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Abstract

We study a model of interfacial crack in which contact of the crack faces obeys a
Coulomb law of friction. For such cracks, the possibility that the stress has a stronger
singularity than rÿ1=2 near the tip has been reported. In this paper, we demonstrate that

these strong singularities can, in fact, be discarded, because they would assume a backward
propagation of the crack. In passing, we prove that near-tip slip is possible in one direction
only, which is imposed by the sign of the elastic mismatch. The locking of the stress
intensity factor during a non-monotonic cycle of loading is pointed out, as well as the

formation of a bubble near the tip under certain loading conditions. 7 2000 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

The understanding of the mechanical properties of layered materials is a
challenge with many potential applications. These materials are nowadays widely
used in the industry, and their structural performances are limited by a variety of
mechanisms. Among them is the propagation of interfacial cracks, to which we
restrict our attention. As for cracks in homogeneous media, the propagation of
interfacial cracks is believed to depend on the asymptotic expansion of the stress
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near the crack tip. In this paper, we study the structure of the singularity of the
stress at the tip.

We consider a crack propagating quasi-statically at the interface between
dissimilar materials. Because of the elastic mismatch of the materials joining at the
interface, a contact region behind the crack tip must be considered (Comninou
and Dundurs, 1980b). This contact region avoids inconsistencies in the model,
such as the overlap of the crack faces in the form of microscopic oscillations
(Rice, 1988). Moreover, this contact zone is macroscopic under certain loading
conditions, and its role in the debonding of the interface has been pointed out by
Stringfellow and Freund (1993). The tip is surrounded by the bound interface on
one side and a contact zone on the other side (see Fig. 1).

We neglect transverse (mode III) forces, and the equations of bidimensional
elasticity are used. Let (x, y ) be the coordinate in the materials, T the crack tip
with coordinates �x tip, 0�, �ux, uy� the displacement vector, sab the bidimensional
stress tensor. Index 1 and 2 label the materials. We de®ne the relative shift of the
materials along the contact region, s�x� � ux2�x, 0� ÿ u1x�x, 0� for x < x tip: The
elastic mismatch between the materials is taken into account, and we introduce
the second Dundurs mismatch parameter, b, de®ned as:

b � m2�k1 ÿ 1� ÿ m1�k2 ÿ 1�
m2�k1 � 1� � m1�k2 � 1� , �1�

Fig. 1. Asymptotic problem near the tip of a interface crack with friction. Slip can occur in either

direction, and stick is also possible.
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where m, n denote, respectively, the shear modulus and the Poisson ratio of the
materials, and k is (3-4n) for plane strain and �3ÿ n�=�1� n� for plane stress. We
assume that the materials have mismatching elastic properties: b6�0:

Following Comninou (1977), we model the contact of the crack faces by a
Coulomb law of friction. The corresponding boundary conditions are shown in
Fig. 1. In the contact zone, three regimes are possible: the crack faces can slip in
either direction, or stick. One of the boundary conditions changes accordingly.
Since we make an asymptotic analysis near the crack tip, we shall not be
concerned with the possibility that several stick and slip zones coexist along the
interface (Comninou and Dundurs, 1979): we only consider the region touching
the crack tip.

Before mentioning important results obtained by Comninou and Dundurs for
this model of crack, we present simple arguments showing that interfacial friction
near the crack tip yields singular e�ects. Our point is to show that, because of
friction, our model cannot be approached by conventional crack analysis.

1.1. Interfacial friction as a singular perturbation

We consider a bimaterial with a partially cracked interface. A ®xed, arbitrary,
external loading is applied on the sample. For the sake of simplicity, we assume
that the interface is fully closed, and that slip takes place near the tip (this
assumption is not essential). We study the dependence of the energy release rate
(Malyshev and Salganik, 1965) at the tip, Gtip, on the friction coe�cient, f, for
this ®xed external loading (see Fig. 2). We make a perturbation analysis, and we
seek an expansion of Gtip( f ) in powers of f. At zeroth order, there is no
dissipation �f � 0�; by conservation of the Rice integral (Rice, 1968a, 1968b), the
energy release rate at the tip is then given by the external loading: G �0�tip � Gext:
When friction is turned on, the energy release rate becomes contour dependent.

Fig. 2. Path of integration used to calculate the dissipation of the energy release rate, G, for a ®xed,

arbitrary, external loading (bold arrows).
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By a straightforward use of the Rice integral on the contour depicted in Fig. 2,
the frictional dissipation of the energy release rate in the contact zone [DT ] reads:

Gext ÿ Gtip �
�
�DT�
� ÿ sxy �@s�x�

@x
jdxj, �2�

where we remind that s is the relative shift across the interface. By the Coulomb
law of friction, the contact shear stress is proportional to the contact pressure:
sxy �2fsyy, with a sign that depends on the direction of slip. The previous
equation, therefore, leads to the ®rst-order expansion of Gtip�f � � G �0�tip� fG �1�tip�� � �
with:

G �1�tip �2
�
�DT�

s�0�yy �x�
@s�0��x�
@x
jdxj, �3�

where the quantities appearing in the RHS member must be evaluated in the
absence of friction.

We now perform a dimensional analysis of the integrand. Let r � jxÿ x tipj be
the distance to the tip along the interface. In the absence of friction, conservation
of the J-integral near the tip imposes the scaling law: s�0�yy�r�Arÿ1=2, from which
s�0��r�Ar1=2 can be derived. The integrand in the last equation, therefore, scales
like �xÿ x tip�ÿ1 near the tip, and the integral (3) giving G �1�tip diverges
logarithmically near the tip: the expansion of the energy release rate at the tip in
powers of f is singular. This result indicates that interfacial friction can have
strong e�ects near the crack tip. Indeed, the conventional crack theory does not
apply to our problem. We shall see below that the stress divergence near the crack
tip does not satisfy the usual scaling law: sArÿ1=2:

1.2. Expansions obtained by Comninou and Dundurs

We now turn to the direct study of the stress singularity near the tip when
interfacial friction is considered, and no longer consider expansions in small f. We
present results obtained by Comninou and Dundurs (1979).

Comninou and Dundurs have solved the static linear 2D elasticity equations
near the tip of a closed interfacial crack; they consider slip of the crack faces
against each other. They obtain a full expansion for the near-tip stress in the
materials, the leading term of which reads (Comninou, 1977; Comninou and
Dundurs, 1980b):

sij�r, y� � CSij�y�rÿl, �4�
where �r, y� are polar coordinates with origin T, Sij�y� are universal functions of y
given by Comninou and Dundurs (1980b). C is a stress intensity factor which
depends on the external loading. As shown in Fig. 1, the coe�cient of friction,
f > 0, appears in the equations with a sign that depends on the direction of slip,
(sgn _s), and they indeed propose that the exponent l should be determined by:
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cot lp � sgn�_s�bf with 0 < l < 1: �5�
For lr1, the elastic energy stored near the crack tip would be in®nite: the
proposed range for l, 0 < l < 1, therefore, corresponds to the most diverging
term in the expansion compatible with a ®nite energy. The fact that l is
generically di�erent from 1

2 can be understood in the light of Section 1.1.
The relationship between the quantities s and l is complex. On one hand, l

obviously depends on the direction of slip, (sgn _s), through Eq. (5). On the other
hand, from Eq. (4) or (Dundurs and Comninou, 1979, (3.18)), the near-tip
expansion of s has a leading term sA�x tip ÿ x�1ÿl; therefore, s and (sgn _s� in turn
depend on l: The quantities (sgn _s� and l are thus self-referencing. As a result, it
is possible that (sgn _s� and l depend not only on the current loading, but also on
the crack history: they should be determined by successive attempts to make the
equations self-consistent (Comninou and Dundurs, 1980b; Deng, 1994). For
certain loading histories of the interfacial crack, it has been observed (Dundurs
and Comninou, 1979) that the singularity of the stress is smoother than rÿ1=2

�lR1
2�: On the other hand, the possibility that 1

2 < l < 1 in Eq. (5) is problematic
(Dundurs and Comninou, 1979, p. 79); this eventuality, although not exempli®ed
so far, has not been shown inconsistent either.

2. Singularity of the stress near the tip

In this section, we present new results about the singularity of the stress in the
presence of friction. First, we prove that l, in fact, cannot be larger than 1

2 : This
is consistent with the intuition that friction tends to make the stress less divergent
near the crack tip (as noted above, l � 1

2 in the absence of friction). Moreover,
in®nite energy ¯ow towards the crack tip, which would occur for l > 1

2 , are
removed from the theory. Second, we show that l is actually independent of the
loading history, and that Eq. (5) can be replaced by a simpler one:

cot lp � jbj f with 0 < l <
1

2
: �6�

We shall note l0 the unique solution of this equation, which is now history
independent: l0 is a function of the materials constants only. Thanks to this
result, the asymptotic study of a closed crack will be greatly simpli®ed because
Eqs. (4) and (6) are no longer self-referencing: l, as determined from Eq. (6),
should simply be put into Eq. (4). The location of stick and slip zones along the
interface, and the stress intensity factor C, however, remain history dependent.

2.1. The stress is less singular than rÿ1=2

If the lips are slipping �_s�x ÿtip�6�0�, the expansion of the stress near the tip of a
closed crack reads (Dundurs and Comninou, 1979):
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sij�r, y� � C1aS1a
ij
�y�rÿ1�l0 � C1bS1b

ij
�y�rÿl0 � C1cS1c

ij
�y�r0 � C2aS2a

ij
�y�r�l0

� C2bS2b
ij
�y�r1ÿl0 � C2cS2c

ij
�y�r1 � � � � �7�

This is the same expansion as in Eq. (4) with terms added beyond the dominant
order. We have also used a trick to suppress arti®cially the time-dependence of the
exponent in Eq. (4): from Eq. (5), the dominant exponent for the stress is l � l0
or 1ÿ l0, depending on sgn(b _s). Both expansions have been written in the above
equation, with the convention that one of these vanishes:

if b _s > 0 at x � �x tip �ÿ, C1a � C2a � � � � � 0 �8a�

if b _s < 0 at x � �xtip�ÿ, C1b � C2b � � � � � 0: �8b�

This convention expresses Eq. (5).
In the following, it will be convenient to introduce the index d, which we de®ne

as b if b _s > 0 or a if b _s < 0: among the a and b terms in Eq. (7), only the d terms
are non-vanishing. We also de®ne l1a � 1ÿ l0 and l1b � l0 for obvious reasons.
ld � l1a or l1b is in the range 0 < ld < 1:

As explained above, Comninou and Dundurs have found solutions to the
equations of linear elasticity near the crack tip, T. In particular, they have given
the asymptotic expression for the relative shift, s, and for the normal stress at the
interface, N, in the slip zone (Dundurs and Comninou, 1979, (3.18±3.19)):

s�x, t� � ÿ 1

m�
C1d �x tip ÿ x�1ÿldsin l0p� � � � �9a�

N�x, t� � bC1d �x tip ÿ x�ÿldsin l0p� � � � , �9b�

where m��m2, m1, n2, n1, l� is a combination of the elastic modulus of the materials
and b is the mismatch parameter de®ned in Eq. (1).

Consistency requires that the normal stress along the slipping part of the
interface, N�x� � syy�x, y � 0�, be compressive �N�x�R0�, so that the lips are
pressed one against the other. This yields (Dundurs and Comninou, 1979, (3.40)):

bC1dR0: �10�

We shall consider that this condition is automatically satis®ed. Indeed, a tensile
contact pressure N > 0 would indicate that the crack is open near the tip, which
again, is not possible when b6�0: NR0 is, in fact, guaranteed by the tuning of the
size of the contact region with the applied loading (Audoly, 2000).

We consider the possibility that the crack advances quasi-statically: the crack
tip is at x tip�t� at time t, and we shall call vtip�t� � _xtip�t� the instantaneous crack
tip velocity. The sign of �b_s� needed in Eqs. (8a) and (8b) can be obtained as
follows; derivation of Eq. (9a) with respect to time yields:
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b_s � ÿbC1d

m�
sin l0p

 
_C1d

C1d
� �1ÿ ld � vtip

x tip ÿ x

!
�x tip ÿ x�1ÿld : �11�

m� is positive (Dundurs and Comninou, 1979, (3.21)) and bC1d is negative from
Eq. (10); the sign of �b_s� near the tip in the last equation is thus given by the
bracketed term:

sgn�b_s�jx�x ÿ
tip
� sgn

�
d

dt
lnjC1dj � �1ÿ ld� vtip

x tip ÿ x

�

�

8><>:
� if vtip > 0,

sgn

�
d

dt
lnjC1dj

�
if vtip � 0,

�12�

where we have used ld < 1: Eq. (12) holds under the conditions that C1d 6�0 and
the lips are slipping in the vicinity of the crack tip �b_s 6�0�: At this point, we
recover the fact that singularities stronger than rÿ1=2 are absent when the crack
propagates (Deng, 1994): then, b _s > 0 from the above equation, and Eq. (5) shows
that lR1

2 :
We shall now review all the possible motions of the lips near the crack tip (slip

in either direction, stick), and study the corresponding dynamics of C1a: Let us
®rst assume that C1a 6�0 and that the lips are slipping in such a direction that
b _s < 0; then d � a and Eq. (12) shows that:

if b _s
ÿ
x ÿtip

�
< 0 and C1a 6�0, then vtip � 0 and

d

dt
lnjC1aj < 0: �13a�

If the lips are slipping in the other direction, it follows from Eq. (8a) that:

if b _s
ÿ
x ÿtip

�
> 0, then C1a � 0: �13b�

Finally, if the lips are sticking near the crack tip, the expansion (7) is no longer
valid. However, in this case, the relative slip displacement of the lips, s, is frozen
to s � sstick: Furthermore, if sstick of the form (9a) with d � a and C1a 6�0 is put in
the stick problem in Fig. 1 as a boundary condition, it is clear that the leading
order of the stress remains as given by Eq. (7). For this reason, the stress intensity
factor C1a is also frozen by the stick zone:

if b _s
ÿ
x ÿtip

� � 0 and C1a 6�0, then C1a is constant in time: �13c�

Since we consider only quasi-static propagation of the cracks, all displacements
are continuous functions of time, and C1a�t� is continuous. Collecting Eqs. (13a)±
(13c), one shows that jC1a�t�j decreases at all times. The only assumption that we
now make on the crack history is very weak: we assume that the crack was not
loaded sometime in the past. This is true, for example, if the sample was initially
free of loads, as happens in most practical situations (note that we do not require
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that the loading has been turned on monotonically, like in Comninou and
Dundurs (1980a); this would be a much stronger assumption). In the case of
delamination of thin ®lms obtained by vapor deposition, for example, the
mismatch strain which loads the interfacial crack appears progressively when the
sample cools down after high temperature deposition (Hutchinson and Suo, 1991),
hence C1a�t � ÿ1� � 0:

Under the assumption stated above, C1a vanishes at all times, and divergences
of the stress stronger than the usual inverse square root law are removed from the
theory. This result is based on the irreversibility of the crack opening: in the
preceding proof, a key argument was that the crack can only propagate forward
Ð see Eq. (12).

2.2. The dominant exponent l is not history dependent

Let us now review the possible stick or slip states of the interface near the tip
(at x � x ÿtip). We shall write that there is near-tip stick when _s�x ÿtip� � 0, and that
there is positive near-tip slip when b _s�x ÿtip� > 0, and negative near-tip slip when
b _s�x ÿtip� < 0: The near-tip slip direction determines the near-tip stress divergence:
for positive near-tip slip, the stress intensity factor C1b is generically non-vanishing
(we remind that C1a vanishes from Section 2.1); for negative near-tip slip,
however, the near-tip stress divergence shall be suppressed because C1b � 0 from
Eq. (8b). We note that, by the same arguments as those used to derive Eq. (13c),
C1b�t�, which is now the leading stress intensity factor, is a continuous function of
time and is conserved during near-tip stick. Below, we establish that near-tip
negative slip is not possible; this result will permit a de®nite answer to the
question of the history dependence of the exponent l:

Assume, ®rst, that positive near-tip slip takes place sometime in the crack
history, and lasts until time t � t0: At time t0, the crack lips can a priori either
start to stick near the tip, or to slip in the negative direction �b_s < 0�: According
to Comninou and Dundurs, this change can be traced in the equations as follow:
if the assumption b_s�x ÿtip� > 0 is used at times later than t0, either Eq. (10) or Eq.
(12) becomes inconsistent (Dundurs and Comninou, 1979). We have mentioned
that Eq. (10) is automatically satis®ed; therefore, Eq. (12) must become
inconsistent with b _s�x ÿtip� > 0 at time t0: As a result, vtip�t0� � 0 and the stress
intensity factor jC err

1b j, calculated under the (erroneous) assumption b _s�x ÿtip� > 0, is
strictly decreasing at times just after t0 (see Fig. 3). We shall label by ``err'' all
quantities calculated under this erroneous assumption at times later than t0:

That jC err
1b j strictly decreases just after t0 obviously implies jC err

1b �t�0 �j > 0: Since
C1b�t� is a continuous function of time, the actual stress intensity factor C1b

satis®es: jC1b�t�0 �j � jC1b�tÿ0 �j � jC err
1b �t�0 �j > 0 and, by continuity, C1b remains non-

zero during a time interval Dt > 0 after time t0: Using Eq. (8b), b_s�x ÿtip�r0 on this
®nite interval t 2 �t0, t0 � Dt�: By assumption, positive slip ends at time t0, hence
stick starts at time t0: Therefore, we have proved that when the crack faces stop
slipping in the direction b_s�x ÿtip� > 0 near the tip, a stick zone develops from the
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tip. Moreover, this stick zone will continue to exist near the tip for a ®nite time
interval before negative slip can eventually be reached �Dt > 0�:

We can now examine what happens when this stick zone disappears, say, at
time t 00: We remind that C1b has been conserved during near-tip stick (see Fig. 3).
Moreover, C1b was non-vanishing when the stick zone appeared (see previous
paragraph). Therefore, C1b�t�, which, again, is continuous in time, is non-
vanishing at times just after t 00: From Eq. (8b), negative near-tip slip cannot take
place just after time t 00, and the interface necessarily goes back to positive near-tip
slip.

Finally, we use again the assumption that the crack was not loaded sometime in
the past: C1b was then vanishing, and jC1bj has necessarily started to increase as
the loading has been turned on. Eq. (12) shows that the system has then entered
either state: _s�x ÿtip� � 0 (stick near the tip), or b_s�x ÿtip� > 0 (slip in the positive
direction near the tip). At subsequent times, the system eventually goes from one
state to the other, but slip in the forbidden direction, b_s�x ÿtip� < 0, can never be
reached: at all times,

b_sjx�x ÿ
tip
r0: �14�

As a result, the dependence of l on (sgn _s� in Eq. (5) is made-up, and it is much
easier to determine the exponent l using Eq. (6). Thus, we have proved the
important result: the exponent of the divergent term in the stress expansion near
the tip is ÿl0rÿ 1

2 , and it does not depend on the loading history. It would be
history-dependent only if the crack could propagate backwards.

3. Prevention of slip in the forbidden direction

In the previous section, we have established a striking property of the interfacial
crack with friction: in the vicinity of the tip, slip can take place in one direction
only, which depends on the sign of the elastic mismatch. Below, we point out two
mechanisms that prevent slip in the opposite direction.

From Eq. (14), the applied loading tends to induce slip in the forbidden
direction when the stress intensity factor obtained from the conventional crack
analysis satis®es: sgn�dKII=dt� � sgn�ÿb�: This can happen in two situations: ®rst,
when applied shear stress is compatible with the authorized slip direction
�sgn KII � sgn b�, but is decreasing in magnitude �djKIIj=dt < 0�: This situation is
typically encountered during cyclic loading sequences; it is studied in Section 3.1.
The second situation is when the applied shear stress is opposite to the intrinsic
slip direction �sgn KII � ÿsgn b�, and increasing �djKIIj=dt > 0�: In Section 2, we
study the e�ect of an applied shear con¯icting with the intrinsic slip direction.

3.1. Locking of the stress intensity factor

We consider a bimaterial with a partially cracked interface, submitted to a non-
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monotonic sequence of loading, as in Fig. 3. For the sake of de®niteness, we
consider the case b > 0, so that the slip direction near the crack tip imposed by
Eq. (14) is _s > 0: The loading is assumed to be compatible with the intrinsic slip
direction: it induces a stress intensity factor KII > 0: The crack is assumed not to
propagate �vtip � 0�:

From the results of Section 2.2, the stress intensity factor C1b increases
proportionally to the loading, as long as the loads are increased monotonically; at
time t0, when the loading starts decreasing, C err

1b , which is proportional to loading,
also decreases; Eqs. (12) and (14) then becomes inconsistent. This indicates that a
stick zone develops near the crack tip. As the loading is being decreased more and
more, it is reasonable to expect that the stick zone spreads outwards from the
crack tip. Similarly, it can be expected that this stick zone will shrink when the
loading is increased again. We remind that C1b is frozen as long as a stick zone
exists near the tip. At time t 00, when the loading comes back to the same level as
at time t0, the system is in the same state as at time t0, and the near-tip stick zone
disappears. C1b then follows the applied loading again.

In Fig. 3, the stress intensity factor C1b is seen increasing irreversibly. Using
Eqs. (12) and (14), it can indeed be seen that jC1bj increases as long as the crack
does not advance. During decrease of the loads, a decrease of the stress intensity
factor C1b is prevented by the formation of a stick zone at the crack tip (see
Fig. 3). This irreversible increase of the stress intensity factor is an example of
memory e�ects in cracks. It may be relevant in the study of fatigue.

Fig. 3. Locking of the stress intensity factor C1b during a non-monotonic variation of the loading,

when imposed loading complies with the intrinsic slip direction. Crack is assumed not to propagate

�vtip � 0�: C1b is proportional to loading as long as the loading is monotonic (a); at time t0, the loading

starts decreasing, and C1b is locked by a stick zone near the tip (b). As the loading is increased again,

the size of the stick zone decreases, and it disappears at time t 00 when the loading reaches again the

same value as at time t0 (c).
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3.2. Formation of a bubble near the crack tip

We shall now discuss the state of the system when the imposed loading is
opposite to the intrinsic slip direction �sgn KII � ÿsgn b�: Again, we consider a
partially cracked bimaterial. Integration of Eq. (14) with respect to time is
possible, because the crack remains closed near the tip at all times. Assuming,
moreover, as in Section 2.1, that the crack was initially free of load, one obtains:
bs�x, t�r0 at all times in the left vicinity of the crack tip, hence Eq. (15a). We
impose a loading such that sgn KII � ÿsgn b; then, the induced slip direction at
the interface can be expected to be: sgn s � sgn KII, hence Eq. (15b).

s � sgn� � b� imposed by near-tip analysis �15a�

s � sgn� ÿ b� imposed by external loading: �15b�
In these conditions, the direction of slip imposed by the material constant on one
hand, and by the external loading on the other hand, are indeed in con¯ict.

Noting that Eq. (15a) applies at microscopic scales near the tip, while Eq. (15b)
has a macroscopic origin (the loading), one can solve the contradiction as follow:
the materials contact along two di�erent regions separated by a bubble (see Fig. 4).
One region, [ED '], is macroscopic; the other one, [DT ], touches the crack tip T
and has microscopic extent. In the macroscopic contact zone, [ED '], the direction
of slip is imposed by the loading, and satis®es sgn s � sgn KII � sgn�ÿb�: In the
microscopic contact region near the crack tip, the slip direction is imposed by the
materials constants: sgn s � sgn b: The bubble can, therefore, be seen as a

Fig. 4. Formation of a bubble near the crack tip when the loading is opposite to the intrinsic slip

direction of the interface. Macroscopic interpenetration is obtained in the conventional crack analysis

(a). Interpenetration is forbidden in our model, and a bubble is formed near the tip (b). Very close to

the tip, the crack closes again, and the intrinsic slip direction of the interface is recovered (c).
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transition between a region where the slip direction is imposed by the loading, as
in Eq. (15b), to a region where the slip direction is imposed by the properties of
the interface, as in Eq. (15a), when these directions are incompatible.

In Fig. 4, a bubble has been represented. For the sake of simplicity, we take the
material #2, above, in®nitely rigid �b > 0�: Then, the authorized slip direction near
the crack tip is b_s > 0, and the loading is assumed to impose KII < 0, hence the
direction of the applied force on the picture. We note that in this geometry,
macroscopic interpenetration of the materials is obtained in the conventional
crack analysis: KI < 0 (Suo and Hutchinson, 1990). Consideration of the
interfacial contact is therefore essential. For the geometry in Fig. 4 �KII < 0), a
bubble has indeed been observed numerically by Stringfellow and Freund (1993)
when b > 0: Our analysis o�ers a simple interpretation for the apparition of this
bubble.

An equivalent picture to the formation of the bubble can be given. In the
conventional analysis of interfacial cracks, where contact of the crack lips is not
considered, the stress intensity factors KI and KII are scale dependent in the
presence of elastic mismatch (Rice, 1988):

�KI � iKII �jl � � �KI � iKII �jl
�
l�

l

�ie

, �16�

where e � ln��1ÿ b�=�1� b��=2p is a mismatch parameter, and l and l� are two
di�erent lengthscales at which the stress intensity factor are evaluated. The
parameter e is numerically small for a variety of interfaces, and this scale
dependence can often be neglected (Rice, 1988); this is why we have introduced
stress intensity factors without mentioning any lengthscale elsewhere in this paper.
Assume that, for some given external loading, the crack closes at a macroscopic
scale l: KIjl � 0: Using the equation above, and noticing that sgn e � sgn�ÿb�, it is
easily seen that KIjl � becomes positive at lengthscales l� smaller than l if
sgn KIIjl � sgn�ÿb�: That KI becomes positive at small scales means that the crack
reopens, hence the formation of a bubble for sgn KII � ÿsgn b: Contrarily, KIjl �
becomes negative at small scales l� when sgn KIIjl � sgnb, which indicates that the
crack is fully closed.

The formation of a bubble near the tip has important consequences for the
interfacial crack: because a bubble is present only for a de®nite sign of KII, sgn KII

� sgn�ÿb�, the geometry of the contact regions at the interface strongly depends
on this sign. As a result, the apparent toughness of the interface G�c� resulting
from frictional screening of the external loads (Stringfellow and Freund, 1993)
should be asymmetric (Audoly, 2000).

4. Summary and conclusion

We have studied the concentration of stress near the tip of an interfacial crack
with friction. We have shown that the dominant term in the expansion of the
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stress is given by Eq. (4), where the exponent l is smaller than 1
2 : divergences

stronger than in the conventional crack analysis �sArÿ1=2� have therefore been
removed from the theory. In contrast to what had been postulated (Comninou
and Dundurs, 1980b; Deng, 1994), this exponent is history independent.
Moreover, we have shown that the near-tip slip can occur in one direction only;
this direction is imposed by the properties of the materials Ð see Eq. (14). All
these results are derived from the fact that the crack can only propagate forward.
Two mechanisms prevent slip in the forbidden direction. First, a stick zone
spreads outwards from the crack tip when a non-monotonic cycle of loading is
applied. Second, a bubble appears near the tip when the imposed loading would
induce slip in the forbidden direction.

A memory e�ect at the crack tip has been discussed: the crack tip retains the
highest value of the stress intensity factor ever reached since the crack is arrested.
It has also been pointed out that the formation of a bubble at the crack tip
should make the e�ective toughness of the interface asymmetric. Finally, our
analysis allows an approach of the interfacial crack with friction using the concept
of energy release rate: in®nite ¯ows of energy towards the crack tip have been
ruled out from the theory. In a subsequent paper (Audoly, 2000), the interface
toughness induced by friction is investigated on the basis of the present analysis.
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