braid imply that (u′′′, v′′′) = (0, 0) beyond the last contact point. We
conclude that (u′′′, v′′′) ·eφ is zero in the left neighborhood of the lift-off point,
noted σ1

−, which implies:

φ′′′(σ1
−) = φ′3(σ1

−). (A.2)
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By Eq. (78), the contact pressure can be found by deriving Eq. (A.1) four
times. This yields p̂(σ) = φ′(σ)4 − 3 φ′′(σ)2 − 4 φ′(σ) φ′′′(σ). Combining with
Eq. (A.2), we compute the contact pressure at σ1

−:

p̂(σ1
−) = −3 φ′4(σ1

−) − 3 φ′′2(σ1
−).

This pressure is negative, which shows that the assumed topology of contact is
inconsistent. Note that the pressure is negative in a region where the physical
solution has openings, which is consistent.

A.2 Three isolated points

Here, we assume that the contact set is composed of three isolated points: by
symmetry, it is of the form D = {−σ1} ∪ {0} ∪ {+σ1} for some σ1 > 0. As
we shown now, this simple contact topology can be solved analytically and
gives rise to residual penetration. We derive the solution on the positive part
of the axis, σ > 0; the solution on the negative part can be found using the
symmetry conditions (80).

Over the interval 0 < σ < +∞ the contact pressure p̂ is given by a Dirac
function, noted δD, centered at σ1: p̂(σ) = P1 δD(σ−σ1). Noting P u

1 = u(σ1) P1

and P v
1 = v(σ1) P1 the components of the contact force, we can write Eqs. (78)

as u′′′′(σ) =
√

2P u
1 δD(σ − σ1) and v′′′′(σ) =

√
2P v

1 δD(σ − σ1). The general
solution of these equations satisfying the asymptotic conditions (82) reads

u(σ) = (ζ0 + ζ1 σ) +
√

2P u
1 Θ(σ1 − σ)

(σ1 − σ)3

6
(A.3a)

v(σ) =

(

ζ ′
0 + ζ ′

1 σ − σ2

2

)

+
√

2P v
1 Θ(σ1 − σ)

(σ1 − σ)3

6
(A.3b)

where ζ0, ζ1, ζ ′
0 and ζ ′

1 are constants of integration, and Θ is the Heaviside
function defined by Θ(x) = 0 for x < 0 and Θ(x) = 1 for x > 0. The
expressions (A.3) are valid over the interval 0 < σ < +∞. Note that the
right-hand sides are piecewise polynomial functions of σ that are C2 smooth;
their third derivatives undergo a jump (

√
2 P u

1 ,
√

2P v
1 ) at σ = σ1. For σ > σ1

the function Θ is zero and u and v are given by the first terms in parentheses,
while for 0 < σ < σ1, we have Θ = 1 and u and v are given by third order
polynomials.

The seven unknowns of the problem (ζ0, ζ1, ζ
′
0, ζ

′
1, P

u
1 , P v

1 , σ1) can be found by
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solving the seven following equations:

v(0) = 0, u′(0) = 0, v′′(0) = 0, (A.4a)

u(0) = 1, (A.4b)

(P u
1 , P v

1 ) · (u′(σ1), v
′(σ1)) = 0, (A.4c)

u2(σ1) + v2(σ1) = 1, u(σ1) u′(σ1) + v(σ1) v′(σ1) = 0. (A.4d)

Eq. (A.4a) comes from the symmetry conditions near the center of the braid.
Eq. (A.4b) comes from v(0) = 0 and from the contact condition u2(0)+v2(0) =
1, which imply u(0) = ±1; we consider u(0) = +1 only as the case u(0) = −1
can be recovered by applying a symmetry x 7→ (−x). Eq. (A.4c) warrants that
the direction of the contact force is perpendicular to the tangent in the absence
of friction. Eq. (A.4d) expresses the fact that the rod has to be tangent with
the cylinder at σ1.

In a first step, solve Eqns. (A.4a) and (A.4b) which are four linear equations
for the variables ζ0, ζ1, ζ ′

0 and P v
1 . This yields

ζ0 = 1 − P u
1 σ1

3

3
√

2
, ζ1 =

P u
1 σ1

2

√
2

, ζ ′
0 = −σ1

2

6
, P v

1 =
1√
2σ1

. (A.5a)

Plugging these relations into Eq. (A.4c), we obtain a linear equation for ζ ′
1

whose solution reads

ζ ′
1 = σ1 − σ1

3 (P u
1 )2. (A.5b)

Substituting into Eqns. (A.4d), we find two polynomial equations for the two
remaining unknowns P u

1 and σ1, which have a unique real root

σ1 =
(2 +

√
7)3/4

21/4
≈ 2.661, P u

1 = − 1

21/6 σ1
5/3

. (A.5c)

Eqns. (A.3) and (A.5) define in closed analytical form the unique braid solution
having three isolated points of contact.

Consider now the Taylor expansion of the distance function w =
√

u2 + v2

near the center of the braid, w(σ) = 1+ 1
2
w′′(0) σ2 + . . . The coefficient w′′(0)

can be calculated as w′′(0) = −
√√

7 − 2 /(4
√

6) ≈ −.082 and is negative.
This shows that there is some penetration 17 , w < 1 near σ = 0, as confirmed
in Fig. A.1: the solution with three points of contact is unphysical. Penetration
takes place around the central point of contact; this points to the fact that

17 Relative to the cylinder radius, penetration is by about 1 %. As a result, the
unphysical solution with three points of contact happens to be a good approximation
to the actual solution derived in Section 7.7 for a trefoil knot (to approximate a
cinquefoil knot, one would need five points of contact). For instance, σ1 ≈ σp =
2.681, ζ0 = −.8729 ≈ Λn=1 = −.8776, and ζ1 = 2.0882 ≈ Πn=1 = 2.0887.
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Fig. A.1. Radial distance w(σ) =
√

u2(σ) + v2(σ) in the case of three isolated points
of contact. The non-penetration condition w > 1 is violated near center.

the correct topology is obtained by replacing this point with an interval of
contact.
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