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Figure 1: Experiment and simulation: A simple (trefoil) knot tied on an elastic rope can be turned into a number of fascinating shapes
when twisted. Starting with a twist-free knot (left), we observe both continuous and discontinuous changes in the shape, for both directions
of twist. Using our model of Discrete Elastic Rods, we are able to reproduce experiments with high accuracy.

Abstract

We present a discrete treatment of adapted framed curves, paral-
lel transport, and holonomy, thus establishing the language for a
discrete geometric model of thin flexible rods with arbitrary cross
section and undeformed configuration. Our approach differs from
existing simulation techniques in the graphics and mechanics lit-
erature both in the kinematic description—we represent the mate-
rial frame by its angular deviation from the natural Bishop frame—
as well as in the dynamical treatment—we treat the centerline as
dynamic and the material frame as quasistatic. Additionally, we
describe a manifold projection method for coupling rods to rigid-
bodies and simultaneously enforcing rod inextensibility. The use of
quasistatics and constraints provides an efficient treatment for stiff
twisting and stretching modes; at the same time, we retain the dy-
namic bending of the centerline and accurately reproduce the cou-
pling between bending and twisting modes. We validate the discrete
rod model via quantitative buckling, stability, and coupled-mode
experiments, and via qualitative knot-tying comparisons.
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1 Introduction

Recent activity in the field of discrete differential geometry (DDG)
has fueled the development of simple, robust, and efficient tools for
geometry processing and physical simulation. The DDG approach
to simulation begins with the laying out of a physical model that is
discrete from the ground up; the primary directive in designing this
model is a focus on the preservation of key geometric structures that
characterize the actual (smooth) physical system [Grinspun 2006].

Notably lacking is the application of DDG to physical modeling
of elastic rods—curve-like elastic bodies that have one dimension
(“length”) much larger than the others (“cross-section”). Rods have
many interesting potential applications in animating knots, sutures,
plants, and even kinematic skeletons. They are ideal for model-
ing deformations characterized by stretching, bending, and twist-
ing. Stretching and bending are captured by the deformation of a
curve called the centerline, while twisting is captured by the rota-
tion of a material frame associated to each point on the centerline.

1.1 Goals and contributions

Our goal is to develop a principled model that is (a) simple to im-
plement and efficient to execute and (b) easy to validate and test
for convergence, in the sense that solutions to static problems and
trajectories of dynamic problems in the discrete setup approach the
solutions of the corresponding smooth problem. In pursuing this
goal, this paper advances our understanding of discrete differential
geometry, physical modeling, and physical simulation.

Elegant model of elastic rods We build on a representation
of elastic rods introduced for purposes of analysis by Langer and
Singer [1996], arriving at a reduced coordinate formulation with a
minimal number of degrees of freedom for extensible rods that rep-
resents the centerline of the rod explicitly and represents the mate-
rial frame using only a scalar variable (§4.2). Like other reduced
coordinate models, this avoids the need for stiff constraints that
couple the material frame to the centerline, yet unlike other (e.g.,
curvature-based) reduced coordinate models, the explicit centerline
representation facilitates collision handling and rendering.

Efficient quasistatic treatment of material frame We addition-
ally emphasize that the speed of sound in elastic rods is much faster
for twisting waves than for bending waves. While this has long
been established, to the best of our knowledge it has not been used
to simulate general elastic rods. Since in most applications the
slower waves are of interest, we treat the material frame quasistat-
ically (§5). When we combine this assumption with our reduced
coordinate representation, the resulting equations of motion (§7)
become very straightforward to implement and efficient to execute.

Geometry of discrete framed curves and their connections

Because our derivation is based on the concepts of DDG, our dis-
crete model retains very distinctly the geometric structure of the
smooth setting—in particular, that of parallel transport and the
forces induced by the variation of holonomy (§6). We introduce



Figure 2: Helical perversion in experiment and simulation: starting from the natural shape of a Slinky R© (top) we first remove writhe by
pinching the flat cross-section between two fingers and traveling from one end to the other, arriving at a fully stretched, almost flat ribbon
(middle). By bringing the ends together, a persistent perversion forms (bottom), whose shape is surprisingly different from the natural shape.

simple algebraic tools and mnemonic diagrams that make it possi-
ble to carry out in a methodical manner derivations involving the
discrete connection induced by parallel transport. These tools are
the central building blocks for deriving forces associated to dis-
placements of the rod’s centerline and twist of the material frame.

Inextensibility and encapsulated coupling with rigid-bodies

When simulating inextensible rods, it becomes profitable to enforce
the rod’s inextensibility via constraints rather than stiff penalty
forces. Also, in general simulation applications, and in computer
animation and gaming, it is often useful to enforce boundary con-
ditions by coupling the rod to another physical system—most natu-
rally, to a rigid-body, which carries exactly the degrees of freedom
as any point on an elastic rod (i.e., position and orientation). Our
approach in §8 handles both types of constraints, emphasizing phys-
ical correctness as well as an important software reuse principle:
the method of coupling allows our rod simulation to interact with
any existing rigid-body simulation without internal modification of
either the rod or rigid-body codes.

Validation We show how to model and simulate inextensi-
ble elastic rods with arbitrary curved undeformed centerline and
anisotropic bending response (§7), and we show the simplifica-
tions that occur for naturally straight rods with isotropic bending
response. We validate our model against known analytic solutions
and present empirical evidence supporting the good convergence
behavior of our discrete model to its smooth counterpart (§9).

2 Related work

Mathematical analysis, modeling, and simulation of elastic rods
is an active field in mechanics [van der Heijden et al. 2003;
Goyal et al. 2007], numerical analysis [Falk and Xu 1995], and
geometry [Bobenko and Suris 1999; Lin and Schwetlick 2004]
with applications spanning medicine [Lenoir et al. 2006],
biology [Yang et al. 1993; Klapper 1996], the study of
knots [Phillips et al. 2002; Brown et al. 2004], and computer
graphics [Chang et al. 2007]. It is impossible to survey the many
works in this area in a brief space, so we discuss only the most
closely-related works. For a broader starting point, refer to the
expositions of Rubin [2000] and Maddocks [1984; 1994]. For the
state of the art in strand and hair simulation, refer to the survey by
Ward et al. [2007] and the course notes of Hadap et al. [2007].

In mechanical engineering, elastic rods are typically treated with a
finite difference [Klapper 1996] or finite element [Yang et al. 1993;
Goyal et al. 2007] discretization of the smooth equations. Gold-
stein and Langer [1995] observed that using the Bishop frame sim-

plifies both the analytical formulation and the numerical implemen-
tation of the dynamics of symmetric rods.

In graphics, Terzopoulos et al. [1987] introduced tensorial treat-
ments of elastica, and Pai [2002] applied a discretization of the
Cosserat rod model to simulate a strand. Bertails et al. [2006]
used a piecewise helical discretization to produce compelling an-
imations of curly hair using few elements per strand. Hadap [2006]
considered a serial multi-body chain and used differential algebraic
equations to treat the attendant numerical stiffness. These recent
works used an implicit centerline representation based on reduced
(curvature) coordinates.

By contrast, Choe et al. [2005] represented the centerline explicitly
by a sequence of edges connected by linear and torsional springs.
Grégoire and Schömer [2007] proposed an explicit centerline dis-
cretization coupled to a quaternionic material frame representa-
tion. Spillmann and Teschner [2007; 2008] built on this idea in
their development of algorithms for dynamic contact. Theetten et
al. [2006] presented a geometric spline-based approach that can
model large-displacement plastic deformations. These authors ar-
gue that an explicit (displacement) representation of the centerline
facilitates the simulation of complex contact scenarios and looping
phenomena. We share this view.

3 Overview

In many applications, the rod tends to bend or twist rather than to
stretch; therefore, the case of inextensible rods is prevalent and im-

Algorithm 1 Discrete elastic rod simulation

Require: u0 // Bishop frame vector in frame {t0,u0,v0} at edge 0
Require: x0 . . .xn+1 // position of centerline in rest state

Require: (x0, ẋ0) . . .(xn+1, ẋn+1) // initial position/velocity of centerline

Require: boundary conditions // free, clamped or body-coupled ends

1: precompute ωωω
j
i using (2)

2: set quasistatic material frame (§5.1)
3: while simulating do
4: apply torque to rigid-body (§8.2)
5: integrate rigid-body (external library) // [Smith 2008]

6: compute forces on centerline (§7.1)
7: integrate centerline (§7.2) // [Hairer et al. 2006]

8: enforce inextensibility and rigid-body coupling (§8)
9: collision detection and response // [Spillmann and Teschner 2008]

10: update Bishop frame (§4.2.2)
11: update quasistatic material frame (§5.1)
12: end while



portant. We visualize an inextensible rod as an infinitesimally thin,
fixed centerline that can bend but not stretch and that is surrounded
by a finite, but thin, elastic material. We consider the general case
of naturally curved rods with anisotropic bending response and note
the simplifications that occur in the special case of naturally straight
rods with isotropic bending response. We also present a simple and
efficient method for attaching a rod to a rigid-body (§8). The dif-
ferent components of our method are summarized in Algorithm 1.
Barred quantities are precomputed and subsequently held fixed.

4 Kirchhoff rods

4.1 Smooth setting

Framed-curve representation We describe the configuration of
a rod by an adapted framed curve Γ = {γγγ ; t,m1,m2} (see Fig. 3).
Here γγγ(s) is an arc length parameterized curve in R

3 describing the
rod’s centerline; the assignment of an orthonormal material frame
{t(s),m1(s),m2(s)} to each point on the centerline contains the
requisite information for measuring twist. The material frame sat-
isfies t(s) = γγγ ′(s), i.e., it is adapted to the centerline such that the
first material axis is tangent to the curve. We will refer to κκκ = t′ as
the centerline’s curvature (normal) vector.

Elastic energy The Kirchhoff theory of elastic rods assigns an
elastic energy, E(Γ), to any adapted framed curve Γ. This energy is
assembled from three scalar functions that measure strain—given
by the change of the orthonormal frame {t(s),m1(s),m2(s)} ex-
pressed in its own coordinates:

ω1 = t′ ·m1, ω2 = t′ ·m2, and m = m′1 ·m2 .

Notice that since t′ = κκκ , the first two of the above terms, ω1 and
ω2, represent the rod’s curvature vector expressed in material coor-
dinates and measure the bending of material frame. The last term,
m, refers to the twist of the material frame around the tangent. Ac-
cordingly, total elastic energy contains bending and twisting contri-
butions:

E(Γ) = Ebend(Γ)+Etwist(Γ) .

The classical Kirchhoff equations for rods are obtained
from this type of energy using Lagrangian mechanics (see,
e.g., [Audoly and Pomeau 2008]). The goal of the present paper is
to derive a discrete form of these equations.

Our assumption that s is an arc length parameterization implies that
the rod is inextensible; therefore, we do not include a stretching en-
ergy. Instead, we enforce inextensibility via an auxiliary constraint
(§8). It is straightforward to drop this assumption by also including
a stretching term.

4.1.1 Bending energy

When the rod’s undeformed configuration is straight (as opposed
to curved) and the bending response is isotropic (as opposed to giv-
ing preference to some bending directions over others), the bending
energy takes the simple form

Ebend(Γ) =
1

2

∫

αωωω2ds =
1

2

∫

ακκκ2ds ,

where the 2-vector ωωω = (ω1,ω2)
T represents the centerline curva-

ture vector expressed in the material frame coordinates and α is the
rod’s bending modulus.

We generalize this to anisotropic bending response by replacing
the (isotropic) dot product with a general quadratic form B (a sym-
metric positive definite 2×2 matrix), so that ωωωTBωωω is the bending

tt
γ(s)

Figure 3: Adapted framed curve (Left) The configuration of
an elastic rod is represented by a curve γγγ(s) and a material
frame {t(s),m1(s),m2(s)}. (Right) The material frame is encoded
by an angle of rotation θ relative to the natural Bishop frame
{t(s),u(s),v(s)}.

energy density. We do not assume that B is diagonal—in fact, we
determine B by requiring that the undeformed material frame is a
Bishop frame (see below). We also generalize to naturally curved
rods by subtracting away the undeformed centerline curvature ωωω ,
i.e., using (ωωω−ωωω) in place of ωωω above.

Putting all this together, we have

Ebend(Γ) =
1

2

∫

(ωωω−ωωω)TB(ωωω−ωωω)ds ,

where barred quantities refer to the undeformed configuration. The
particular case of an isotropic, naturally straight rod is recovered by
taking B = α Id2×2 and ωωω = 000.

4.1.2 Twisting energy

Letting m = m′1 ·m2 denote the twist of the material frame about
the centerline, the twisting energy is given by

Etwist(Γ) =
1

2

∫

βm2ds .

The formula m = m′1 ·m2 gives an expression for the twist in terms
of material vectors immersed in ambient space. We now seek an
equivalent expression that exposes a reduced set of coordinates.

Parallel transport and the Bishop (natural) frame Given a
fixed centerline, consider the task of assigning to it the geometri-
cally most natural (and physically the most relaxed) frame. The
Bishop frame {t(s),u(s),v(s)} for a given centerline is an adapted
frame with zero twist uniformly, i.e., u′ · v = −v′ ·u = 0. The as-
signment of an adapted frame to one point on the curve uniquely
fixes the Bishop frame throughout the curve. Our convention is to
assign the Bishop frame at the first endpoint (s = 0) of the curve.

Consider traversing the centerline from one end to the other at unit
speed. The evolution of the Bishop frame (and any other orthonor-
mal frame) can be described in terms of its Darboux vector, Ω(s):

t′ = Ω× t , u′ = Ω×u , and v′ = Ω×v .

Since by the definition of the Bishop frame, u′ · v = 0, it fol-
lows from the second equation that Ω has no tangential component
(along t). This, together with the first equation implies that Ω = κb,
where κb = t×κκκ is the curvature binormal along the centerline.

The Darboux vector of the Bishop frame serves to define paral-
lel transport, a concept that plays a central role in the remainder
of this paper. We parallel transport a vector x from one point on
the centerline to another by integrating the equation x′ = κb× x.
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Figure 4: Notation Angles and vectors used in our discrete model.

Thus, infinitesimally, parallel transport corresponds to a rotation
about the binormal—a concept that we will use again in our dis-
crete model. Parallel transport keeps the tangential component of
x tangential, and evolves the cross-sectional component of x via a
tangential velocity, in particular without rotating the cross-section
about the centerline. Observe that the three Bishop axes evolve un-
der parallel transport.

Curve-angle representation The (twist-free) Bishop
frame allows for a simple parameterization of the material
frame [Langer and Singer 1996]. Let θ(s) be the scalar function
that measures the rotation about the tangent of the material frame
relative to the Bishop frame (see Fig. 3):

m1 = cosθ ·u+ sinθ ·v , m2 =−sinθ ·u+ cosθ ·v .

The key observation is that twist, m, can be expressed in terms of θ
by m(s) = θ ′(s). This relation is easily derived using the facts that
m = (m1)

′ ·m2 and u
′ ·v = 0. Hence, we write the twist energy as

Etwist(Γ) =
1

2

∫

β (θ ′)2ds .

Observe that we have expressed the elastic energy of Kirchhoff rods
by two dominant players: the position of the centerline, γγγ , and the
angle of rotation, θ , between the Bishop and the material frame.
This reduced coordinate representation is the cornerstone of our
discrete theory.

4.2 Discrete Kirchhoff rods

When painting the discrete picture, our guiding principle is to seek
a viewpoint that builds on the same geometric principles as the cor-
responding smooth theory.

Primal vs. dual We distinguish between primal quantities, as-
sociated with vertices and decorated with lower indices, and dual
quantities, associated with edges and decorated with upper indices.
This diagram summarizes our indexing and notation conventions:

e0 e1 e2 en
x
0

x
1

x
2

x
3

x
n

x
n+1

Discrete framed curves A discrete framed curve, Γ, consists of
a centerline comprised of (n+ 2) vertices x0, . . . ,xn+1 and (n+ 1)
straight edges e0, . . . ,en such that ei = xi+1− xi, together with an
assignment of material frames Mi = {ti,mi

1,m
i
2} per edge (see

Fig. 4). We consider adapted frames, where ti = ei/|ei| is the unit
tangent vector per edge. Notice that tangent vectors of polygonal
curves are uniquely defined at edges, whereas their definition at

vertices would be ambiguous. Since tangent vectors belong to the
triad that makes up frames on curves, we naturally assign frames to
edges, rather than to vertices.

Pointwise vs. integrated quantities In the smooth setting, we
consider certain quantities (i.e., curvature and twist) at each point
on the rod, and we define the energy by integrating over the length
of the rod. By contrast, in the discrete setting, certain quantities
often emerge naturally in an integrated rather than a pointwise way.
For example, relating discrete curvature to the turning angle be-
tween incident edges corresponds to an integration over the curve’s
Gauss image [Grinspun 2006].

We refer to an integrated quantity as a measure that associates a
number to a domain D of the curve, corresponding to an integral
of a function over that domain. To convert an integrated quantity
back to a pointwise one, we simply divide by the length, |D |, of
the domain of integration. In the discrete case, we define Di as the
Voronoi region associated to each vertex, having length |Di|= li/2,
where li = |ei−1|+ |ei|.

4.2.1 Discrete bending energy

Recall that the key player for formulating elastic bending energy in
the smooth case was the curvature of the centerline.

Discrete curvature Since each edge is straight, it follows that
discrete curvature is naturally associated with vertices. Letting φi
denote the turning angle between two consecutive edges (see Fig. 4)
we define (integrated) curvature by

κi = 2tan
φi
2

.

We will see in §6 that this definition of discrete curvature emerges
naturally from an analysis of the geometry of discrete rods, and to
be consistent throughout, we will use this definition in the bending
energy. Note that κi→∞ as incident edges bend toward each other,
so this measure of curvature will penalize sharp kinks in the rod.

Discrete curvature binormal We define the curvature binormal
at a vertex (an integrated quantity) by

(κb)i =
2ei−1× ei

|ei−1||ei|+ ei−1 · ei
. (1)

Observe that the vector (κb)i is orthogonal to the osculating
plane passing through two consecutive edges and has magnitude
2tan(φi/2). In particular, this quantity is well-defined in the case of
collinear edges, even though the binormal itself is not.

Discrete bending energy We now have all the pieces to assem-
ble the bending energy of a discrete naturally straight, isotropic rod:

Ebend(Γ) =
1

2

n

∑
i=1

α

(

κbi

li/2

)2
li

2
=

n

∑
i=1

α(κbi)
2

li
.

The division by li/2 is due to converting the integrated quantity κbi
into a pointwise one (see above), whereas the multiplication by li/2
takes care of the measure of the domain of integration, Di.

Recall that for an anisotropic bending response, we require the ma-
terial curvatures given by inner products between curvature vectors
and material frame vectors. Using the curvature binormal (κb)i as
defined by (1), we express the material curvatures as

ωωω
j
i =

(

(κb)i ·m j
2
,−(κb)i ·m j

1

)T
for j ∈ {i−1, i} . (2)



Here, following our primal-dual notation, the double indices—
upper and lower—correspond to an edge-vertex pair. Barred quan-
tities we denote evaluation on the undeformed configuration.

With these definitions, the bending energy of a discrete rod is

Ebend(Γ) =
n

∑
i=1

1

2li

i

∑
j=i−1

(

ωωω
j
i −ωωω

j
i

)T
B
j
(

ωωω
j
i −ωωω

j
i

)

. (3)

This formulation allows for a general (anisotropic) bending re-
sponse and a general (curved) undeformed configuration. As in the
smooth case, the simple expression of the special case is recovered

by taking B
j
= α Id2×2 and ωωω

j
i = 000.

4.2.2 Discrete twisting energy

To formulate the discrete twisting energy, we follow the same pro-
gression as in the smooth setting, first laying out the notions of
parallel transport and the Bishop frame, and then introducing the
angle of rotation to the material frame.

Discrete parallel transport and Bishop frame We define
discrete parallel transport in analogy to the smooth case, i.e.,

as a rotation Pi about the curvature binormal,

Pi

(

ti−1
)

= ti, Pi

(

ti−1× ti
)

= ti−1× ti .

By convention, Pi is the identity if ti−1 = ti,
whereas Pi is not defined if ti−1 = −ti. Par-
allel transport is a key notion that allows us
to generalize the notion of twist from the
smooth to the discrete setting.

In order to define Bishop frames, we draw upon the smooth case by
transporting a unit vector u0, which is orthogonal to t0, along the
rod using our rotation operators Pi, i.e., we iteratively define

ui = Pi

(

ui−1
)

.

The third axis of each Bishop frame is then vi = ti×ui.

Bishop frame update The Bishop frame is by definition adapted
to the centerline. This requires that u0 ⊥ t0, a condition that must
be maintained during simulation. Each simulation step moves the
centerline to a new position, so that in general after Algorithm step
9 the requirement u0 ⊥ t0 may be violated (the exception is when
t0 is clamped). We re-adapt the frame by parallel transporting the
Bishop vector (in time)—in analogy to the parallel transport along
the centerline—by computing a rotation operation.

Material frame representation Since both the material frame
and Bishop frame are defined at edges, let θ i denote the angle
needed to rotate the Bishop frame into the material frame at edge ei

(see Fig. 4). Then the material frame vectors at edge i are

mi
1 = cosθ i ·ui + sinθ i ·vi , and mi

2 =−sinθ i ·ui + cosθ i ·vi .

Discrete twisting energy In perfect analogy to the curve-angle
representation in the smooth case, we adopt the twisting energy

Etwist(Γ) =
n

∑
i=1

β
(θ i−θ i−1)2

li
=

n

∑
i=1

βm2
i

li
,

where the scalar mi = θ i−θ i−1 is the (integrated) discrete twist.
The variable mi measures the angle between two adapted frames:
the result of parallel transporting the material frame from edge ei−1

to ei and the material frame at edge ei itself.

5 Quasistatic material frame postulation

Our goal is to arrive at equations describing the time-evolution of
the centerline of the rod. We first pave the way with an important
simplifying assumption.

The speed of a twist wave increases as the rotational inertia of
the cross section vanishes. By contrast, bending waves are disper-
sive [Sommerfeld 1964]—their speed depends on their wavelength,
λ—with velocity vh/λ , where h is the rod radius, and v is solid ma-
terial’s speed of sound. Consequently, twist waves travel faster than
bending waves, for bending waves with large wavelengths λ ≫ h,
i.e., much larger than the rod radius. For the problems we consider,
the relevant dynamics are in (large-wavelength) bending modes,
and it is wasteful of computation to resolve the temporal evolution
of the twist waves.

Consider the limit of a vanishing cross-sectional rotational inertia:
twist waves propagate instantly. At any instant in time, the material
frames are the minimizer of elastic energy, subject to any given
boundary conditions on the material frame:

∂E(Γ)

∂θ j
= 0 , (4)

Note that the quasistatic treatment of the material frame eliminates
the θ j variables as degrees of freedom from the system: given the
rod’s centerline and the boundary conditions on the material frame,
(4) is used to determine what the material frame must be.

Boundary conditions The value of θ j for an edge may be pre-
scribed by a given boundary condition on the material frame. In
practice, we consider stressfree ends (i.e., no boundary conditions)
or clamped ends (i.e., assigning the material frame for j = 0 and
j = n). We use (4) for all θ j variables whose value is not pre-
scribed by a boundary condition, ensuring that the number of equa-
tions matches the number of unknowns for the angles θ j.

5.1 Quasistatic update

During simulation, we enforce the quasistatic nature of the material
frame by ensuring that (4) is satisfied before forces are computed.

Special case of naturally straight, isotropic rods For an
isotropic rod with a naturally straight undeformed configuration, (4)
implies that a clamped rod has uniform twist,

mi

li
=

θn−θ0

2L
= constant , (5)

where 2L = ∑n
i=1 li, and the pointwise twist mi/li (recall §4.2.2)

depends only on the boundary conditions: the difference of angles
of the end edges, θn−θ0. Substituting the above into the formula
for E(Γ) gives the simplified expression

E(Γ) =
n

∑
i=1

α(κb)2i
li

+
β
(

θn−θ0
)2

2L
. (6)

Observe that the twist energy depends only on the angle between
material and Bishop frame at the boundary edges of the rod. For
the naturally straight, isotropic case, the above implies that a rod
with stressfree ends has no twist.

General case For the general case, we use Newton’s method
to minimize the elastic energy E(Γ) with respect to the material



Figure 5: Asymmetry of twist: anisotropy of the cross-sections
and natural curvature of the centerline “conspire” to produce non-
uniform twist distribution. From top to bottom: reference configu-
ration, moderate twist, large twist.

frames, which requires both the gradient and Hessian of the energy
with respect to the θ j variables. The gradient is given by

∂E(Γ)

∂θ j
=

∂

∂θ j

(

W j +W j+1

)

+2β

(

m j

l j
− m j+1

l j+1

)

, (7)

where
∂

∂θ j
Wi =

1

li
(ωωω

j
i )

T JB
j
(ωωω

j
i −ωωω

j
i ) .

To derive the latter identity, note that ∂m
j
1
/∂θ j = m

j
2

and

∂m
j
2
/∂θ j = −m j

1
to obtain ∂ωωω

j
i /∂θ j = −Jωωω j

i , where J acts on
two dimensional vectors by counter-clockwise π/2 rotation. As ex-
pected, (5) is a special case of (7).

The Hessian, H, is obtained by differentiating (7) with respect to
θ j−1, θ j, and θ j+1. The resulting components of the Hessian are:

H j, j−1 =−2β

l j
, H j, j+1 =− 2β

l j+1

,

H j, j =
2β

l j
+

2β

l j+1

+
∂ 2

(∂θ j)2
(

W j +W j+1

)

,

where
∂ 2

(∂θ j)2
Wi =

1

li
(ωωω

j
i )

T JTB
j
J(ωωω

j
i )−

1

li
(ωωω

j
i )

TB
j
(ωωω

j
i −ωωω

j
i ) .

Note that the Hessian is tridiagonal and so it can be factored inO(n)
time. Additionally, in order to accelerate the convergence of New-
ton’s method, we combine it with a line search along the Newton
direction [Press et al. 2002]. Finally, we note that Newton’s method
converges quickly: the θ j variables do not change significantly be-
tween time steps, so that previous values are a good initial guess.

Forward We presented the bending and twisting energy of a
smooth Kirchhoff rod and constructed by direct analogy the corre-
sponding energies for a discrete Kirchhoff rod. The challenge ahead
is to derive the elastic forces induced by the gradients of these ener-
gies. These forces will include terms that arise from the dependence
of the vectors u j and v j on centerline positions, xi. Since these
Bishop vectors are defined via parallel transport, we must consider
the variation of parallel transport with respect to moving the center-
line. For this, we turn to the concept of holonomy.

6 Discrete holonomy

Holonomy is a classical concept from differential geometry: it mea-
sures the deficit of geometric data (frames) to close up when paral-
lel transported around a closed loop. In our case (of discrete rods),
holonomy depends—just like parallel transport itself—only on the
centerline; it measures the (scalar) angle when parallel transporting
an adapted frame along a closed loop of discrete edges. Indeed, the
fact that holonomy can be expressed as a scalar is the reason why
it is such a useful concept for computing forces.

Consider the variation of two consecutive edges ei−1(ε) and ei(ε)
with tangents ti−1(ε) and ti(ε), and parallel transport Pi(ε), where
ε denotes the variation parameter. We denote by P̃i(ε) the parallel
transport from ti(0) to the deformed configuration, ti(ε), i.e., the
rotation that satisfies P̃i(0) = Id and

P̃i(ε)
(

ti(0)
)

= ti(ε) and P̃i(ε)
(

ti(0)× ti(ε)
)

= ti(0)× ti(ε) .

Now consider the concatenation of parallel transports given by

Ri−1(ε) =
(

P̃i−1(ε)
)T ◦

(

Pi(ε)
)T ◦ P̃i(ε)◦Pi(0) , (8)

which we depict by the followingmnemonic diagram, where arrows
represent parallel transport:

ti−1(ε) - ti(ε)

ψi(ε)

ti−1(0)

6

- ti(0)

6

Observe that Ri−1(ε) corresponds to traversing this diagram in

counter-clockwise order, starting at ti−1(0). It follows from the def-

initions that Ri−1(ε) maps the tangent ti−1(0) to itself and is there-
fore a rotation by angle ψi(ε) about axis ti−1(0). In the language
of differential geometry, ψi(ε) is the holonomy of the connection
induced by parallel transport around the depicted closed loop.

The ingredient that we require is the gradient of ψi for 1 ≤ i ≤ n.
Building on the literature of a related quantity known as the writhe
of polygonal curves [de Vries 2005], we obtain the variation of ψi

with respect to a centerline displacement δx:

δψi =
−2ti−1× ti

1+ ti−1 · ti
·
(

1

2

δxi−δxi−1
|ei−1| +

1

2

δxi+1−δxi
|ei|

)

.

It can be shown that the corresponding expression in the smooth
setting is δ (

∫

ψds) =−∫ κb ·(δx)sdswhere the subscript s denotes
differentiation with respect to s. Compare the discrete expression to
the integrand of the smooth case; the second factor of the discrete
expression is a finite-difference approximation of (δx)s. In analogy
to the smooth form, we take the first factor to be the integrated
curvature binormal. Note that this definition coincides with (1),
and allows us to rewrite the discrete result as

∇i−1ψi =
(κb)i

2|ei−1|
, ∇i+1ψi =−

(κb)i
2|ei|

, (9)

and ∇iψi =−(∇i−1 +∇i+1)ψi.

6.1 Variation of parallel transport

With our new tool in hand, we can derive the change in the Bishop
frame when varying the rod’s centerline. Since the Bishop frame is



by requirement adapted to the curve, we are interested in the angle
that the frame is rotated by about the tangent. This situation is again
depicted in the following diagram:

F0(ε)
0- F1(ε)

0 - · · · F j−1(ε)
0- F j(ε)

ψ1(ε) ψ2(ε) ψ j(ε)

F0(0)

0

6

0
- F1(0)

6

0
- · · · F j−1(0)

6

0
- F j(0)

Ψ j

6

Here, the Bishop frames Fi = {ti,ui,vi} are displayed in place of
the tangents to show that we are parallel-transporting these frames
from one edge to the next. Additionally, each labeled arrow indi-
cates the angle needed to align the result of parallel transporting the
frame at the tail of the arrow with the frame at the head. Thus, the
horizontal arrows are labeled with 0 to indicate that no twist is re-
quired to align Pi(F

i−1) to Fi; the first vertical arrow is also labeled

with 0 because we ensure that F0 is always updated via parallel
transport (see §4.2.2). We are interested in the angle of rotation,
Ψ j, required to align P̃ j(ε)

(

F j(0)
)

to F j(ε).

Since parallel transport commutes with twist and holonomy is ad-
ditive under concatenation of loops, it follows from traversing
this diagram in counter-clockwise order that the resulting angle is

Ψ j = ∑
j
i=1 ψi. For computing forces, we require the gradient of this

angle with respect to vertex positions, which is given by

∇iΨ
j =

j

∑
k=1

∇iψk . (10)

By (9), this sum will have at most three non-zero terms.

Discussion In hindsight, we view the relation of holonomy to
the profile of the centerline as an extension of the celebrated
Călugăreanu-White-Fuller theorem [1971] for discrete curves.
Fuller [1978] noted that this theorem is applicable to the equilibria
of closed elastic rods with isotropic cross-sections. Our develop-
ment extends to the general case of open boundaries and even to
anisotropic cross-sections.

7 Equations of motion

We are now ready to write the equations governing the time-
evolution of the rod’s centerline. Since the material frames depend
on the rod’s centerline and are not independent degrees of freedom
(see §5), we must consider this dependence as well when comput-
ing the centerline forces.

7.1 Forces on centerline

In deriving the forces on the rod’s centerline, we must consider how
the energy depends on the xi variables—both directly and indirectly
by considering the effect that moving a vertex has on the rod’s ma-
terial frame. The force acting on vertex xi is therefore given by

−dE(Γ)

dxi
=−∂E(Γ)

∂xi
−

n

∑
j=0

∂E(Γ)

∂θ j

∂θ j

∂xi
.

Here, the total derivative dE/dxi takes into account the implicit
dependence of potential energy on centerline positions, whereas the
partial derivative only takes into account explicit dependence.

Recall from (4) that ∂E/∂θ j vanishes for all edges for which θ j

is not prescribed by a boundary condition. Therefore, for stressfree

boundary conditions, the sum is zero. For clamped boundaries, only
one component of this sum could be non-zero, allowing us to write
the force as

− ∂E

∂xi
− ∂E

∂θn

∂θn

∂xi
.

To evaluate ∂θn/∂xi, recall from §6.1 that varying the centerline
rotates the Bishop frame at edge en by angle Ψn about the tangent
tn. Therefore, to keep the material frame aligned to the boundary
condition, we must subtract this angle from θn to obtain

− ∂E

∂xi
+

∂E

∂θn

n

∑
j=1

∂ψ j

∂xi
.

For clamped boundaries, we give the components required to eval-
uate this force for both the special and general case.

Special case For naturally straight, isotropic rods, the forces on
vertex xi are given by up to three contributions:

−2α

l j

(

∇i(κb) j
)T

(κb) j +
β (θn−θ0)

L
∇iψ j i−1≤ j ≤ i+1 ,

with the gradient of holonomy given by (9) and the gradient of the
curvature binormal given by

∇i−1(κb)i =
2[ei]+ (κbi)(e

i)T

|ei−1||ei|+ ei−1 · ei
,

∇i+1(κb)i =
2[ei−1]− (κbi)(e

i−1)T

|ei−1||ei|+ ei−1 · ei
,

∇i(κb)i =−(∇i−1 +∇i+1) (κb)i .

Here [e] is a skew-symmetric 3× 3 matrix acting on 3-vectors x
by [e] · x = e× x. In deriving these gradients we have used the
assumption of inextensibility of the rod’s edges.

General case For anisotropic rods with a curved rest shape, the
required expressions for the forces are given by:

∂E

∂θn
=

1

ln
(ωωωn

n)
T JB

n
(ωωωn

n−ωωωn
n)+

2βmn

ln
and

∂E

∂xi
=

n

∑
k=1

1

lk

k

∑
j=k−1

(

∇iωωω
j
k

)T
B
j
(

ωωω
j
k
−ωωω

j
k

)

,

where the gradient of the material-frame curvature ωωω
j
k
is given by

∇iωωω
j
k
=

(

(m
j
2
)T

−(m
j
1
)T

)

∇i(κb)k− Jωωω
j
k
(∇iΨ

j)T . (11)

This last result is readily apparent from the definition of material-
frame curvature in (2) and the variation of the Bishop frame in §6.1.

7.2 Integrating the centerline

Since the material frame is always updated to be in quasistatic equi-
librium (see §5.1), we only need to update the centerline based on
the forces derived above. The equations of motion are

Mẍ =−dE(Γ)

dx
,

where M is a 3(n+ 2)× 3(n+ 2) (diagonal) mass matrix associ-
ated to centerline positions. We discretize this equation using the
symplectic Euler method [Hairer et al. 2006]. We use a manifold-
projection method to enforce the inextensibility constraint.



8 Constraints

For simulating extensible rods, it would suffice to include a stretch-
ing component to the energy; however, simulating inextensible rods
using stretch forces would lead to unnecessarily stiff equations. In
addition, many interesting physical systems can be modeled by
the coupling of elastic rods to rigid-bodies. Canonical examples
include the torsional and Wilberforce pendulums, comprised of a
rigid-body suspended under gravity by a thin elastic rod. To avoid
numerical stiffness associated with maintaining inextensibility and
rigid-body coupling, we add auxiliary constraints to our system.

Inextensibility constraints For each edge of the rod, we use
the quadratic constraint equations ei · ei− ei · ei = 0, where (the pre-
computed) ei refers to the undeformed configuration.

Rigid-body coupling constraints The welding of the body to
the rod requires the body’s position and orientation, and the rod
edge’s position and material frame, to be in one-to-one correspon-
dence. Attaching the rigid-body to the first edge of the rod gives
three constraints:

q ·q−1 = 0 , qx0 q
∗+ r−x0 = 0 , qx1 q

∗+ r−x1 = 0 ,

where r ∈ R
3 is the translation vector and q ∈H is the unit quater-

nion [Hanson 2006] mapping the body’s center of mass and orien-
tation, respectively, from the reference to the current configuration,
and q∗ is the conjugate of q. The first equation ensures that q is
unit length, so qx0q

∗ is a rotation of x0 that is summed with r us-
ing vector addition. The second and third equations ensure that the
rod’s first edge and the rigid-body transform identically.

8.1 Enforcing constraints

Numerous approaches are available in the literature for maintaining
constraints acting on a mechanical system [Shabana 2001]. Perhaps
the most simple and straightforward of these is to use the penalty
method; alas, as mentioned above, the penalty forces required to
closely enforce the constraints are unacceptably stiff and require
small time steps to ensure stability [Goldenthal et al. 2007].

An alternative is to employ an augmented Lagrangian formulation.
Such formulations in general introduce additional variables (i.e.,
Lagrange multipliers) to enforce the constraints during the time in-
tegration step of the algorithm. The exception are manifold pro-
jection methods [Hairer et al. 2006], which perform constraint en-
forcement as a post-integration step. We choose to maintain the
constraints using this approach.

A manifold projection method integrates a mechanical system by
alternating between an unconstrained time integration step and a
constraint enforcement step. For the unconstrained step, we use an
explicit symplectic Euler integrator (Algorithm step 7), and we call
the ODE [Smith 2008] library to time step the rigid-body (Algo-
rithm step 5).

Manifold projection allows us to reuse an existing rigid-body code
without modifying its time integration, collision response, or other
internal structures. However, any other method for enforcing these
constraints could be used, and we include a discussion of our ap-
proach for completeness.

Fast manifold projection For the enforcement step, we adopt
and extend the fast projection method of Goldenthal et al. [2007].
This method takes an unconstrained configuration and finds a
nearby constrained configuration. The notion of “nearby” is made
precise by the natural metric on the configuration manifold. We ex-
tend the application of fast projection to coupled systems involving

both positional as well as rotational degrees of freedom by consid-

ering the metric induced by the kinetic energy 1
2yM̃yT , where the

(3n+12)× (3n+12) generalized mass matrix and the generalized
velocity y ∈ R

3n+12 are defined respectively by

M̃ =





4 · I
M · Id3×3

M



 and y = (q−1q̇, ṙ, ẋ) .

Here M is the rod’s (diagonal) 3(n+ 2)× 3(n+ 2) mass matrix,
M is the body’s total (scalar) mass, and I is the body’s (symmetric)
moment of inertia tensor expressed as a 3×3 matrix in the reference
coordinates. Since q is a unit quaternion, q−1q̇ corresponds to a
vector in R

3 [Hanson 2006]. The kinetic energy has contributions
from the body rotation, body translation, and centerline translation.

We initialize the first iteration of fast projection with the results of
an unconstrained time step. Each step of fast projection improves
on the guess by computing the first Newton iteration for the min-
imization of the functional yM̃yT −CTλλλ , where (using Golden-
thal’s notation) C is the vector of constraint equations, and λλλ is
the vector of corresponding Lagrange multipliers. Thus, by for-
mulating the kinetic energy using a generalized mass matrix in a
high-dimensional configuration space, we are able to directly apply
fast projection iterations to rigid-body coupling. In all of our exam-
ples, we found that after 3–5 steps the method converged to within
a tolerance of 10−8 in satisfying the constraint C = 0.

After the iterations converge, fast projection requires a velocity up-
date [Goldenthal et al. 2007]. Using our generalized coordinates,
the appropriate update is

(q̇, ṙ, ẋ)← (q̇, ṙ, ẋ)− 1

h
(2q0q

−1,r0− r,x0−x) .

Our discussion above immediately generalizes to the case of mul-
tiple rigid-bodies attached to multiple rods. As a corollary, we can
couple a rigid-body to any edge on the rod simply by splitting the
rod at that edge. However, care must be taken to understand the
induced boundary conditions: each rigid-body’s position and ori-
entation serves to clamp the position and orientation of the center-
line and material frame for each coupled rod end-edge. After fast
projection, the material frame vector induced by the rigid body ori-
entation ism0

1 = qm0
1q
∗.

8.2 Torque transfer

We consider a methodical categorization of those interface forces
that are automatically transferred between the rod and rigid-body
via projection and those that remain to be transferred explicitly.
Observe that forces that correspond to gradients of the independent
variables, q,r,x, are automatically transferred between the rod and
the body by the projection step. The material frame is not an inde-
pendent variable—it is a function of the centerline position and of
the boundary conditions (see §5). Therefore, in Algorithm step 4,
we explicitly transfer the torque acting on the material framem0

1, to
the coupled rigid-body. Note that the rigid-body’s relatively large
moment of inertia ensures that the explicit coupling is non-stiff.

The force acting on the material frame corresponds to the gradi-
ent of energy with respect to the dependent angles, θ i. By the
quasistatic material frame assumption, the torque, τ = |τ|t0, ex-
erted by the rod on the body is equal and opposite to the torque
exerted by the body on the rod. To derive the magnitude of the
torque we turn to the principle of virtual work [Lanczos 1986].
Holding the centerline fixed, consider a virtual displacement, δθ0,
which varies the material frame about e0. Note that δθ0 also af-
fects the body’s orientation, due to the rod-body constraint. The



Figure 6: Torque transducer: two rigid-bodies coupled by a rod.
The total energy, broken up into contributions from the bodies and
the rod, is plotted.

work performed by the body on the rod equates to the change in the
rod’s stored energy: |τ|δθ0 = (dE/dθ0)δθ0. Since this holds for

any δθ0, it follows that |τ| = dE/dθ0. In the isotropic case, this

yields |τ|= β (θn−θ0)/L. In the anisotropic case, we expand the

full derivative as dE/dθ0 = ∑i(∂E/∂θ i)(∂θ i/∂θ0). By the qua-
sistatic assumption, most terms in this summation are zero, leading
to |τ|= ∂E/∂θ0, which can be evaluated using (7).

9 Validation

The interaction between twisting and bending modes produces sur-
prising instability phenomena, such as spontaneous buckling of
rods. These instabilities are important for a variety of applications,
such as for modeling DNA. When applied to some of these phe-
nomena, our model not only reproduces the correct behavior quali-
tatively, but in fact shows good convergence to analytical solutions
(for those models where an analytical treatment is available in the
literature). In the following we describe several example problems;
refer to Table 1 for corresponding performance measurements.

9.1 Convergence

analytical
n = 180
n = 140
n = 110
n = 80
n = 60
n = 40

1

0.5

3-3 s/s*

f(ϕ)

1

0.5

3-3 s/s*

f(ϕ)

uniform non-uniform

Figure 7: Localized buckling of a naturally straight, isotropic rod
with an imposed angle of twist. The rod buckles into a helix with
modulated amplitude (inset). Convergence of the envelope of this
helix toward the analytical solution in the smooth case is observed
for both a uniformly sampled rod (left) and a rod where one half is
twice as refined as the other (right). The parameters for the simu-
lation are: rod length L = 9.29, bending modulus α = 1.345, twist
modulus β = .789, clamp rotated by 27 turns, imposed axial short-
ening of 0.3 units, corresponding to a theoretical maximal deviation
ϕ0 = 0.919.

Localized helical buckling When a naturally straight, isotropic
rod is clamped at its two ends with one end rotated by a given an-
gle, the rod buckles as the two ends are quasi-statically translated
towards one another. In the smooth case, the buckling of a long
rod under twist is described by an exact solution of the equations
of equilibrium. This analytical solution describes nonlinear (finite
amplitude) buckling away from the straight configuration and mixes
bending and twisting effects. We studied convergence of the equi-
libria of our discrete model towards this solution in the limit of
refinement. The geometry is shown in the inset of Figure 7. We de-
note by s the arc length, ex the unit vector parallel to the axis passing

through the clamps, ϕ(s) = cos−1(t ·ex) the angular deviation of the
tangent away from this axis, and ϕ0 =maxs ϕ(s) the maximal devi-
ation at the center of the pattern. The envelope of the helix is given

by f (ϕ(s)) = tanh2
(

s
s∗
)

, where s/s∗ is the dimensionless arc length

given by s/s∗ =
(

βm
2α

√

1−cosϕ0

1+cosϕ0

)

s, which simplifies to f (ϕ) =
cosϕ−cosϕ0

1−cosϕ0
(see e.g. [van der Heijden and Thompson 2000]). With

a fixed loading geometry, we obtain convergence towards this ana-
lytical solution under refinement (see Fig. 7).

0.4 0.6 0.8 1.0 1.2
0

5

10

15

20

25

(rad)

Figure 8: Michell’s buckling instability of an elastic ring with
imposed internal twist θn. Left: above a critical value of θn, the
planar, circular shape loses stability and buckles to a non-planar
shape. Right: domain of stability of the circular shape with radius
R = 1: simulations (dots) compared to theoretical threshold (black
curve). Each dot corresponds to a simulation run with particular
values of β and θn (α = 1 and n = 50 are fixed), initialized with
a slightly perturbed circular shape; dots are colored in light blue
when the amplitude of the perturbation decreases in time (stable)
and in purple when it increases (unstable).

Michell’s instability Another famous example of a rod becoming
unstable when subjected to twist is Michell’s instability, also known
as Zajac’s instability (see Fig. 8). When the ends of a naturally
straight, isotropic rod are closed into a ring in a twist-free manner,
the resulting shape is circular. When these ends are twisted by an
angle θn before they are closed up, and when this angle is pro-
gressively increased starting from zero, the ring suddenly starts to
writhe (buckle) out of plane, at a well-defined critical value of twist.
This effect is a perfect illustration of the coupling of the twist with
the shape of the centerline. This critical twist can be computed an-

alytically [Goriely 2006] as θn
c = 2π

√
3/(β/α). In Figure 8–right,

we study the stability of the circular shape numerically for different
values of the rod parameters and compare to the analytical predic-
tion. Our model displays excellent agreement with the predictions
of the smooth theory.

9.2 Special case

Instability of knots Although knots have been extensively stud-
ied as mathematical objects, the understanding of their mechanical
behavior is far less advanced. Very recently, an analytical solution
has been obtained describing the equilibrium shape of a loose trefoil
knot tied on a naturally straight, isotropic rod [Audoly et al. 2007]
in the case where no twist is applied. We ran a simulation of a
knotted rod with both ends clamped and were able to reproduce the
typical equilibrium shape of the knot, which is made of a large, al-
most circular loop connected to two flat tails by a braid region (see
Fig. 1–left). We next twisted the ends of the rod and found that the
shape of the knot first changes smoothly and then jumps at a critical
value of the twist. This jump happens both for positive and negative
applied twist, although the final shapes of the knot are qualitatively



different (see Fig. 1). This fascinating behavior will be studied in
detail in a future paper [Audoly et al. 2008]—it can be easily repro-
duced using a small tube of an elastic material (a silicone wire in
our experiments), and we encourage the reader to try it!

Figure 9: Plectoneme formation: When the ends of a hanging
elastic rod are twisted, it takes on structures known as plectonemes.
The formation of plectonemes is governed by physical parameters,
such as the twist rate, viscosity of the ambient fluid, and gravity.

Plectonemes A rod generally forms entangled structures called
plectonemes when subjected to large twist. Typically, the pattern
formed by a twist-driven instability such as Michell’s instability
grows from a weakly helical shape at short times, to fully developed
plectonemes at long time. Such structures have been well-studied,
for instance in the context of DNA supercoiling [Yang et al. 1993].
In this experiment, we started with a naturally straight rod and de-
formed it into a parabola in a twist-free manner. Fixing the posi-
tions of the endpoints of the rod and progressively increasing twist,
we find that the rod starts to writhe out of the plane. Letting the
instability develop fully, we observe plectonemes (see Fig. 9). De-
pending on the viscous drag and gravity, we found that one or many
plectonemes can be obtained. Single plectonemes have been de-
scribed both analytically [van der Heijden et al. 2003] and numeri-
cally [Goyal et al. 2007] in several papers; we observed an interest-
ing phenomenon of plectonemes merging at long times, which has
seemingly not yet been studied.

The simulation of plectonemes requires the treatment of rod self-
contact, which is outside the scope of this paper; for the state of the
art, refer to the treatment by Spillmann and Teschner [2008].

9.3 General case

The coupling of twisting and bending modes of naturally curved or
anisotropic rods is fairly more complex than in the isotropic case,
as demonstrated by in following experiments.

Asymmetry of twist The combination of anisotropy and non-
zero rest curvature can result in a non-uniform distribution of twist
along the rod. In Figure 5, we show this effect for a rod with
anisotropic cross section, whose centerline is either V-shaped or
semi-circular in the reference configuration. We clamp one end
of each of these rods and twist the other. In the V-shaped case,
we observe that twist is first confined on one half of the rod—it
takes a significant amount of twist before twist manages to “jump
over” the kink in the middle of the rod. A similar phenomenon

occurs with the semi-circular shape, but it is less marked. In either
case, the twist concentrates near the end that is rotated, although the
rod properties are uniform along its length; this symmetry-breaking
points to the fact that that the equations governing the quasi-static
twist are nonlinear.

Helical perversion: Perversion is a classical pattern that can be
observed in naturally curved rods. It consists of a junction between
two helices with opposite chiralities. It has been described by Dar-
win in the tendrils of climbing plants and can be often observed in
tangled phone cords [Goriely and Tabor 1998]. Perversions can be
produced by first flattening a helical spring such as a Slinky R© into
a flat, straight ribbon by pulling on both of its ends (see Fig. 2–
middle); next, by progressively releasing its ends from this straight
configuration, one obtains a shape made of two mirror-symmetric
helices (see Fig. 2–bottom). The final shape is surprisingly dif-
ferent from the natural one as the chirality has been reversed in a
half of the spring, as revealed by comparison with Figure 2–top.
The existence of perversions is due to the nonlinear behavior of the
rod—perversions belong to a general class of solutions that can be
derived in nonlinear analysis by connecting two competing equi-
librium configurations, which are here the right-handed and left-
handed helices in the presence of natural curvature.

Figure 10: Hanging chain: A chain consisting of curved elastic
rods as links hangs under the influence of gravity. The material
parameters for each rod are B = 2Id2×2 and β = 2, with each link
in the chain having a radius of approximately 1 unit.

Hanging chain: free boundaries In Figure 10, we show a chain
hanging from its two ends under the influence of gravity. Each
link is an elastic rod with curved undeformed configuration with
stressfree boundary conditions on the material frames. As shown
in the accompanying animation, the two ends are pulled apart until
the chain breaks and the links fly apart. Even though we are not
applying a twist to any of the links in the chain, we still need the
material frame to represent the undeformed curvature of the rod—
recall that ωωω is defined as a 2-vector in material-frame coordinates.

9.4 Rigid-body coupling

When coupling rods with rigid-bodies, the transfer of energy be-
tween these systems results in complex motions—in particular,
through the interplay between bending and (non-uniform) twisting
of the rod and the translational and rotational moment of the at-
tached mass. In order to validate our model, we have in particular
tested its ability to faithfully reproduce real-world experiments.

Wilberforce pendulum This experiment reveals fascinating as-
pects of how bending and twisting interact and thereby affect the
motion of an attached rigid-body. Consider a helicoidal spring (an
isotropic rod whose reference state is a helix) whose upper end is



Figure 11: Wilberforce pendulum: Due to a weak coupling be-
tween the bending and twisting modes of a stretched spring, the en-
ergy of the system is transferred back and forth between the trans-
lational (red) and angular (blue) modes of oscillations.

fixed, and attach a rigid-body to its lower end. The weight of the
body stretches the spring when the whole system is at rest. Mov-
ing the mass slightly upwards from this equilibrium and releas-
ing it, first leads to vertical oscillations. Progressively, the system
switches to twist oscillations and the vertical ones are extinguished;
later, the twist oscillations start to decrease and the vertical ones
reappear, and so on (see Fig. 11). The nonlinear behavior of the
spring, which is captured accurately by our model, is responsible
for this energy transfer between the two modes [Sommerfeld 1964]:
stretching a spring affects its eigenmodes. Note the presence of sta-
tionary waves in the spring, which are also clearly visible in our
simulation movie.

Torque transducer Rods can be used to couple rigid-bodies,
with the rod effectively acting as a “torque transducer” between
them. In Figure 6, we plot the kinetic and potential energy of the
two rigid-bodies and the rod (one of which has much higher mass
than the other), observing the energy transfer among the stored po-
tential energy of the rod and the rotational energy of the two rigid
bodies.

Figure 12: Tree in wind: rigid-bodies connecting multiple rods
together at a single point (reference configuration shown in inlay).
Using this method, we can simulate a tree bending and twisting in
response to a strong arctic wind. Note that without resistance to
twist, the tree would start spinning due to vortices in the wind.

Rigid-bodies for rigid couples Coupling rods with rigid-bodies
opens the possibility for complex simulations—in particular, for

fig. no. verts. time-step forces contact quas. update fast proj. total

1 60 4.0 0.026 0.05 0.021 0.21 0.31

5 49 1.0 0.025 0.018 0.021 0.12 0.18

6 200 2.0 0.072 0.09 0.064 0.81 1.0

9 275 1.0 0.13 0.19 0.17 0.42 0.92

7 75 2.0 0.043 0.1 0.2 0.34

8 67 50.0 0.039 0.096 0.28 0.42

10 31 1.0 0.016 0.13 0.13 0.2

11 20 1.0 0.0036 0.0043 0.019 0.027

12 2158 0.1 0.87 0.64 21.0 22.0

Table 1: Performance evaluation: This table summarizes timing
information (in milliseconds per simulation step) for examples de-
picted in the figures, as measured on a single-threaded application
running on a 2.66GHz Core 2 Duo. For examples run without col-
lision detection, collision timings are omitted.

simulating tree-like one-dimensional configurations with several T-
junctions. In Figure 12, we show an example of such coupling,
where we additionally used external forces (wind and gravity) to
increase the dramatic effect. Here the mass of the rigid-bodies (but
not necessarily their spatial extension) can be tuned to achieve a
variety of dramatic effects. This example shows the power of cou-
pling rods with rigid-bodies, indicating the attractiveness of this
approach to be used in a wide range of graphics applications, such
as for simulating plant motion, or the skeletal dynamics of rigged
characters.

10 Conclusion

Limitations and future work Our use of the Fast Projection
algorithm leads to energy being dissipated during the constraint-
enforcement step. In many applications, the energy behavior of the
system is of interest, so we would like to explore alternate meth-
ods for enforcing constraints that are both efficient and have good
energy behavior.

The formulation of discrete rods allows us to impose boundary con-
ditions on the material frame at any edge along the rod. We have
presented boundary conditions that arise due to explicitly clamping
certain edges or coupling them to rigid-bodies. We are currently
considering the effect of frictional contact on the material frame
and would like to have an implementation that also allows contact
constraints to dictate boundary conditions for the material frame.

We are also interested in employing adaptivity in our current model
and believe that the ideas of Spillmann and Teschner [2008] pave
the way for this. In addition, an interesting related topic would
be in providing higher-order methods for simulating elastic rods.
The main issues involved would be in defining convergent discrete
operators, such as parallel transport and curvature, on higher-order
elements, and in ensuring the resulting order of accuracy.
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