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A thin thread of viscous fluid falling onto a moving belt generates a surprising
variety of patterns depending on the belt speed, fall height, flow rate, and fluid
properties. Here, we simulate this experiment numerically using the discrete viscous
threads method that can predict the non-steady dynamics of thin viscous filaments,
capturing the combined effects of inertia and of deformation by stretching, bending,
and twisting. Our simulations successfully reproduce nine out of ten different patterns
previously seen in the laboratory and agree closely with the experimental phase
diagram of Morris et al. [Phys. Rev. E 77, 066218 (2008)]. We propose a new
classification of the patterns based on the Fourier spectra of the longitudinal and
transverse motion of the point of contact of the thread with the belt. These frequencies
appear to be locked in most cases to simple ratios of the frequency !c of steady coiling
obtained in the limit of zero belt speed. In particular, the intriguing “alternating loops”
pattern is produced by combining the first five multiples of !c/3. C© 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.3703316]

I. INSTABILITIES OF VISCOUS THREADS

A. Introduction

A thin stream or jet of liquid falling onto a fixed surface is one of the simplest situations in fluid
mechanics, yet it can generate a remarkable range of phenomena. Fast jets produce hydraulic jumps,
which are circular when the viscosity is very low1, 2 and polygonal when it is somewhat higher.3

Thin streams of very viscous fluid can exhibit steady coiling4 or rotatory folding,5 and under some
conditions coiling produces spiral waves of air bubbles in the thin fluid layer spreading over the
surface.6 Finally, thin streams of non-Newtonian fluid can exhibit the Kaye (“leaping shampoo”)
effect in which the stream rebounds episodically from the pile of previously deposited fluid.7

A further degree of complexity is introduced if the source of the jet and the surface onto
which it falls are in relative motion. This is the case when a home cook lays down “squiggles”
of icing or molten chocolate on a cake, or when an artist lets paint dribble onto a canvas from a
moving paintbrush, a technique used to great effect by Jackson Pollock.8 An analogous situation
involving many interacting jets is the “spunbonding” process of non-woven fabric production, in
which thousands of threads of molten polymer solidify and become entangled as they fall onto a
moving belt, producing a fabric with a random texture.

Here, we use a numerical approach to study an idealized model for these processes: the contin-
uous fall of a single thread of viscous fluid onto a belt moving with a constant velocity in its own
plane (Fig. 1). This system was first studied experimentally by Chiu-Webster and Lister9 (henceforth
CWL), who called it the “fluid mechanical sewing machine” on account of the stitch-like patterns
traced on the belt by the thread. The complexity and diversity of these patterns testifies to a rich
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FIG. 1. Configuration of the fluid mechanical sewing machine. Newtonian fluid with constant density ρ, viscosity ν, and
surface tension coefficient γ is ejected at a volumetric rate Q through a nozzle of diameter d at a height H above a belt
moving in its own plane at constant speed V . The position of the contact point between the thread and the belt is denoted by
the complex number ξ (t) ≡ x(t) + i y(t). Lateral advection of the contact point motion at speed V creates complex “stitch”
patterns on the belt. (In inset): geometry of an element of the thread, showing the orthonormal triad of basis vectors d1, d2,
and d3 as a function of the Lagrangian coordinate S along the center-line.

nonlinear dynamics and bifurcation structure. The appeal of the system is further increased by the
theoretical and numerical challenges involved in modeling it.

In CWL’s experiments, viscous fluid (corn syrup) with density ρ, surface tension coefficient γ ,
and viscosity ν was ejected at a volumetric rate Q from a vertical nozzle of diameter d, from which it
fell a distance H onto a belt moving at speed V (Fig. 1). The experiments were conducted by varying
V and H for several different combinations of values of d, Q, and ν. When V greatly exceeded
a fall height-dependent critical value Vb(H ), the fluid thread had the form of a steady dragged
catenary. As the belt speed was decreased towards Vb, the lowermost part of the thread evolved into
a backward-facing “heel,” which became unstable to periodic meandering when V = Vb. Further
decrease of the belt speed led to a series of bifurcations to more complex patterns (Fig. 5), ending
with the establishment of steady coiling for V = 0. CWL successfully predicted the shape of the
steady dragged catenary using a “viscous string” model that neglected bending stresses. However,
this solution ceases to exist when the extensional axial stress at the bottom of the thread becomes
zero, corresponding to the incipient formation of a heel in which the axial stress is compressional.
Because a state of axial compressive stress is a necessary condition for the buckling of a slender
body,10 CWL interpreted the onset of meandering as a buckling instability of the heel.

Ribe et al.11 carried out a numerical linear stability analysis of the dragged catenary state to
predict the critical belt speed Vb and the frequency ωb for the onset of meandering, using a more
complete “viscous rod” theory incorporating bending and twisting of the filament. The numerical
predictions of Vb and ωb thereby obtained agree closely with the experimental measurements of
Ref. 9. Ribe et al.11 also documented a close correspondence between incipient meandering and
finite-amplitude steady coiling on a motionless (V = 0) surface, such that ωb is nearly identical to
the steady coiling frequency !c for any given fall height H. Moreover, the critical belt speed Vb(H )
is nearly identical to the vertical (free-fall) speed Uf of the fluid at the bottom of the thread, indicating
that meandering sets in when the belt is no longer moving fast enough to carry away in a straight
line the fluid falling onto it.

More extensive experiments were conducted by Morris et al.,12 using a carefully engineered ap-
paratus with silicone oil as the working fluid for better stability and reproducibility. They determined
a complete phase diagram for the patterns as a function of H and V for a particular set of values of
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the fluid viscosity ν and the flow rate Q. They showed that the observed amplitude of meandering
as a function of the belt speed is consistent with a Hopf bifurcation and proposed a simple model
to predict it based on the hypothesis that the contact point moves at constant speed relative to the
belt. Finally, they proposed a generic set of amplitude equations which they used to characterize the
alternating loops (which they called “figure-of-eight”) and translated coiling patterns.

Most recently, Blount and Lister13 performed a detailed asymptotic analysis of a slender dragged
viscous thread, focussing on the structure of the heel. They showed that the lowermost part of the
thread can exhibit three distinct dynamical regimes depending on whether the belt speed is greater
than, nearly equal to, or less than the free-fall speed Uf. Their asymptotic stability analysis of these
steady states indicates that meandering sets in when the horizontal reaction force at the belt begins
to be slightly against the direction of belt motion, corresponding to the heel “losing its balance.”

As the above summary indicates, our current theoretical understanding of the fluid-mechanical
sewing machine is essentially limited to the initial bifurcation from the steady dragged configuration
to meandering. In this paper, we push forward into the fully nonlinear regime with the help of a new
computational algorithm that permits for the first time robust numerical modeling of arbitrary non-
stationary dynamics of viscous threads.14 After describing the method briefly, we use it to generate
a complete phase diagram of sewing-machine patterns that reproduce all the major features of the
diagram determined experimentally by Morris et al.12 We then perform a detailed Fourier analysis of
the motion of the contact point for each of the patterns simulated and propose a new classification of
them based on the spectral content of the motions of the contact point in two orthogonal directions.

For most of the patterns studied, we find that the frequencies present in the spectra of the contact
point motion are multiples of the steady coiling frequency !c, indicating that the dynamics of the
sewing machine are closely related to those of steady coiling. Accordingly, we set the stage for our
study with a brief summary of steady coiling in Sec. I B.

B. Steady coiling

In steady coiling, the contact point of the thread with the surface moves with a constant angular
velocity !c along a circle of radius Rc (Fig. 2(a)). In most cases, the thread comprises two distinct
parts: a long, roughly vertical “tail” which deforms primarily by stretching under gravity, and a
helical “coil” in which the deformation is dominated by bending and (to a lesser extent) twisting.
Thus the radius of the thread within the coil a1 is nearly constant. By conservation of mass, the axial
speed of the fluid in the coil is U1 = Q/πa2
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FIG. 2. Steady coiling of a viscous thread. (a) Definition sketch. (b) Coiling frequency as a function of height for the
parameters of the experiments of Morris et al.,12 calculated numerically using a continuation method.15 The solid curve
includes the effect of surface tension ((3 = 1.84), while the dashed curve is for zero surface tension ((3 = 0). The portions
of the curves corresponding to the gravitational (G), inertio-gravitational (IG), and inertial (I) regimes are indicated. The
dotted lines show the first three eigenfrequencies of a free viscous pendulum.
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Steady coiling can occur in several distinct dynamical regimes characterized by different bal-
ances of the viscous, gravitational, and inertial forces acting on the thread.15–17 These regimes
appear clearly on plots of the coiling frequency vs. the fall height. For convenience, we define a
dimensionless fall height Ĥ and a dimensionless coiling frequency !̂c,

Ĥ = H
( g
ν2

)1/3
, !̂c = !c

(
ν

g2

)1/3

. (1)

Figure 2(b) shows !̂c as a function of Ĥ for the parameters of the experiments of Morris et al.,12

viz., ν = 0.0277 m2 s−1, ρ = 103 kg m−3, γ = 0.0215 N m−1, d = 8 mm, and ρ Q = 0.0270 g s−1.
For Ĥ < 1.2, coiling occurs in a gravitational (G) regime. Inertia is negligible everywhere in the
thread, which is governed by a balance between gravity and the viscous forces that resist stretching
(in the tail) and bending (in the coil). At intermediate heights 1.2 ≤ Ĥ ≤ 2.2, a complex inertio-
gravitational (IG) regime appears, in which the coiling frequency is a multivalued function of the
fall height. The centrifugal force now becomes important in the tail, which behaves as a distributed
pendulum with an infinity of eigenmodes whose corresponding eigenfrequencies are proportional to
the simple pendulum frequency (g/H)1/2. The first three of these frequencies are shown by the dotted
lines in Fig. 2(b). When one of these eigenfrequencies is close to the frequency set by the coil, the tail
enters into resonance with the latter, giving rise to resonance peaks that appear as rightward-facing
“bumps” in the curve !̂c(Ĥ ). For large heights Ĥ > 2.2, coiling occurs in an inertial (I) regime
in which the viscous bending force in the coil is balanced by inertia.16 The tail in this regime is
almost perfectly vertical and is controlled by a balance between gravity, the viscous stretching force,
and the axial momentum flux. Finally, there is also a viscous (V) regime in which both gravity and
inertia are negligible everywhere in the thread, but this is only observed when both H and d are much
smaller than in the experiments of CWL and Morris et al.

In a typical laboratory experiment on steady coiling, the parameters d and Q and the fluid
properties ρ, ν, and γ are held fixed, while H is varied. Each such experiment is completely defined
by the values of the three dimensionless groups

(1 =
(

ν5

g Q3

)1/5

, (2 =
(

ν Q
g d4

)1/4

, (3 = γ d2

ρ ν Q
. (2)

As an example, (1 = 610, (2 = 0.370, and (3 = 1.84 for all the experiments of Morris et al.12 The
(dimensionless) functional dependence of the coiling frequency on the other parameters now takes
the general form

!̂c = !̂c(Ĥ ,(1,(2,(3). (3)

The effect of surface tension is measured by the parameter (3. Surface tension modifies the coiling
frequency quantitatively but introduces no essentially new dynamics, as can be seen by comparing
the solid ((3 = 1.84) and dashed ((3 = 0) curves in Fig. 2(b).

The continuation method used to generate the curves in Fig. 2(b) can be used for steady coiling
because the flow is stationary in a co-rotating reference frame that moves with the contact point. No
such reference frame exists for the sewing machine configuration. We therefore require a different
numerical method, which is described in Sec. II.

II. NUMERICAL METHOD

Our numerical simulations of the sewing machine were set up using the computational method
of discrete viscous threads (henceforth DVT) originally described in a conference paper,14 and
which will be presented in detail in an upcoming journal article. To the best of our knowledge,
DVT is the only available numerical method that is fast and robust enough to be applicable to the
sewing machine geometry while retaining all the relevant modes of deformation, namely, stretching,
twisting, and bending. For a thin thread the stretching modulus varies as the square of the thread’s
radius, while the bending and twisting moduli are proportional to the fourth power of the radius. As
a result the dynamics of thin threads is a nonlinear and numerically stiff problem. The DVT method
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addresses this difficulty by introducing a spatial discretization of the equations based on ideas from
differential geometry. The method allows simulations to be run for arbitrary mesh sizes, even very
coarse ones, with optimal stability. This contrasts with conventional discretization schemes which
are typically stable for sufficiently small mesh sizes only, the maximum mesh size being in practice
a small fraction of the smallest length scale in the flow, here the small size of the coiled region at
the bottom.

Below we briefly present the principles of the DVT method, introduce adaptive mesh refinement
which provides a tremendous speed-up of the calculations when gravity stretches the tail significantly,
validate the code against known solutions for steady coiling, explain the details of the numerical
procedure, and finally present our numerical results.

A. Smooth case: The equations for thin viscous threads

The numerical code makes use of the Lagrangian approach and the viscous thread is discretized
as a polygonal line. A mass is assigned to each vertex, forces are set up on these masses, and
the motion of each mass is obtained by time integration of the fundamental law of dynamics. The
discrete forces are designed in such a way that the motion of the polygonal line is equivalent to
that of a thin viscous thread in the smooth limit. The key element of the numerical method is the
expression for the discrete viscous forces. To prepare the derivation, we start by reformulating the
smooth case, usually expressed in Eulerian variables, in the Lagrangian framework. We introduce a
Lagrangian coordinate S that marks cross-sections and follows them during motion. This Lagrangian
coordinate S is defined as the arc-length in an imaginary reference configuration where the thread is
a cylindrical tube of constant radius. It plays the same role as the vertex index i in the discrete case.

At a particular time t, the configuration of the thread is defined by its center-line r(S, t) and
an orthonormal triad (d1(S, t), d2(S, t), d3(S, t)). This triad allows one to keep track of twisting,
because the directions of d1 and d2 follow the orientation of a cross-section as it spins about the
center-line. Thin threads deform in such a way that cross-sections remain approximately planar and
perpendicular to the centerline (this assumption is the starting point of the derivation of Kirchhoff
equations for thin threads and can itself be justified rigorously from asymptotic analysis, see, e.g.,
Ref. 18). As a result, the center-line tangent r′(S, t) = ∂r

∂S and the unit vector d3(S, t) are aligned.
Denoting by *(S, t) the axial stretch factor based on the reference configuration, given by the norm
of r′(S, t), we have

r′(S, t) = *(S, t) d3(S, t). (4)

Since the triad (di (S, t))i=1,2,3 is orthonormal, its time evolution defines a rigid-body rotation
for any particular value of S. The associated instantaneous angular velocity ω(S, t) is such that

∂di (S, t)
∂t

= ω(S, t) × di (S, t) (i = 1, 2, 3). (5)

One can take advantage of the fact that the vectors r′ and d3 must remain aligned by Eq. (4) to capture
the twisting motion of the thread using a single parameter, the angular spinning velocity w(S, t)
defined by w(S, t) = ω(S, t) · d3(S, t). In this view, which we call the centerline/spin representation,
the material velocity ω is a secondary variable which can be reconstructed by the equation

ω(S, t) = d3(S, t) × ḋ3(S, t) + w(S, t) d3(S, t), (6)

where the time derivative ∂
∂t is denoted using a dot. In a viscous thread, the fundamental kinematical

quantities are the strain rates, defined by

ε̇s = 1
*

∂u(S, t)
∂S

· d3(S, t), ε̇tb = 1
*

∂ω(S, t)
∂S

, (7)

where u = ṙ is the center-line velocity. Here, ε̇s captures the strain rate associated with axial
stretching, while the vector ε̇tb captures in a combined manner the strain rates for the twisting and
bending modes. The strain rate for stretching, ε̇s, is related to the Lagrangian time derivative of the
center-line stretch * by the formula ε̇s = ∂ ln */∂t .
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For a thin thread, the internal stress is described by the resultant n(S, t) of the viscous forces
over a particular cross-section, and their moment m(S, t) with respect to the origin of the cross-
section. These internal force and moment vectors play the same role as the tensor σ in 3D continuum
mechanics. For the special case of a thin thread geometry, Stokes’s constitutive law states that stress
is proportional to the rate of deformation: for the stretching mode, we have

n(S, t) · d3(S, t) = 3 µ A ε̇s. (8)

Here µ ≡ ρ ν is the dynamic viscosity, and A = π a2 is the cross-sectional area. The stretching
modulus 3µ A was originally derived by Trouton.19 For the bending and twisting modes we have

m(S, t) = (3µ I P12 + 2µ I P3) · ε̇tb, (9)

where I = π a4/4 is the moment of inertia, a is the radius, P3 = d3 ⊗ d3 is the tangent projection
operator, and P12 = 1 − P3 is the normal projection operator. The radius a(S, t) is a dependent
variable which is reconstructed by the incompressibility condition

a(S, t) = a0√
*(S, t)

, (10)

where a0 = d/2 is the radius in the configuration of reference (note that * = 1 in the reference
configuration by definition). The expression 3µ I for the bending modulus can be found for instance
in Ref. 20.

These equations are complemented by the balance of linear and angular momentum, known as
the Kirchhoff equations for thin rods

∂n(S, t)
∂S

+ f(S, t) = ρ A0
∂2r(S, t)

∂t2
, (11)

∂m(S, t)
∂S

+ ∂r(S, t)
∂S

× n(S, t) = 0. (12)

Following an approximation introduced by Kirchhoff himself which is valid for thin threads, we
have neglected the rotational inertia in the second equation. The vector f(S, t) is the resultant of the
external forces per unit reference length dS. The weight of the thread and the surface tension are
taken into account by setting

f(S, t) = ρ A0 g − ∂(π γ a(S, t) d3(S, t))
∂S

, (13)

where A0 = π a0
2 is the cross-sectional area in the reference configuration, g is the acceleration of

gravity, and γ is the surface tension at the fluid-air interface. The last term in Eq. (13) is the net force
on the center-line due to surface tension at the fluid-air interface, the argument in the derivative being
the axial force due to the capillary overpressure (π a2) ( γ

a ). Note that there is no need to consider a
linear density of applied torque in Eq. (12) for the problem at hand.

With suitable boundary conditions, the set of partial differential equations (4)–(12) constitutes
a well-posed mathematical problem governing the dynamics of a viscous thread.

B. A variational view: Rayleigh potentials

The equations of motion (11) and (12) and the constitutive law (8) and (9) can be discretized in a
natural manner14 if they are first re-written in terms of a Rayleigh potential. The Rayleigh potential
D yields the power dissipated by viscous forces as a function of the vertex velocity u(S) = ṙ(S) and
spinning velocity w(S) = ω(S) · d3(S). For a thin thread, it has three contributions corresponding to
the stretching, bending, and twisting modes, D(u, w) = Ds(u) + Dt(u, w) + Db(u, w). Note that the
Rayleigh potential D also depends on the current configuration r(S, t) but this dependence will be
implicit in our notations. As an illustration, consider the stretching contribution Ds. It only depends
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on the vertex velocities and reads

Ds(u) = 1
2

∫
3 µ A ε̇2

s * dS, (14)

where ε̇s in the integrand is given by Eq. (7), and * dS is the infinitesimal arc-length in the current
configuration.

The Rayleigh dissipation potential is useful as it captures the effect of the internal viscous stress
in a compact mathematical form. Indeed in the equations of motion (11) and (12) the net viscous
force n′ and the net viscous moment m′ + r′ × n in the left-hand sides can be shown to be equivalent
to a density of applied force

fv(S, t) = − ∂D(û, ŵ)
∂û(S)

∣∣∣∣
(û=ẋ(t),ŵ=w(t))

(15)

and a density of applied twisting torque

qv(S, t) = − ∂D(û, ŵ)
∂ŵ(S)

∣∣∣∣
(û=ẋ(t),ŵ=w(t))

. (16)

In these equations, the right-hand sides denote functional derivatives, as the dissipation potential
D takes the functions û(S) and ŵ(S) as arguments. The hat notation expresses the fact that the
derivatives have to be calculated formally first, and evaluated using the real motion (u = ṙ, w) next.

C. Discretization

In the discrete case, the center-line of the thread is represented by a polygonal chain of n + 2
particles R(t) = {r0(t), r1(t), · · · , rn+1(t)}. The length *i(t) and unit tangent di

3(t) of an edge i are
defined by

ri+1(t) − ri (t) = *i (t) di
3(t). (17)

We consider viscous threads having a circular cross-section. As a result there is no need to keep
track of the absolute orientation of the cross-sections during motion. Twist is taken into account
through the instantaneous angular velocity of spin of an edge, noted wi (t). This is an unknown
of the motion, for which we will derive an equation. Representing rotations by a single degree of
freedom is beneficial for the simulation. The angular velocity vector ωi is a secondary quantity in
the simulation, which is reconstructed from the spinning velocity wi by an equation similar to the
smooth equation (6).

The generalized velocity of a viscous thread is obtained by complementing the vertex velocities
Ṙ(t) = {ṙ0(t), · · · } with the spinning velocities of the edges W(t) = {w0(t), · · · }. The dynamics of
the thread is specified by a differential equation involving the position R(t), the velocities Ṙ(t),
W(t), as well as the acceleration R̈(t). Rotational inertia is neglected and so Ẇ(t) does not enter into
the equation. This differential equation is derived next.

As in the smooth case, internal viscous stress is captured by means of a discrete
Rayleigh dissipation potential which is the sum of three contributions, D(U, W) = Ds(U)
+ Dt(U, W) + Db(U, W). As an illustration, the stretching contribution is defined in close analogy
with Eq. (14) by

Ds(U) = 1
2

∑
Di (ε̇i

s)2, (18)

where Di = 3 µ Ai *i is a discrete stretching modulus defined by analogy with Eq. (8), and
ε̇i

s = 1
*i di

3 · (ui+1 − ui ) is a discrete axial strain rate defined by analogy with Eq. (7). The twist
and bending contributions Dt and Db can be defined in a similar manner.14 They make use of
discrete notions of curvature and twist, based on ideas from discrete differential geometry.
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In analogy with the smooth case, we write the equations of motion as

Fv(t) + F(t) = M · R̈(t), (19)

Qv(t) = 0. (20)

The first equation is a balance of linear momentum for the vertices and is associated with the
positional degrees of freedom R(t), while the second equation is a balance of twisting torque at each
edge, associated with the spinning degrees of freedom W(t). Here, M is the diagonal matrix filled
with the mass of the vertices, Fv and Qv are the viscous forces and twisting torques representing
the internal stress in the thread, and F combines the weight and the net force on vertices due to
surface tension. The discrete surface tension forces derive from a capillary energy equal to the
surface tension coefficient, times the sum of the lateral area of the cylinders bounding the volume
of fluid in each segment. As in Eq. (12) for the smooth case, we have neglected rotational inertia in
the right-hand side of Eq. (20): we have checked numerically that this has negligible effect on the
simulation when the thread is thin enough.

Our discretization of the thread is based on the Rayleigh potentials, and the discrete viscous
forces and moments are defined as in Eqs. (15) and (16) by

Fv(t) = − ∂D(Û, Ŵ)

∂Û

∣∣∣∣∣
(Û=Ṙ(t),Ŵ=W(t))

, (21)

Qv(t) = − ∂D(U, W)
∂W

∣∣∣∣
(Û=Ṙ(t),Ŵ=W(t))

. (22)

The equations of the present section provide a complete system of equations for the dynamics
of a discrete viscous thread. For the time discretization, we use a semi-implicit Euler scheme, which
provides good stability even for quite large time-steps (by semi-implicit, we mean that we linearize
the equations near the current configuration at every time-step, before applying an implicit scheme).
The treatment of boundary conditions is explained in Sec. II E.

D. Adaptive mesh refinement

The DVT method uses a Lagrangian grid which is advected by the flow. In sewing machine
experiments, gravity can typically stretch the centerline by a factor 5–10 over the course of the
descent. In the absence of refinement, this makes the grid very inhomogeneous: to capture the small-
scale features near the belt one has to use an extremely fine mesh size near the nozzle. Overall, a large
number of degrees of freedom are required and the simulation is inefficient. In addition, important
inhomogeneities in edge lengths make the time-stepping problem ill-conditioned and robustness is
affected. To overcome these difficulties, we have set up adaptive mesh refinement.

In our implementation of refinement, edges are subdivided whenever their length exceeds a
nominal length, which is a prescribed function of the distance to the belt. In the upper part of the belt,
this nominal length is equal to twice the initial segment length, defined by the periodic release of new
(Lagrangian) vertices from the nozzle. To resolve the coil region better, this nominal segment length
is decreased near the belt according to a prescribed exponential profile. This profile was adjusted
in such a way that the coil region always includes a sufficient number of vertices, typically 10–30,
with a final edge length typically below 0.006 (ν2/g)1/3, and that the interval between subsequent
subdivisions of a given edge is always larger than two simulation steps.

Whenever an edge was marked as needing subdivision, a new vertex was inserted. We computed
the properties of the new vertex and of the two new edges as follows: the Lagrangian coordinate of
the new vertex is obtained by linear interpolation, the mass stored in the former edge is equally split
among its children, the position and velocity of the new vertex are calculated by an interpolation
of order 4, the cross-sectional area A, the spinning velocities, and the viscosities of the new edges
are obtained by second-order interpolation. These interpolation orders were chosen in such a way
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that the bending and twist forces remain continuous upon subdivision. We used the steady coiling
geometry to adjust the subdivision parameters and to validate the subdivision scheme.

E. Emission from the nozzle, capture by the belt

We found that the implementation of boundary conditions was a key point to successfully
reproduce the patterns and the phase diagram of the experimental sewing machine. We tried simple
implementations first, and could reproduce the curves !̂c(Ĥ ) for the frequency of steady coiling as
well as the simplest stitch patterns, but failed to reproduce entire regions of the phase diagram. Further
examination revealed the presence of spurious oscillations in the calculated acceleration in the steady
coiling geometry (V̂ = 0), even though the coiling frequency !̂c(Ĥ ) was correctly predicted. We
removed these spurious oscillations by a more careful account of the boundary conditions both at the
nozzle and at the belt, as explained below. Suppressing these oscillations appeared to be sufficient
to bring the numerical predictions in close agreement with the experimental ones.

New vertices need to be emitted periodically from the nozzle. In a first implementation of the
clamped boundary conditions there, we considered an infinite string of fluid particles which were
moved with the prescribed ejection velocity Q/A0, until they passed below the nozzle and were
released. The position of the first vertex clamped inside the nozzle varies abruptly as a new vertex
is released, and this was the cause of unwanted oscillations. They were suppressed by considering a
string of two particles in the nozzle, with a fixed position relative to the nozzle; the injection velocity
is then modelled by steadily increasing the length of the second edge, and periodically inserting a
new vertex in third position.

Impact with the belt was first handled by detecting penetration of vertices into the belt at the
end of every time-step, and constraining their velocity to match the belt’s velocity at any subsequent
time. This also induces large unwanted fluctuations in the acceleration, which can be interpreted by
the fact that the vertical momentum resulting from the collision is not transferred to the thread until
the following time step. The oscillations were removed by using a technique known as roll-back.
Then, every time-step involves an iteration whose aim is to determine the set of vertices undergoing
a collision during the time-step: whenever an unexpected collision takes place, the step is discarded,
time is rolled back, and a new time-step is computed, forcing additional vertices to land on the belt
at the end of the time-step. An additional difficulty in the implementation of roll-back in the context
of a linearized implicit scheme is that only a small number of particles can be captured at every step.
We circumvented this difficulty by using adaptive time refinement. Such refinement is presumably
not needed if a fully (nonlinear) implicit scheme is used, such as the one presented in Ref. 14.

F. Validation

The numerical code was validated by comparing its predictions of the steady coiling frequency
to the predictions of the continuation method of Ribe.15 The agreement is excellent for all fall
heights (Fig. 3). The hysteresis of the dynamic simulation in the range 1.1 ≤ Ĥ ≤ 2.2 is physical,
but inaccessible to the continuation method because the latter records all steady-state solutions
regardless of their stability.

III. SIMULATION RESULTS

Our dynamic simulations of the sewing machine patterns using the DVT method were carried
out with non-dimensional quantities. This is achieved by setting the density ρ, the viscosity µ, and
the gravity g to the value 1. This choice implies that both the length scale (ν2/g)1/3 and the time scale
(ν/g2)1/3 of the problem introduced in Eq. (1) are equal to 1. The three other physical parameters,
namely, the nozzle diameter, the flow rate, and the surface tension, were chosen to match the values
of (1 = 670, (2 = 0.37, and (3 = 1.84 in the experiments of Morris et al.:12 d = 0.187, Q
= 22.9 10−6, and γ = 1.20 10−3. The simulations were initiated from a vertical thread of uniform
radius comprising 172 segments of equal length, falling from a height Ĥ = 0.86 (gravitational
regime) onto a belt at rest. To avoid dealing with a shock when the thread hits the belt, the simulation
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FIG. 3. Validation of the discrete numerical algorithm for a steadily coiling viscous thread with (1 = 610, (2 = 0.37, and
(3 = 0. The discrete simulations with the fall height increasing (dashed line) and decreasing (solid line) match closely the
solution of the steady-state equations obtained using an independent continuation method.15 Arrows denote transient regimes
observed in the dynamic simulation when the system jumps to a different solution branch after encountering a limit point (by
contrast the continuation method records a steady but unstable solution, corresponding to the part of the curve with negative
slope).

was started with the bottom end of the thread clamped into the ground. The simulation was run until
the radius settled to a steady profile as a function of the elevation, and a steady state of coiling was
established. Next the (Ĥ , V̂ ) space was sampled by slowly varying Ĥ or V̂ in turn.

To illustrate the capabilities of our numerical technique, Fig. 4 shows a simulation of the
“translated coiling” pattern that occurs for relatively low belt speeds. Fig. 4(a) shows a three-
dimensional view of the falling thread and the trace it lays down on the belt. The simulation time is
0.73 s for one period of this pattern using a 2.6 Ghz Intel Core i7 processor and 8Go of 1067 Mhz
DDR3 memory.

Figure 4(b) shows the trajectory of the contact point in the frame of the nozzle (solid line).
Interestingly, the belt motion breaks the symmetry of steady coiling not only in the longitudinal
x-direction, but also in the transverse y-direction. Figure 4(b) also shows the velocity of the contact
point relative to the moving belt as a function of position along the trajectory (thin lines and arrows).
The magnitude of the relative velocity varies significantly over a period, in contrast to the meandering
pattern for which it is nearly uniform.12 The relative speed is maximum at point A where the contact
point is moving upstream along the belt, and very small at C where the motion is downstream.
Finally, Fig. 4(c) shows the amount of viscous power dissipated by the various modes, as a function
of arc-length along the thread. The curves cross each other at a height z ≈ 0.1 that corresponds to the
transition from the bending-dominated coil, to the stretching-dominated tail. Thanks to adaptivity,
the coil is well resolved and the curves for the viscous power dissipation remain smooth there, even
though they vary rapidly.

In addition to the dimensionless parameters (1, (2, and (3 in Eq. (2) that describe the fluid
properties and the ejection conditions, the patterns depend on the dimensionless fall height Ĥ in
Eq. (1), and the dimensionless belt speed

V̂ = V (νg)−1/3. (23)

Our simulations were carried out by varying Ĥ and V̂ for fixed values of (1 = 610 and (2

= 0.370 corresponding to the experiments of Morris et al.12 Some of our simulations were done with
a surface tension parameter matching the experimental value (3 = 1.84; for reasons of numerical
stability, however, most of the simulations used (3 = 0.

Figure 5 summarizes all the types of patterns that were encountered when scanning the (Ĥ , V̂ )
plane in the simulations, together with their experimental equivalents.9 The simulation reproduces
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FIG. 4. Simulation of the translated coiling pattern for (1 = 670, (2 = 0.37, (3 = 0, Ĥ = 0.98 , and V̂ = 0.022 using
182 vertices and 181 segments. (a) Three-dimensional perspective view. A–D denote reference points along the thread.
(b) Thick gray curve: trajectory of the contact point in the frame of the nozzle. The velocity of the contact point relative to
the belt is shown at various times (thin gray lines) and highlighted when the contact points passes the reference points A–D
(thick arrows, green). (c) Viscous power dissipated per unit length dD/dŝ by stretching (thin black line), shortening (thin
dashed line), and by bending and twisting (thick gray line) as functions of arc-length ŝ, when the contact point is at the apical
reference position C. All numerical quantities are dimensionless, as explained in the beginning of Sec. III.

nine out of the ten patterns reported by Morris et al.12 and observed by CWL.9 The only missing
pattern, the slanted loops, will be discussed later on. We shall refer to the pattern of Fig. 5(C) as
“alternating loops,” which we believe is a more accurate description than “figure-of-eight”.9, 12

Figure 6 shows a phase diagram of all the simulated patterns encountered in the (Ĥ , V̂ ) space for
Ĥ ≤ 0.8, including the effect of surface tension ((3 = 1.84). For comparison, the patterns observed
experimentally by Morris et al.12 are shown by dots. The agreement between the simulations
and the experiments is remarkable: the simulation captures all four patterns that were observed
experimentally in this region of the parameter space, namely, translated coiling, alternating loops,
meanders, and catenary. The locations of the boundaries separating the different patterns are also
reproduced accurately.

The inclusion of surface tension gives rise to numerical instabilities for heights above Ĥ > 0.70
approximately, which we have not been able to overcome by decreasing the mesh size or the time-
step. This is why there is no simulation data shown in the lower right portion of Fig. 6. Since surface
tension is not expected to modify qualitatively the dynamics of threads (see Fig. 2) we investigated
the case of larger fall heights without any surface tension ((3 = 0). Five new patterns were observed
for larger fall heights, as shown in Fig. 7, namely, double coiling, double meanders, stretched coiling,
W-pattern, disordered pattern. The new portion Ĥ > 0.8 of the phase diagram is qualitatively very
similar to that reported by Morris et al.,12 shown in the inset in Fig. 7. In both diagrams, the
alternating loops pattern disappears at a critical height, beyond which there is a substantial height
“window” containing only simple patterns (catenary, translated coiling, and meanders). When the
height is increased, three patterns having a complex aspect (disordered pattern, stretched coiling,
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FIG. 5. Qualitative comparison of sewing machine patterns predicted by our simulations (black lines) and observed in the
laboratory (photographs9). A: Translated coiling, B: Meanders, C: Alternating loops (figure-of-eight) pattern, D: Disorder, E:
Double coiling, F: Double meanders, G: W pattern, H: Stretched coiling, I: Catenary. Simulations were performed with the
parameter values (1 = 670 and (2 = 0.37 corresponding to the experiments of Morris,12 but with surface tension neglected,
(3 = 0. As the images of the patterns have not been recorded in these experiment, we show here the very similar ones of
Chiu-Webster and Lister,9 obtained in a series of experiments for which 147.5 < (1 < 1056.3, 0.31 < (2 < 0.47 and 2.42
< (3 < 5.39. (*) Experimental photographs courtesy of S. Chiu-Webster and J. Lister, J. Fluid Mech. 567, 89–111 (2006).
Copyright C© 2006, Cambridge University Press.

and the double meanders) all appear together at nearly the same height. Finally, for some values of
the height, disordered patterns, shown in gray in the diagram, occur in two separate ranges of the
belt speed, with stretched coiling in between.

It is instructive to compare the numerical and experimental phase diagrams with the curves
!̂c(Ĥ ) of frequency vs. height for steady coiling, calculated with the same value of surface tension

Experimental

0.50 0.55 0.60 0.65 0.70 0.75
0.00

0.01

0.02
Numerical

FIG. 6. Phase diagram of the numerically simulated patterns as a function of dimensionless fall height Ĥ ≤ 0.80 and
dimensionless belt speed V̂ , for (1 = 670, (2 = 0.37, and (3 = 1.84. The observations of Morris et al.12 are shown by
the various shades of dots for comparison. The typical appearance of each pattern (catenary, meanders, alternating loops,
translated coiling) is shown in the insets.
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FIG. 7. Phase diagram of sewing machine patterns determined from numerical simulations with (1 = 670, (2 = 0.37, and
no surface tension ((3 = 0). The patterns simulated include translated coiling (region A, red), meanders (region B, blue),
alternating loops (region C, green), double coiling (region E, pink), stretched coiling (region H, yellow), double meanders
(region F, purple), and disordered patterns (region D, gray). The domain of the catenary pattern (region I, black) extends
indefinitely upward and appears to end in the figure only because simulations were not performed for larger values of V̂ . The
horizontal path KL will later be used to construct Fig. 8. The coiling frequency !̂c for steady coiling is shown as a function
of height Ĥ below the phase diagram. Inset: Phase diagram determined experimentally12 for (1 = 670, (2 = 0.37, and (3
= 1.84 (top) together with the corresponding curve !̂c(Ĥ ) (bottom). The W-pattern (light gray dots – yellow – circled in
black) and slanted loops (gray dots – blue – circled in black) are discussed in Sec. IV B.

((3 = 0 for the simulations, (3 = 1.84 for the experiments). These curves are shown below
each phase diagram in Fig. 7. The comparison reveals that some of the more complicated patterns
(stretched coiling, W-pattern, disordered pattern) appear at heights close to that for the onset of
the multivalued IG regime of steady coiling. In the steady coiling geometry, it is known that the
multivalued regime is caused by the competition of several “viscous pendulum” modes. This suggests
that the complex patterns of the sewing machine are produced by the nonlinear interaction of those
modes.

Despite their similarities, the numerical (ND) and experimental (ED) phase diagrams in
Fig. 7 exhibit some systematic differences. In ED, double coiling (pattern E, pink) first appears
at the same height as disordered patterns (D, gray) and stretched coiling (H, yellow), whereas in ND
it appears at significantly greater heights. Double meanders (F, purple) have a common boundary
with the catenary pattern (I, black) in ED, but occur only for significantly lower belt speeds in ND.
In ND, the catenary state can transition to disorder (D, gray) over a range of heights, unlike in ED.
The range of belt speeds for double coiling is significantly wider in ND than in ED. Finally, in ND
the W-pattern is observed sporadically and for greater heights than in the diagram in Fig. 7. Some
of these differences are due to the absence of surface tension in the simulations, and to the fact that
collisions of the free portion of the viscous thread with the portion already laid down is not accounted
for. Another explanation for the discrepancies may be the fact that Morris et al.12 performed their
pattern recognition visually, whereas we used a more quantitative automatic procedure based on
Fourier decomposition. This is described in Sec. IV, where we review each of the individual patterns
in detail and propose a systematic classification of them.
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IV. ANALYSIS OF THE PATTERNS

To illustrate our pattern analysis, we fix the belt speed V̂ = 0.02 and vary the fall height along
the horizontal line KL in the phase diagram of Fig. 7. In order of increasing heights, the patterns
seen along this line are meanders, alternating loops, translated coiling, and double coiling. We track
the spectral content of these patterns continuously as they change smoothly or bifurcate. To do so,
we focus on the trajectory of the contact point of the thread with the belt. Let x(t) and y(t) be its
longitudinal and transverse coordinates in the laboratory (nozzle) reference frame and define the
complex number ξ (t) = x(t) + i y(t). Let X(t, t*) and Y(t, t*) be the coordinates (also relative to the
nozzle) at time t of a material point that was laid down on the belt at time t* < t, and let ψ(t, t*)
= X(t, t*) + i Y(t, t*) be a generic point in the trace. The advection by the belt is expressed by

ψ(t, t-) = ξ (t-) + (t − t∗) V . (24)

This equation means that the pattern ψ(t, t*) seen on the belt is obtained by unfolding the motion of
the contact point ξ (t), as illustrated in Fig. 9(a).

The numerical traversal of the line KL in Fig. 7 required about 78 500 time steps of size δt
= 0.1(ν/g2)1/3. We performed a Fourier analysis of the motion ξ (t) over a sliding window of 2000
time steps, computing the spectrum every 500 steps using a fast Fourier transform (FFT). The
spectra obtained in this way typically comprise several well-defined peaks whose frequencies can
be determined precisely (Fig. 9(b)).

Let ω
(x)
1 , ω

(x)
2 , etc., be the peak frequencies of the motion in the x-direction, and ω

(y)
1 , ω

(y)
2 , etc.,

be those for the motion in the y-direction. Because the fall height Ĥ is slowly changing with time
during the simulation, each observed frequency ω

(x)
i or ω

(y)
i can be plotted as a function of Ĥ to

provide a “portrait” of the evolving frequency content of the contact point motion. The result is
shown in Fig. 8. The principal observed frequencies ω(x)

n and ω
(y)
n are indicated in gray (red) and
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FIG. 8. Frequency content of patterns encountered along the line KL through the phase diagram of Fig. 7. The frequencies
of the transverse (y-direction) and longitudinal (x-direction) motion of the contact point are shown with large dots (blue) and
small dots (red), respectively. Note that these frequencies are the same in the upper region of the diagram where the two
types of dots overlap. In the dashed insets, the patterns are identified using the same color codes as in Fig. 7. Gray bands
indicate ranges of heights for which the patterns are transient. Also shown is the frequency !̂c of steady coiling as a function
of height (solid line, brown), together with several multiples of that frequency (dotted lines, brown).
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light gray (blue), respectively. Also shown for reference is the steady coiling frequency !̂c(Ĥ ) for
the same fluid properties and ejection parameters (solid line), together with several multiples (1/3,
2/3, 1/2, 4/3, 5/3, 2) of that frequency (dashed lines).

The first pattern (0.62 ≤ Ĥ ≤ 0.8) is meandering, which is characterized by two frequencies
with a ratio ω

(x)
1 /ω

(y)
1 = 2. At the lowest height Ĥ = 0.62 where meandering first appears, the

meandering frequency ω
(x)
1 is very close to the steady coiling frequency !̂c for the same height,

as expected on theoretical grounds.13, 17 The next pattern (0.8 ≤ Ĥ ≤ 0.9) is the alternating loops,
which has a rich spectrum involving five multiples of !̂c/3. Translated coiling appears next (0.9
≤ Ĥ ≤ 1.35) and is characterized by a single frequency ω

(x)
1 = ω

(y)
1 very close to the steady coiling

frequency. Finally, double coiling (1.35 ≤ Ĥ ≤ 1.5) has two frequencies ω
(x)
1 = ω

(y)
1 ≈ !̂c and

ω
(x)
2 = ω

(y)
2 ≈ !̂c/2.

Figure 8 shows that the stitch patterns are combinations of motions in two orthogonal directions
with frequencies closely related to the steady coiling frequency !̂c. Accordingly, we now change
our perspective and classify the patterns based on their frequency content rather than on the shape
they lay down on the belt. This frequency analysis is used to set up an efficient tool for identifying
the patterns and assembling the numerical phase diagram automatically. In addition it leads to a
simple kinematic model that provides a unified description of the different patterns.

A. Spectral signature of a pattern

We illustrate our method using the example of meandering, which in most cases is the first
pattern to bifurcate from the catenary state as the belt speed decreases. The gray (red) and light gray
(blue) peaks in Fig. 9(b) show typical spectra of the motion of the contact point in the longitudinal
x and transverse y-directions, respectively. The amplitude of the transverse motion is much greater
than that of the longitudinal motion, and the frequency of the latter is exactly twice that of the
former, ω

(x)
1 = 2ω

(y)
1 . This suggests that a meander pattern can be synthesized by retaining only the

two main frequencies, viz.,

ξ (t) = α1 cos(2ω
(y)
1 t) + i β1 cos(ω(y)

1 t + π/4), (25)

where α1 and β1 are the amplitudes of the longitudinal and transverse motions, respectively. Here the
phase difference π /4 is required to reproduce the symmetry of the pattern. A similar two-frequency
model was used by Morris et al.12 to analyze weakly nonlinear meanders. Figure 9(c1) shows the
contact line trajectory in the frame of the nozzle implied by Eq. (25) with α1/β1 = 0.2, and Fig. 9(c2)
shows the corresponding meander pattern obtained by advecting the motion (25) in the x-direction
with V = 1.4(νg)1/3 and ω

(y)
1 = 1. Based on Fig. 9, we define as a “meander” any pattern whose

longitudinal motion, compared to the transverse motion, has twice the frequency, a much smaller
amplitude, and a phase shift of π /4.

Generalizing the above example, we will now show that all the sewing machine patterns can be
represented by a superposition of a few harmonic motions of the form

x(t) + iy(t) =
Nx∑

j=1

α j cos(ωx
j t + φx

j ) + i
Ny∑

j=1

β j cos(ωy
j t + φ

y
j ), (26)

where αj and β j are the amplitudes of the components of the motion with frequencies ω
(x)
j and ω

(y)
j ,

and φx
j and φ

y
j are the phases relative to the highest frequency mode. We now show that each of the

sewing machine patterns can be characterized in terms of the parameters that appear in Eq. (26),
retaining no more than two frequencies in each direction (Nx ≤ 2, Ny ≤ 2).

B. Identification of the patterns

The identity of each pattern is determined not by the absolute values of the parameters in
Eq. (26), but rather by the dimensionless groups that can be formed from them, namely, frequency
ratios, amplitude ratios, and the relative phases φj. In the following we identify the characteristic
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FIG. 9. Three-stage analysis of the patterns, illustrated for the case of meandering. (a) From the trace of the thread on the
belt (a1), we extract the trajectory of the contact point in the frame of the nozzle (a2). (b1) Fourier spectra of the longitudinal
(thin line, red) and transverse (thick line, blue) components are obtained using the fast Fourier transform and compared to the
frequencies !̂c of steady coiling for the same height: the large (blue) and small (red) dots in (b2) are the main frequencies in
the simulation, while the intersection of the horizontal line with the thick black curve is the frequency of steady coiling. In
the example shown here the belt speed is close to the critical value for the onset of meandering and the dominant transverse
frequency ω

(y)
1 is close to the steady coiling frequency !̂c for the same height. (c) The two main frequencies extracted by

FFT are injected into the kinematic model (26) to generate a synthetic motion for the contact point in the nozzle frame (c1),
and a synthetic stitch pattern (c2). In the example shown, the motion involves only one transverse frequency ω

(y)
1 and one

longitudinal frequency ω
(x)
1 = 2ω

(y)
1 .
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TABLE I. Parameters of the kinematic model in Eq. (26) used to construct synthetic patterns. Because the patterns are
defined by the relative values of the frequencies ωx

1 and ω
y
1 , the frequency 1 is assigned by convention to the peak of largest

amplitude. The other frequencies are given by ratios of small integer numbers. A star indicates a frequency that is locked to
the steady coiling frequency !̂c . Likewise, the amplitudes α1, α2, β1, and β2 are given relative to each other and correspond
to typical values. V indicates the speed of the belt used to unfold the synthetic patterns. A dash indicates that the parameter is
not relevant for the pattern in question. The disordered pattern is not reconstructed using the kinematical model as it involves
more harmonics.

Patterns ωx
1 ωx

2 ω
y
1 ω

y
2 φx

1 φx
2 φ

y
1 φ

y
2 α1 α2 β1 β2 V

Translated coiling 1* – 1* – 0 – 0 – 1. – 1. – .5
Meanders 2 – 1* – 0 – π /4 – .2 – 1. – 1.4
Alternating loops 1 – 1/2 3/2* π /2 – 0 0 1 – .5 .5 0.33
Double coiling 1/2 1* 1/2 1* π /2 π /2 0 0 .5 1.5 .1 1.5 .5
Double meanders 1/2 – – 1* π /4 – 0 – 1. 0 0 1.5 .75
Stretched coiling 1 2* 1 2* π /2 π /2 0 0 1. .1 .5 .1 .6
W-pattern 1 2* 1 2* π /2 π /2 0 0 1. .2 .2 .5 .7
Catenary – – 0 – – – 0 – – – 0 – 1
Disorder – – – – – – – – – – – – –

values of these groups for each of the patterns in turn. For ease of reference, the results are summarized
in Table I.

1. Translated coiling

This pattern occurs for 0.5 ! Ĥ ! 1.35 and low belt speeds (Fig. 7). Figure 10(A) shows a
simulation of this pattern (upper left) and the corresponding Fourier spectra of the longitudinal
and transverse motions of the contact point (upper right), and the steady coiling frequency !̂c.
The longitudinal and transverse motions have similar amplitudes and are characterized by a single
dominant frequency ω

(x)
1 = ω

(y)
1 that is very close to the steady coiling frequency !̂c(Ĥ ) for the

same fall height Ĥ . The peak frequency deviates from its original value as the belt speed increases.
The amplitudes in both directions remain equal and an almost circular shape is created. The panels
at lower left show the reconstructed motion in the frame of the nozzle (right) and on the belt (left),
calculated using Eq. (26) with Nx = Ny = 1, α1 = β1 = 1, and ω

(x)
1 = ω

(y)
1 = 1. Note that the

experimental pattern shifts upwards or downwards as the belt speed is increased; this shift does not
affect the spectral context, but could be taken into account by including a purely imaginary constant
in Eq. (26).

2. Meanders

On Fig. 7 this pattern is seen for 0.6 ! Ĥ ! 1.3 and a range of intermediate belt speeds.
The typical Fourier spectra of the meandering pattern were previously shown in Fig. 9. The pat-
tern is a superposition of one longitudinal and one transverse harmonic motion, with frequency
ratio ω

(x)
1 /ω

(y)
1 = 2, amplitude ratio α1/β1 * 1, and a relative phase φ

y
1 = π/4 (with the convention

φx
1 = 0). Near the catenary/meander boundary ω

(y)
1 + !̂c; farther from the boundary, the meander-

ing frequency departs significantly from !̂c. The regular symmetrical meanders correspond to a
phase difference of π /4 between the two directions (Fig. 9) However, the pattern may deform into a
bean-like shape in certain cases. This situation was reproduced kinematically by reducing the phase
difference to a value close to π /6.

3. Alternating loops

This pattern was called “figure-of-eight” by CWL (Ref. 9) and Morris et al.,12 but we prefer to
call it “alternating loops.” The domain of this pattern is an elongated “bubble” sandwiched between
translated coiling and meandering at relatively low fall heights Ĥ ≤ 1 (Fig. 7). This pattern displays
a remarkably rich frequency spectrum with five principal peaks (Fig. 10(B)-(c)). In contrast to
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FIG. 10. Kinematic analysis of individual sewing machine patterns. (A) coiling; (B) alternating loops; (C) double coil-
ing. For each pattern, the upper left, right, and lower left panels correspond to parts (a), (b), and (c), respectively, of
Fig. 9. The kinematical reconstruction is merely a proof of concept, without any attempt to match the wavelength of the
simulations.

meandering, the motion with the largest amplitude is longitudinal, with a frequency ω
(x)
1 that locks

onto the frequency 2!̂c/3 (see also Fig. 8). The next largest peaks correspond to transverse motion
with frequencies ω

(y)
2 = !̂c and ω

(y)
1 = !̂c/3, both amplitudes being very close. The harmonics

4!̂c/3 in the longitudinal direction, and 5!̂c/3 in the transverse direction are also visible.
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The frequencies of all five peaks can be written compactly as

ω(y)
p = (2p − 1)

!̂c

3
(p = 1, 2, 3),

ω(x)
p = 2p

!̂c

3
(p = 1, 2).

Even though the spectra in Fig. 10(B)-(b) shows five peaks, the kinematic model in Eq. (26) generates
an almost identical pattern if one retains only the three main contributions ω

(x)
1 , ω

(y)
1 , and ω

(y)
2 with

an amplitude ratio β1/α1 ≈ .5, β1/α2 ≈ .5, and phases φx
1 = π/2 and φ

y
1 = φ

y
2 = 0 (Fig. 10 B-(c)).

We used these characteristics of the three main frequencies as a criterion for automatic detection of
alternating loops.

4. Double coiling and double meanders

The Fourier spectra for these patterns are shown in Figs. 10(C) and 11(A), respectively. Both
the longitudinal and transverse components have peaks at two frequencies ω

(x)
1 = ω

(y)
1 = !̂c/2 and

ω
(x)
2 = ω

(y)
2 = !̂c. The origin of these frequencies is clear from the uppermost part of Fig. 8, which

shows them as functions of fall height for double coiling. The range of fall heights in question is
within the inertio-gravitational regime of steady coiling, for which the curve !̂c(Ĥ ) is multivalued
in specific height ranges (Fig. 2). The portion 1.2 ≤ Ĥ ≤ 1.5 of that curve has two stable branches
corresponding to different “pendulum” modes of the tail: a lower branch (labelled LB in Fig. 8) with
!̂c ≈ 1.15, and an upper branch (UB) with !̂c ≈ 2.1-2.2. Figure 8 shows that the higher double
coiling frequency ω

(x)
2 = ω

(y)
2 stays locked to the upper branch of !̂c(Ĥ ), which is the only stable

one when Ĥ ≥ 1.37. The lower frequency, by contrast, follows a “phantom” branch with frequency
!̂c/2 that is very nearly a direct continuation of the lower branch of !̂c(Ĥ ) to greater fall heights.
This behavior is possible because the ratio of the frequencies of the upper and lower branches
happens to be quite close to 2.0.

Although double coiling and double meanders have the same frequency content, they are
distinguished by the relative amplitudes and phases of the transverse and longitudinal motions. For
double coiling, the amplitudes of the two motions are the same at both frequencies (α1 = β1, α2

= β2), and the relative phases are φx
1 = φx

2 = π/2 and φ
y
1 = φ

y
2 = 0. For double meandering, by

contrast, the transverse motion is dominated by the frequency ω
(y)
2 = !̂c, while the longitudinal

motion is dominated by ω
(x)
1 = !̂c/2. The relative phases are φx

1 = π/4, while φ
y
1 = 0.

5. Stretched coiling and the W-pattern

These patterns occur predominantly in the range of heights corresponding to inertio-gravitational
coiling (right-hand side of Fig. 7). Their typical Fourier spectra are shown in Figs. 11(B) and 11(C),
respectively. Like double coiling and double meanders, their characteristic signature is the (!̂c/2, !̂c)
frequency couple. But whereas double coiling and double meanders are dominated by transverse
motion at the frequency !̂c, stretched coiling and the W-pattern are dominated by longitudinal
motion at the frequency !̂c/2. The difference between stretched coiling and the W-pattern is
only due to the difference δA between the amplitudes of the transverse and longitudinal motions
(Figs. 11(B)-(b) and 11(C)-(b)). The motion in the x-direction is dominant in both cases but δA is
much smaller for the W-pattern than for stretched coiling. This difference is responsible for the
different invaginations of the two patterns (Figs. 11(B)-(a) and 11(C)-(a)). The phase difference
between the longitudinal and transverse motions is π /2 in both cases.

6. Disorder

Disordered patterns appear in several parts of the phase diagram (gray in Fig. 7), primarily at
heights within the inertio-gravitational coiling regime. The typical Fourier spectra of these patterns
is very rich, with more than four peaks in both the longitudinal and transverse directions with
comparable and strongly time-dependent amplitudes (Fig. 12-(i) and corresponding FFT). Such
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FIG. 11. Same as Fig. 10, but for (A) double meanders, (B) stretched coiling, and (C) the “W-pattern.” δA denotes the
difference of amplitude.

patterns are not transient between two steady patterns, as the aperiodic behavior persists indefinitely
in time.

7. Catenary

The catenary is obtained when the point of contact is at rest in the nozzle frame, which happens
in the upper region of the phase diagram. The FFT spectrum is then empty.
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FIG. 12. Unsteady patterns: (i) disordered pattern and (ii) slanted loops. Both patterns are shown at two different times of
the simulations and compared to experimental photographs from Ref. 9. The lower part of the figure illustrates the FFT of
the disordered patterns.

In addition to the patterns discussed above, slanted loops9 were also reported by Morris et al.12

in a very narrow region of their phase diagram. Slanted loops are a pattern wherein a buckle is
periodically laid down on the belt, and subsequently closes up into a loop when the thread touches
itself and coalesces. Our numerical simulations do not account for self-contact of the thread, nor
for surface tension-mediated coalescence. This probably explains why we observed slanted loops
transiently only, as shown in Fig. 12-(ii). A similar argument may also explain why the W-pattern is
observed for significantly larger fall heights in the simulations than in the experiments: considering
self-contact of the thread would certainly favor its existence over the stretched coiling pattern in the
simulation.

We observe that CWL (Ref. 9) reported yet another pattern, “side kicks,” which consist of
small heaps of fluid regularly spaced along an otherwise perfectly straight trace. We suggest that
this pattern is a limiting case of stretched coiling in which the amplitude of the transverse motion
becomes very small relative to that of the longitudinal motion. Side kicks have not been reported in
the experimental phase diagram of Morris et al.,12 the one we attempted to reproduce numerically;
consistently, this pattern appears only transiently in our simulations.

V. DISCUSSION

The simulations of the fluid-mechanical sewing machine presented here were performed using
a new numerical algorithm DVT. The essential idea of DVT is to start from a complete geometrical
and kinematical description of the thread in the discrete setting and push the discrete approach as
far as possible; in particular a discrete representation of viscous stress is built based on a variational
view (Rayleigh potentials). This approach leads to a code that is robust even for quite large mesh
size. This numerical method can simulate complex unsteady behavior of a viscous thread and offers
good efficiency. As an example, the traversal (78 500 time steps) of the line KL in Fig. 7 required
987 s on a 2.87 GHz Intel Core processor. The accuracy of the method is demonstrated by its
ability to reproduce the curve of steady coiling frequency vs. height, as predicted by an independent
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continuation method (Fig. 2), and by the close agreement between the calculated and experimentally
determined phase diagrams for the sewing machine patterns (Fig. 6).

At each time step in an unsteady DVT simulation, any desired kinematical or dynamical vari-
able can be calculated as a function of arc-length, i.e., at every vertex along the thread’s centerline.
Examination of these functions provides insights into the thread’s dynamics. We saw an example
in Fig. 4(c), which showed the local rates of viscous dissipation of energy due to deformation by
stretching (or compression), bending, and twisting. The figure reveals that the thread is divided
into two distinct parts: a “tail” in which the dissipation is dominated by stretching, and a “coil”
in which it is dominated by bending and twisting, but with a significant contribution from com-
pression. The differential equations describing bending are of higher order than those describing
stretching, so Fig. 4(c) implies that the coil is an “inner” solution or boundary layer whose presence
is required by the need to satisfy all the relevant boundary conditions at the thread’s contact point
with the belt. While the boundary-layer character of the coil region has long been recognized for
steady coiling,15, 16 our simulations open up the possibility of studying the associated non-steady
dynamics.

Another benefit of the simulations is to allow exploration of regions of parameters space that
are inaccessible in the real world but provide new insights into the dynamics of the thread. In
Fig. 4(c), the rates of viscous dissipation for the bending and twisting modes were added together.
Because a real thread is an incompressible fluid, the ratio of the bending to the twisting modulus
is always 3/2 (both moduli being proportional to the fourth power of the thread’s radius). In the
simulation, it is possible to investigate the relative importance of bending and twisting in the thread’s
dynamics by setting the twisting modulus to zero, taking 2µI = 0 in Eq. (9), while keeping the
bending modulus unchanged. We performed additional DVT simulations for a perfectly twist-
compliant sewing machine. The resulting phase diagram shows only minor differences with Fig.
7, showing that twist plays a negligible role, relative to bending, in the selection of the stitch
patterns.

The experiments and simulations of the viscous sewing machine reveal in the first instance a great
diversity of patterns, whose relations to one another are not evident. Our goal was to characterize
the patterns in a more unified way. This is possible by going beyond a visual identification and
computing for each pattern the Fourier spectra of the longitudinal and transverse components of the
motion of the thread’s contact point with the belt. We showed that each pattern has a distinct spectral
signature consisting of isolated peaks at a small number of well-defined frequencies. The patterns
differ from each other in the values of those frequencies, in their relative amplitudes, and in their
distributions among the longitudinal and transverse modes.

A closer look shows that the frequencies in the spectra are closely related to the frequency !̂c

of steady coiling of a thread falling on a motionless (V = 0) surface from the same height. The
precise nature of the relationship depends on the pattern considered. For meanders, the frequency
of the transverse motion ≈!̂c at onset, but then deviates significantly from !̂c as the belt speed is
decreased beyond the critical value (Fig. 8). In all the other patterns, however, the frequencies are
locked to !̂c in some way. In stretched coiling, the dominant frequency of both the longitudinal
and transverse motions is !̂c. Still more complicated are double meanders, double coiling, stretched
coiling, and the W-pattern, for which the dominant frequencies are !̂c and !̂c/2. The presence of
these frequencies reflects the nonlinear interaction of the two lowest modes of inertio-gravitational
coiling, whose unforced frequencies differ by approximately a factor of 2 (Fig. 8). Among periodic
patterns, the richest spectral content is achieved by the alternating loops pattern, for which the five
dominant frequencies are multiples of !̂c/3 (Fig. 8).

We proposed a simple kinematic model whereby each pattern is reconstructed by a superposi-
tion of a few frequencies, with appropriate amplitudes and relative phases in the longitudinal and
transverse directions. This makes it possible to set up automated recognition of the patterns and
leads a classification of the patterns within a unified descriptive framework. The next step is to
elucidate the physical mechanisms responsible for these simple spectral signatures. In future work
we plan to investigate the similarities between the sewing machine and low-dimensional oscillator
models with nonlinear forcing, using the direct DVT simulations as a starting point to look into these
analogies.
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