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a b s t r a c t

Liquid impact problems for hemispherical fluid domain are considered. By using the concept of pressure
impulse we show that the solution of the flow induced by the impact is reduced to the derivation
of Laplace’s equation in spherical coordinates with Dirichlet and Neumann boundary conditions. The
structure of the flow at the impact moment is deduced from the spherical harmonics representation of
the solution. In particular we show that the slip velocity has a logarithmic singularity at the contact line.
The theoretical predictions are in very good agreement both qualitatively and quantitatively with the first
time step of a numerical simulation with a Navier–Stokes solver named Gerris.

© 2017 Elsevier Masson SAS. All rights reserved.

1. Introduction

Impacts are extremely brief and violent phenomena involving
solids or fluids occurring in very diverse situations: impact of a
wave on a seawall [1], the landing of seaplanes [2] and more
generally the water entry of solid objects [3,4] or the impact of a
liquid drop onto a solid surface [5,6]. As suggested by the variety
of previous examples, impact problems involve any geometry and
could be defined as a general problem with liquid and solid do-
mains of arbitrary shape (see Fig. 1).

The impulsive aspect of impacts is a common characteristic
shared by all these problems. This feature could be defined as
a considerable acceleration of a boundary of the system over a
very short time. Consequently impact phenomena are unsteady,
non-linear and could produce large deformations as in the case of
problems involving free-surfaces e.g. the run across a river of the
Jesus-Christ lizard [7] or the game of stone-skipping [8]. This last
problem was applied to naval artillery and studied theoretically
by E. de Jonquières [9] in order to explain why the bouncing of
cannonball across water improves the range of the shoot.

In this paper we will focus on impact problems involving drops
with the emphasis on its impulsive aspect. More specifically we
will consider the particular case of hemispherical fluid domains.
One example of problem worth of interest in this kind of config-
uration is the study of the dynamics of a drop sitting on a solid
substrate when this last is impacted from beneath (see Fig. 2 left).
There are several interesting questions associated to this problem
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such as: (i)What is theminimal impact intensity necessary to eject
partially or totally the drop from the solid surface? (ii) What are
the deformation modes induced by the impact? (iii) What is the
influence of the substrate’s inclination? The two first problematics
have already been treated for sessile drops sitting on an oscillating
solid substrate [10,11]. The solution of the whole problem as de-
fined here is an ambitious program clearly beyond the scope of this
paper. Then we propose to solve a slightly different problem with
the same impulsive characteristic. Henceforth we consider a drop
of radius R sitting on a larger cylindrical substrate. The substrate
is initially risen impulsively toward the drop with a velocity U
(see Fig. 2 right). This new configuration, based on the impulsive
motion of a solid boundary has already been considered in different
contexts [12,13].

The impulsive problemwepropose here could also be seen as an
impact problem. In fact it is possible to study it experimentally by
using a cylinder, assumed nondeformable, with a drop disposed at
its top and falling in free fall.When the cylinder hits the ground, the
impact imposes a velocityU of the substrate in the reference frame
of the drop. Hence we can consider that these points of view are
both equivalent. In terms of impulsive impact of liquid bodies on
plane wall, a similar problem was studied for different geometries
by Tyvand et al. [14] and for cylindrical fluid bodies by Hjelmervik
et al. [15]. The aim of the present paper is to study impact problems
for a drop disposed onto a cylindrical substrate by using the anal-
ogy with the impulsive problem depicted here and with a focus on
the flow at the impactmoment. In Section 2we introduce the theo-
retical framework of the problem, based on the concept of pressure
impulse and associated to the impulsive nature of impacts. We
deduce that the problem is reduced to the solution of Laplace’s
equationwithDirichlet andNeumann boundary conditions. In Sec-
tion 3 we determine the pressure impulse along the wetted region
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Fig. 1. Sketch of an impact problem involving a liquid domain of arbitrary shape
and a solid boundary. The red dots represent the position of the contact line. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

and the slip velocity by using a spherical harmonics representation
of the solution. Then, theoretical predictions are qualitatively and
quantitatively compared with numerical solutions. In Section 4
we depict the structure of the flow induced by the impact. We
deduce that the slip velocity is logarithmically divergent close to
the contact line. The momentum’s lost due to the impact is also
computed. Finally, in Section 5we summarize ourmain results. The
solution of several two-dimensional impact problems for planar
and circular geometries is presented in appendix. Each problem is
solved with a different method.

2. Model

2.1. Pressure impulse theory

Since the pioneering works of Wagner [2] on the landing of
seaplanes, impact problems were enlightened by the concept of
pressure impulse introduced byBagnold [16]. Otherwise this quan-
tity was used by Lamb [17] in order to develop a mathematical
model of suddenly changed flow. The idea is to notice that a sudden
change of the motion of one of the boundary of the fluid domain
induces pressure gradients which in turn produce a sudden change
in the liquid velocity [18]. This change occurs over a timescale τ
very small compared to the convective time R/U . Therefore, by
introducing a small parameter ε =

τ
R/U , we deduce after a com-

parison of the order of magnitude of each terms of the momentum
equation that the non-linear terms are negligible compared to the
time derivative of the velocity. In this study we only consider
inertia-dominated impact then we assume that gravity, capillary
and viscous effects are small with respect to inertial ones, i.e.
Froude Fr = U2/gR, Weber We = ρU2R/σ and Reynolds Re =

ρUR/µ numbers are all large with respect to unity. Here g denotes
the gravity, σ the liquid-gas surface tension, ρ the liquid density

andµ its viscosity. Consequently the time derivative of the velocity
is just balanced by the pressure gradient. Then, at leading-order,
the problem is described by the following equation [17,18] :
∂u
∂t

= −
1
ρ

∇p, (1)

where p is the pressure of the liquid. We assume here that the
atmospheric pressure is the reference pressure. By integration of
the relation (1) on the impact duration, we obtain:

uimpact = u(τ ) − u(0) = −
1
ρ

∇P, (2)

with P the pressure impulse defined by:

P =

∫ τ

0
p(x, t)dt.

The impact velocity considered in this paper is assumed much
lower than the speed of sound c . Hence we can suppose that the
flow induced by the impact is incompressible. Therefore by taking
the divergence of (2) we deduce that the pressure impulse satisfies
Laplace’s equation ∆P = 0.

The problem as described here is general and at this stage
the pressure impulse theory could be applied to many problems
whatever the geometry e.g.with a complete sphere for drop defor-
mation by laser-pulse impact [19] or with a plane for the impact
of a wave on a seawall [1]. However the mathematical form of the
solution strongly depends on the geometry and on the boundary
conditions.

2.2. Problem statement

Weconsider a perfectly hemispherical dropof densityρ, surface
tension σ and radius R, lower than the gravity–capillary length
lgc =

√
σ/ρg , disposed on a circular cylinder. The base of the

hemisphere coincides with the circular disc at the top of the
cylinder whose radius is at least R. The cylinder impulsively starts
from rest with a velocity U toward the drop or equivalently the
cylinder falls in free fall and imposes a velocity U to the drop when
that one hits the soil. Hence the impact induces a flow assumed
axisymmetric and inviscid. As shown in the previous paragraph
the impulsive problem is reduced to the derivation of Laplace’s
equation, in spherical coordinates in the present case:

1
r2

∂

∂r

(
r2

∂P
∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂P
∂θ

)
= 0. (3)

This equation is completed by (i) a dynamical condition which
represents normal stress continuity at the free surface S andwhich
takes account of the high Weber number hypothesis and (ii) a
condition expressing the sudden variation of velocity (u · ez)|z=0 =

U at the bottom of the drop P at the impact moment, where ez

Fig. 2. Left: Sketch of a drop of radius R sitting on a solid substrate. The latter is initially impacted from beneath. The impulsion induces deformations of the drop and
eventually its partial or total ejection if the impact energy is sufficiently large. Right: Sketch of the problem studied in this paper. A drop is disposed on an nondeformable
cylindrical substrate of larger radius. The latter rises impulsively with a velocity U toward the drop at time t = 0. This problem could also be seen as an impact problem by
considering the free fall of a cylinder with a drop disposed at its top. The substrate rises at a velocity U in the reference frame of the drop as soon as the cylinder hits the soil.



J. Philippi et al. / European Journal of Mechanics / B Fluids 67 (2018) 417–426 419

Fig. 3. Left: Impulsive problem sketched for a liquid domain of arbitrary shape at the impact moment. Right: Representation of the configuration considered in the present
paper where the free surface S is hemispherical.

is the upward unit vector. These two conditions are respectively
given by the following relations:

P(r = R) = 0, (4)
∂P
∂θ

⏐⏐⏐
θ=

π
2

= ρUr. (5)

The problem is non-dimensionalized using the scales R, ρ and U
and by introducing the following quantities:

r = Rr̄, u = U ū, P = ρURP̄, (6)

we rewrite the equations into their dimensionless counterparts:

1
r̄2

∂

∂ r̄

(
r̄2

∂ P̄
∂ r̄

)
+

1
r̄2 sin θ

∂

∂θ

(
sin θ

∂ P̄
∂θ

)
= 0, (7)

P̄(r̄ = 1) = 0, (8)
∂ P̄
∂θ

⏐⏐⏐
θ=

π
2

= r̄. (9)

The correspondingmodel is sketched Fig. 3.We notice that P̄0 =

−r̄ cos θ is a trivial solution of Laplace’s equation which verifies
the Neumann boundary condition (9). Then for convenience we
introduce a translation of the pressure impulse such that P̄ =

−r̄ cos θ + P̃ . This translation allows us to represent the solution
in the reference frame of the drop. The problem is hence rewritten
as the Laplace’s equation ∆P̃ = 0 with the following boundary
conditions:

P̃(r̄ = 1) = cos θ (10)
∂ P̃
∂θ

⏐⏐⏐
θ=

π
2

= 0. (11)

This mathematical formulation of the impact problem given by
Laplace’s equation and mixed boundary conditions is very general
and is reminiscent of many other problems involving different ge-
ometries e.g. the dambreak problem [20,21].Wewill present some
other examples for two-dimensional problems in the Appendix.

3. Solution of the impulsive problem and determination of the
slip velocity

In spherical coordinates, axisymmetric Laplace’s equation can
be solved with variable separation, leading to a family of elemen-
tary spherical harmonic solutions given by Fn(r̄, θ ) = r̄nPn(cos θ )
where Pn are Legendre polynomials of degree n. By decomposing
the solution into odd and even parts the condition (11) imply that
the solution of the problem must be written as

∑
+∞

n=0A2nF2n [22].
Hence the pressure impulse is given by the following relation:

P̃(r̄, θ ) =

+∞∑
n=0

A2nP2n(cos θ )r̄2n. (12)

Fig. 4. Comparison between the pressure impulse field induced by the impact
of a liquid hemisphere and a solid substrate extracted from the first step of a
Gerris simulation (left) and the one represented with equation (13) obtained with
the pressure impulse theory (right). The pressure field computed with Gerris (Re =

3000 and We = 130) is multiplied by the value of the first time step dt = 3.333 ×

10−5 in order to obtain the pressure impulse. As the isovalues are the same for both
cases (0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5), we note that theoretical and
numerical approaches are in excellent qualitative agreement.

The coefficients A2n are determined with the Dirichlet boundary
condition on the free-surface (10) and the orthogonality relations
of the Legendre polynomials [23]. Therefore, the pressure impulse
in the reference frame of the laboratory or equivalently the velocity
potential is given by Tyvand et al. [14] and Philippi et al. [24]:

P̄(r̄, θ ) = −z̄ +

∞∑
n=0

(−1)n+1(4n + 1)
(2n − 1)(2n + 2)

(2n)!
22n(n!)2

P2n(cos θ )r̄2n. (13)

Finally the velocity field in the reference frame of the drop at the
impact moment is deduced from relation (2):

uimpact|Rdrop
(r̄, θ ) = −∇

(
∞∑
n=0

A2nP2n(cos θ )r̄2n
)

. (14)

A closed-form expression of these solutions is unfortunately not
accessible in the general case. However, we will show in Section
4.2 that it is possible to calculate the value of these series at some
particular places.

Fig. 4 represents a comparison between the structure of the
pressure impulse field obtained from equation (13) and the one
extracted from the first step of a numerical computationperformed
with the Gerris flow solver (freely downloadable at http://gfs.
sourceforge.net). Gerris is a solver of the incompressible Navier–
Stokes equations for multiphase flows taking into account surface
tension and using a finite-volume approach, adaptivemesh refine-
ment to reduce computational costs and a Volume-of-Fluid (VoF)
method for interface tracking [25,26]. The computation was per-
formed in axisymmetric coordinates and the initial configuration
corresponds to a liquid hemisphere disposed on a solid surface. The

http://gfs.sourceforge.net
http://gfs.sourceforge.net
http://gfs.sourceforge.net
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Fig. 5. Comparison between the radial velocity field induced by the impact of a
liquid hemisphere and a solid substrate extracted from the first step of a Gerris sim-
ulation (left; Re = 3000 and We = 130) and the one obtained with the theoretical
prediction (14) deduced from the pressure impulse theory (right). Theoretical and
numerical results are in excellent qualitative agreement (isovalues: 0.2, 0.4, 0.6, 0.8,
1, 1.3, 1.6, 2).

air motion is also computed. The liquid phase is initialized with a
constant downward velocity with a slip boundary condition at the
substrate level. The Reynolds and Weber numbers corresponding
to the impact are respectively of 3000 and 130 in order to perform
a simulation in an inertia-dominated regime. As Gerris only com-
putes the pressure field it is necessary to multiply this quantity
by the value of the first time step dt = 3.333 × 10−5 in order
to obtain the pressure impulse field. We verified that the value of
the first time step of the simulation does not influence the results.
The two approaches are in excellent qualitative agreement and
reveal a structure with a maximum pressure at the center of the
impact reminiscent of some classic problems involving Laplace’s
equation with such boundary conditions e.g the impact of a wave
on a seawall [1].

We represent Fig. 5 a comparison between the structure of
the radial velocity field extracted from numerical computations
performed with Gerris and the one deduced from the pressure im-
pulse theory via equation (14). An excellent qualitative agreement
between the theoretical prediction and the numerical simulation
is measurable. Interestingly, the structure of this field shows a
degenerate behavior near the contact line which is a hint of the
existence of a singularity in this region.

The previous theoretical predictions can be used to determine
some quantities of interests such as the total net normal force
induced by the impact on the solid substrate or the slip velocity.
The first is obtained by integration over the wet surface of the
pressure impulse field and will be determined in Section 4. This
calculation involves the pressure impulse across the wetted region
P̄(r̄) := P̄(r̄, θ =

π
2 ), directly deduced from equation (13):

P̄(r̄) = −

∞∑
n=0

(4n + 1)
(2n − 1)(2n + 2)

(
(2n)!

22n(n!)2

)2

r̄2n. (15)

A representation of this last solution in very good agreement
with numerical solutions obtainedwithGerris andFreeFem++ [27]
is represented Fig. 6. This last software (freely downloadable at
http://www.freefem.org) is an open-source code solving partial
differential equations using the finite element method. The com-
putation was performed with the same initial configuration than
the Gerris one and the Laplace’s equation with the appropriate
boundary conditions was directly solved. The relative error be-
tween the Gerris numerical solution and the theoretical predic-
tion is lower than 1% except close to the contact line where the
error increases up to 6%. On the other hand the relative error
is lower than 1% all along the wetted region in the case of the
FreeFem++ numerical solution. As suggested by Fig. 4, the max-
imum of the pressure impulse is located on the axis of symmetry

Fig. 6. Representation of the analytic solution (red dashed line) of the pressure
impulse along the wet radius in excellent agreement with numerical solutions
extracted from Gerris (blue solid line) and FreeFem++ (black dashed line). Just as
Fig. 4we obtained the pressure impulse bymultiplying the pressure field computed
with Gerris (Re = 3000 and We = 130) by the value of the first time step
dt = 3.333×10−5 . (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 7. Comparison of the theoretical prediction of the slip velocity (red dashed
line) with numerical solutions extracted from Gerris (blue solid line - Re = 3000
and We = 130) and FreeFem++ (black dashed line). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

of the drop leading to a structure of the pressure field reminiscent
of the one generated by a wave impacting a seawall [1]. This kind
of structure is not universal for impact problems and the pressure
maximum could be located close to the contact line just like e.g. in
the case of the water entry problem [2,3,28] or for drop impact [6].

The slip velocity or velocity at the edge ūe(r̄) := ūr (r̄, θ =
π
2 ) is

an other quantity of interest. It is directly deduced from equation
(14) :

ūe(r̄) =

∞∑
n=1

n(4n + 1)
(2n − 1)(n + 1)

(
(2n)!

22n(n!)2

)2

r̄2n−1. (16)

Although this inviscid solution is not physical it is nonethe-
less relevant for it corresponds to the edge velocity of the vis-
cous boundary layer. More precisely this quantity is involved in
the composite solution matching the inviscid and viscous solu-
tions [29]. This theoretical prediction is compared with numerical
solutions computedwith Gerris and FreeFem++ in Fig. 7, revealing
an excellent agreement between the different approaches. The
relative error between both Gerris and FreeFem++ numerical so-
lutions and the theoretical prediction is around 1%. The nature of
the solution (16) and the structure of the velocity field will be
discussed in Section 4. Nonetheless the boundary layer problem is
beyond the scope of the present paper. We note that solutions (15)
and (16) can be expressed with hypergeometric functions that we
will not specify here.

http://www.freefem.org
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Fig. 8. Comparison between the analytical solution of the slip velocity deduced
with spherical harmonics (equation (16) - blue continuous line) and its logarithmic
equivalent close to the contact line (equation (17) - red dashed line). (For interpre-
tation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

4. Discussion

4.1. Singularity at the contact line of the slip velocity

As alreadymentioned in the previous section, the radial velocity
field has a singular behavior close to the contact line. In order
to discover the nature of this singularity we will determine the
asymptotic behavior of the slip velocity deduced from spherical
harmonics near the contact line (see equation (16)).

By using Stirling’s approximation we deduce that the general
term of this series is asymptotically equivalent to 2

πn . Hence close
to the contact line, the slip velocity (16) is given by the relation:

ūe(r̄) ∼
r̄→1

2
π

∞∑
n=1

r̄2n−1

n
.

Recognizing the Taylor expansion of the logarithm we finally de-
duce that the asymptotic behavior of the slip velocity close to the
contact line corresponds to a logarithmic divergence leading to the
following approximation:

ūe(r̄) ∼
r̄→1

−
2
π

log(1 − r̄2)
r̄

. (17)

This last asymptotic equivalent matches satisfactorily with the
theoretical prediction even near the origin (see Fig. 8). We note
that each of the numerical solutions deviate from the singular
theoretical prediction near the contact line and reach a finite value.
The logarithmic singularity of the slip velocity is in fact not really
surprising. Mathematically, a singularity at the contact line of the
gradient of a harmonic function is a consequence of the transition
from Dirichlet to Neumann boundary condition at this location.
This kind of behavior is universal in potential theory and is remi-
niscent of numerous problems as heat transfer, fracturemechanics
with the thorn singularity [30] or fluid mechanics [21,31,32]. De-
pending on the shape of the domain, the nature of the singularity
could also evolve into a power-law singularity as for the problem
of droplet’s evaporation [33].

The regularization of the singularity will be done in a future
work. However, it is clear that it is not possible to neglect the
non-linear effects close to the contact line because of the high
velocity gradient leading to formation of a liquid sheet in this
region. In such a case, Eq. (1) would be not valid anymore and
the pressure impulse theory would be not accurate in this region.
Consequently, a more careful investigation is necessary to resolve
this singularity. Indeed, the solution presented in this paper is
an outer solution. The correct structure of the flow field near the
contact line should be revealed by using the method of matched

asymptotic expansions. More precisely it will be relevant to follow
the methodology from e.g Korobkin and Yilmaz [20], King and
Needham [34] or Needham et al. [35]. The idea is to define at least
one appropriate inner region and consider the correction of the
leading-order problem. The new problem will be nonlinear and its
solution will be spatially non-singular.

4.2. Closed-form expressions for the pressure impulse and velocity
fields along the axis of the drop

We represented in the previous section the solutions of the im-
pact problem with spherical harmonics. A closed-form expression
is unfortunately not accessible in the general case. However, there
exists explicit solutions for the pressure and velocity fields along
the axis of symmetry of the drop. These two quantities, depending
on the coordinates z̄ = r̄ along this axis, are deduced fromEqs. (13)
and (14) for θ = 0 and are respectively given by:

P̄(z̄) := P̄(z̄, θ = 0) = −z̄ +

√
1 + z̄2 +

1 −
√
1 + z̄2

z̄2
, (18)

ūz(z̄) := ūz(z̄, θ = 0) =
−2 − z̄2 − z̄4 + 2

√
1 + z̄2

z̄3
√
1 + z̄2

(19)

These last results are confronted with numerical solutions ex-
tracted from Gerris and FreeFem++ in Fig. 9. There is again an ex-
cellent agreement between the computations and the theoretical
prediction.

4.3. Structure of stagnation point flow

The calculation of the first mode of the velocity field (14) re-
spectively along the substrate (θ = π/2) and along the axis of
symmetry of the drop (θ = 0) leads to the following representation
of the flow near the origin:⎧⎪⎨⎪⎩

ūr (r̄, z̄) ≃
5
8
r̄,

ūz(r̄, z̄) ≃ −
5
4
z̄,

(20)

which corresponds to a structure of stagnation point flow. Equiva-
lently, the ūz component of the field could be obtained with the
first order power series of the analytic solution (19). The com-
plete structure of the flow within the drop at the impact moment
is extracted from equation (14) and represented Fig. 10 via its
streamlines. This last reveals the stagnation point structure of the
flow.

By applying the same series expansion to the asymptotic equiv-
alent of the slip velocity (17) near the origin, we obtain the follow-
ing relation:

−
2
π

log(1 − r̄2)
r̄

=
2
π
r̄ + o(r̄2), r̄ → 0.

Consequently the good agreement between equation (17) and the
slip velocity near the origin of the impact is due to the well known
rough approximation 5

8 ≃
2
π
.

4.4. Momentum’s lost during impact

By applying Newton’s second law to the drop, we obtain by
integration over the impact duration τ the momentum’s variation
at the impact moment:

p̄1 − p̄0 =

∫ τ

0
F̄ (t) dt, (21)

where p̄0 and p̄1 are respectively the momentum of the drop
before and after the impact. The net force F̄ applied to the system
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Fig. 9. Representation of the analytic solution (red dashed line) of respectively the pressure impulse (left) and the velocity (right) along the axis of the drop in excellent
agreement with numerical solutions extracted from Gerris (blue solid line) and FreeFem++ (black dashed line). The pressure impulse was obtained by multiplying the
pressure field computed with Gerris (Re = 3000 and We = 130) by the value of the first time step dt = 3.333 × 10−5 . (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 10. Streamlines of the flow induced by the impact extracted fromequation (14).
The pressure field developing inside the drop is represented in the background.

corresponds here to the net normal total force exerted by the
boundary on the fluid. The latter is given by the integration of the
pressure field over thewet surface.We deduce after a permutation
of spatial and temporal integration that the vertical momentum’s
variation directly depends on the integration of pressure impulse
over the wet length P . Hence the projection of the equation (21)
onto ez is given by the following scalar equation:

p̄0 − p̄1 =

∫
P
P̄(r̄) dS,

with dS = r̄ dr̄ dϕ. Therefore equation (15) imply that the differ-
ence of vertical momentum is given by:

p̄0 − p̄1 = −2π
+∞∑
n=0

(4n + 1)
(2n − 1)(2n + 2)2

(
(2n)!

22n(n!)2

)2

=
2
3
(3π − 8).

On the other hand, the initial momentum is simply p̄0 =
2
3π .

Finally the resulting momentum after impact in its dimensional
counterpart is given by :

p1 =

∫
V

ρu.ez dV =
2
3
(8 − 2π ) ρUR3. (22)

5. Conclusion

We considered in this paper impact problems involving hemi-
spherical liquid domains,with an emphasis on its impulsive aspect.
The initial configuration we consider in this study is the free fall of
a rigid cylinder with a drop disposed at its top. A vertical velocity
is imposed to the drop when this last hits the soil.

By using the pressure impulse theory this problem could be
reduced to the derivation of Laplace’s equation with Neumann

and Dirichlet boundary conditions. The pressure impulse along the
wetted region and the slip velocity have been deduced from the
spherical harmonics representation of the solution. The theoretical
predictions proposed in this paper are in very good agreement
both qualitatively and quantitatively with the first time step of
Gerris numerical simulation and with FreeFem++ calculation.

The structure of the velocity field induced by the impact has
been depicted in the discussion. In particular we exhibit a logarith-
mic singularity at the contact line for the slip velocity, due to the
mixed boundary conditions at this location. We also determined
closed-form expressions for the pressure impulse and velocity
fields along the axis of the drop and we discussed the structure
of stagnation point of the flow. To complete the description of the
flow induced by the impact it will be necessary to match the invis-
cid solution with the viscous one and to explain the regularization
of the velocity field close to the contact line.

The impact problem as defined in Section 2.2 is general and
could be used to study many configurations with different geome-
tries as detailed in the Appendix for two-dimensional problems
involving planar and circular liquid domains. The structure of the
pressure impulse and velocity fields are analogous to those deter-
mined in the axisymmetric case.

Appendix. The two-dimensional case

Asmentioned in Section 2, the class of impact problems studied
in this paper is very general. In particular the pressure impulse
theory could be applied in many problems involving different
geometries of the fluid domain. In this appendix we will solve
few two-dimensional impulsive problems involving plane and cir-
cular boundaries. Since the problem is reduced to the derivation
of Laplace’s equation, several methods could be used, leading to
equivalent mathematical representations of the solution of the
problem (see Section 3). Complex analysis is especially an inter-
esting alternative for two-dimensional problems.

Appendix A. Short-time behavior of free-surface flows gener-
ated by moving a vertical plate

Weconsider here the followingproblemstudiedbyRoberts [13].
An infinitely deep fluid with a free surface y = η(x, t) is bounded
on the left by a vertical wall at rest. As shown Fig. A.11, the plate
of height R initially moves horizontally with a constant velocity,
corresponding to an impulsive acceleration as described in the
original paper. The flow induced by this motion being irrotational
we can define a velocity potential φ such as the velocity field is
given by u = ∇φ. By assuming that the flow is incompressible we
deduce that the velocity potential is solution of Laplace’s equation
∆φ = 0. An approach to determine the evolution of the flow near
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Fig. A.11. Sketch of the problem studied by Roberts [13] where the horizontal
impulsive motion of a vertical plate generates free-surface flow.

the contact line is to use a time decomposition in series of time for
φ and η [36]:

φ = φ0 + t φ1 + · · · , η = η0 + t η1 + · · · .

Then the short-time behavior is given by the dominant problem
and the velocity potential do not have any time dependence at
leading order. We deduce from the analysis of Peregrine [36]
that the fluid’s motion is governed by Laplace’s equation for the
velocity potential at leading order ∆φ0 = 0 in the fluid domain.
The uniform velocity of the moving plate leads to the following
Neumann boundary condition:

∂φ0

∂x
|x=0 =

{
α, −R < y < 0,
0, y < −R. (A.1)

where α is a real number purely positive with the dimension of a
velocity. At the free surface, Bernoulli’s equation implies that the
pressure is constant at leading order. Hence we have:

φ0 = 0, when y = 0. (A.2)

The Peregrine’s decomposition is also applied to the kinematic
condition at the free-surface DS

Dt = 0 with S = y − η(x, t). Then at
leading-order the free-surface elevation is given by the derivative
of the velocity potential:

η1 =
∂φ0

∂y
, when y = 0. (A.3)

Finally we have to solve Laplace’s equation with Neumann and
Dirichlet boundary conditions (A.1) and (A.2). This problem is for-
mally identical to the onewe solved in the present paperwhere the
velocity potential and the free-surface elevation are respectively
the counterpart of the pressure impulse and the radial velocity
along thewet surface.We also note that the pressure impulse P , as-
sociated to the impact problem previously defined, may be related
to the harmonic velocity potential via the relation P = −ρφ [18].
Then the relation (2), which relates the impact velocity with the
pressure impulse, corresponds to the relation (A.1). Therefore we
expect that the solutions of the problem described by Roberts will
share the same characteristic than the impact one e.g. the singular
behavior of the derivative of the harmonic function, corresponding
to the free-surface elevation in the present case, near the contact
line.

The logarithmic behavior of the displacement of the free-
surface is determined by Roberts with complex analysis. The idea

is to calculate the complex velocity by distributing sources along
the wall and images above the line y = 0:

q̄0 =

∫ 0

−R

(
D

2π (z − ia)
−

D
2π (z + ia)

)
da,

where z = x + iy and the source strength on the wall is D =

−2 ∂φ0
∂x |x=0. Moreover the complex velocity could be written q̄0 =

u0 − iv0 by definition. Hence the leading-order short-time free-
surface elevation is deduced by identification:

η1(x, 0) =
α

π
log
(
1 +

R2

x2

)
. (A.4)

As expected this quantity has a logarithmic behavior near the con-
tact line. This singularity has been removed by Needham et al. [35]
by using matched asymptotic expansions.

In the case, not considered by Roberts, where we have to solve
this problem with an additional boundary in y = −R with a
Neumann condition ∂φ

∂y = 0, we need to symmetrize by this new
line the solution obtainedwith complex analysis. The idea is to use
an infinity of images along the x-axis. We calculate the complex
velocity with the image by the line y = −R of the distribution of
source along thewall and its image. And by induction, we calculate
the complex velocity with the image by the line y = −nR and
y = nR where n is an odd number and we sum all of these
contributions:

q̄0 =
α

π

∫ R

0

(
1

z + ia
−

1
z − ia

+
1

z + 2iR − ia

−
1

z + 2iR + ia
+ · · ·

)
da

Then we determine the position of the free-surface by identifica-
tion:

η1(x, 0) =
α

π

+∞∑
k=−∞

(−1)k Im
(
i log

(
1 +

R2

(x + 2ikR)2

))
. (A.5)

Finally this example illustrates the interest of complex analysis
for two-dimensional problems. However, this framework is not
applicable in three dimension. From now we will solve problems
with methods involving only real analysis, as in the present paper.

Appendix B. Impact of a wave on a seawall: An other example
of planar geometry

The pressure impulse theory was also applied to the classic
problem of the impact of a wave on a vertical seawall by Cooker
and Peregrine [1]. Just as in the present study, the problem is re-
duced to the derivation of Laplace’s equationwithmixed boundary
conditions. An extra Neumann condition for the pressure impulse
is imposed at the bottom of the domain for symmetry. In the case
of an idealized semi-infinite wave impacting a wall on a fraction
µ of its total height (see Fig. B.12 left) the authors determined
with Fourier analysis an analytical solution for the velocity along
the wall after impact vimpact . This last quantity, determined with
the gradient of the pressure impulse (see equation (2)), is given in
absolute value by:

|vimpact (x, y)| = 2U
∞∑
n=1

cos(µλn) − 1
λn

cos
(

λny
R

)
e

−λnx
R ,

with λn =
(
n −

1
2

)
π . Note that there is a typo in the paper of

Cooker and Peregrine [1], a factor -2 is lacking in the equation (4.1).
By using the substitutions x = Rx̄, y = Rȳ and vimpact = U v̄impact ,
we obtain the dimensionless form of the previous result:

|v̄impact (x̄, ȳ)| = 2
∞∑
n=1

cos(µλn) − 1
λn

cos (λnȳ) e−λn x̄. (B.1)
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Fig. B.12. (a): Impact of a semi-infinite wave on a fraction µ of the height of a seawall studied by Cooker and Peregrine [1]. A condition of symmetry given by a Neumann
boundary condition ∂P/∂y = 0 is imposed at the bottom of the fluid domain. (b): Model of the impact of a semi-infinite wave on a solid substrate analogous to the problem
solved in the present paper. In this case we have the Dirichlet boundary condition P = 0 on the right side.

By replacing the Neumann boundary condition ∂P/∂y = 0 at
the bottom of the fluid domain by a Dirichlet condition P = 0
and choosing µ = 1 we model an impact of a semi-infinite wave
on a solid substrate which could be seen as a two-dimensional
counterpart for planar geometry of the problem we considered in
this paper. By switching axis, as shown Fig. B.12 right, we deduced
from the previous solution andwith an argument of symmetry that
for all (x̄, ȳ) ∈ Ω1 \ (0, 0) (respectively (x̄, ȳ) ∈ Ω2 \ (2, 0)) the
horizontal impact velocity is given by:

v̄impact (x̄, ȳ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−2

∞∑
n=1

e−λn ȳ

λn
cos (λnx̄) , (a)

2
∞∑
n=1

e−λn ȳ

λn
cos (λn(2 − x̄)) . (b)

(B.2)

with Ω1 = [0, 1] × R+ and Ω2 = [1, 2] × R+. The pressure field
inside the fluid domain could be also expressed in a similar way for
all (x̄, ȳ) ∈ Ω1 (respectively (x̄, ȳ) ∈ Ω2):

P̄(x̄, ȳ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2

∞∑
n=1

e−λn ȳ

λ2
n

sin (λnx̄) , (a)

2
∞∑
n=1

e−λn ȳ

λ2
n

sin (λn(2 − x̄)) . (b)
(B.3)

We represent Fig. B.13 the pressure and the radial velocity
fields obtainedwith previous analytical solutions. The height of the
domain is large enough to avoid confinement effects in order to be
consistent with the hypothesis of semi-infinity. As expected, the
structure of these fields are similar than the ones obtained in the
case of a hemispherical liquid domain. The maximum value of the
pressure impulse occurs at the center of the wet surface while the
horizontal velocity is singular in the corner due tomixed boundary
conditions at this point as explained in Section 4.1.

Cooker and Peregrine [1] show in their appendix by using
complex analysis that the singularity near the wall is logarithmic
(v̄impact (0, ȳ) ∼ −

2
π
log(ȳ)). Up to this point, we have completely

followed the analysis of Cooker and Peregrine [1]. However, con-
trary to these authors we want to determine the nature of the

singularity at the corner with amethod involving real analysis. We
consider from now the solution corresponding to 1 ≤ x̄ ≤ 2. In
particularwe study the solution along the free surface x̄ = 2. Hence
the horizontal component of the velocity field is given by:

v̄impact (2, ȳ) = 2
∞∑
n=1

e−λn ȳ

λn
. (B.4)

In order to show that this sum have a logarithmic singularity, we
first consider the following equation, valid for y > 0:
+∞∑
n=1

2e−λny = cosech
(πy

2

)
.

By integrating this relation from y = ȳ to y = +∞, we obtain:

v̄impact(2, ȳ) = −
2
π

log
[
tanh

(
π ȳ
4

)]
. (B.5)

Finally, the velocity along the free-surface has a logarithmic singu-
larity as ȳ tends to zero.

Appendix C. Derivation of the two-dimensional hemispherical
liquid impact problem

In this last appendix we propose to solve the impact problem
studied in this paper in a two-dimensional space by using bound-
ary integral method. This problem is also analogous to the one
studied by Cooker and Peregrine [1] for a circular liquid domain.
The boundary of the domain is designated in this case by C =

C1 ∪ C2 with C1 = {(x, y)| − R ≤ x ≤ R, y = 0} and C2 =

{(x, y)|x2 + y2 = R2, y > 0}. As the axisymmetric case the model is
sketched Fig. 3 right.

C.1. The boundary integral method

The boundary integral method is used to solve linear partial dif-
ferential equations and allows to obtain analytical solutions when
the geometry is simple [37–39]. When the shape of the boundaries
becomes too complex, numerical solutions can also be computed.
Themain idea of this method lies in the determination of the value
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Fig. B.13. Left: Isovalues of the horizontal velocity field (left) and of the pressure impulse field (right) induced by the impact of a semi-infinite wave on a seawall, obtained
respectively with the theoretical solutions (B.2a) –(B.2b) and (B.3a)–(B.3b).

of a field satisfying a certain linear partial differential equation in
all points of a domainΩ only from its values on the boundary. This
approach is particularly interesting to solve Laplace’s equation.
Formally, considering G a Green’s function i.e such as ∆G = δ
where δ is the Dirac delta function and using Green’s theorem, the
value of a field f for all x = (x, y, z) ∈ Ω3 is given by Pozrikidis
(1997) [37], (2002) [38], and Bonnet [39]:

f (x) = −

∫
∂Ω

G(x, ξ)
∂ f
∂n

(ξ) dξ dζ

+

∫
∂Ω

f (ξ)
∂G
∂n

(x, ξ) dξ dζ , (C.1)

where ξ = (ξ, ζ , τ ) ∈ ∂Ω3. The unit normal n is, by convention,
pointing outward Ω . The first integral of the right hand side of
this equation is designated by SLP (single layer potential) and the
second integral by DLP (double layer potential). When x ∈ ∂Ω we
can also compute f . However, in this case DLP becomes improper
but this term is still convergent [37,38]. Then for all x ∈ ∂Ω:

f (x) = − 2
∫

∂Ω

G(x, ξ)
∂ f
∂n

(ξ) dξ dζ

+ 2
∫

∂Ω

f (ξ)
∂G
∂n

(x, ξ) dξ dζ . (C.2)

C.2. Application to circular liquid impact problem

In order to compute the pressure impulse we have to choose
an appropriate Green’s function G for this problem. By appropriate
we mean that G have to respect some conditions of symmetry. We
define two kinds of Green’s functions for a given x ∈ Ω̄:

1. the Green’s function of first kind, defined by:

∀ξ ∈ C, G(x, ξ) = 0,

2. the Green’s function of second kind, defined by:

∀ξ ∈ C,
∂G
∂n

(x, ξ) = 0,

where C = S ∪ P is the boundary of the domain (see Fig. 3). We
have to choose for all part of the domain a Green’s function of first
kind or second kind. Because P̄ = 0 on the free surface S , DLP is
equal to zero on this boundary. If we can find a Green’s function
of first kind on S then the contribution given by this boundary in
the computation of P̄ will be null. Similarly we know the normal
derivative of P̄ on the wetted region P then if we choose a Green’s

Fig. C.14. Comparison between the slip velocity determined in the axisymmetric
case (red dashed line) and in the two-dimensional case (blue continuous line). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

function of the second kind, DLP will be zero on this boundary.
Therefore we need in this case a Green’s function which verifies
these boundary conditions on the boundary and which is sym-
metric on (x, y, z) and (ξ, ζ , τ ). An appropriate Green’s function,
defined for x ∈ Ω̄ , is given by:

∀ξ ∈ Ω̄, G(x, ξ) = −
1
2π

log r +
1
2π

log
(

|ξ|

R
r̂
)

, (C.3)

with r = |x − ξ| =

√
(x − ξ )2 + (y − ζ )2 and r̂ = |x − ξ∗

| the
distance between x and ξ∗

=
R2

|ξ|2
ξ . ξ∗ is the inverse of ξ with

respect of the circle of center (0, 0) and radius R. Therefore by
using the Green’s function (C.3) the pressure impulse along thewet
surface is given by:

P(x) = −2
∫
C1

G(x, ξ)
∂P
∂ζ

(ξ) dξ (C.4)

Consequently by using the substitutions (x, y) = R(x̄, ȳ),
(ξ, ζ ) = R(ξ̄ , ζ̄ ) and ue = Uūe, we obtain for all x̄ ∈ C1:

ūe(x̄) = −
1
π

∂

∂ x̄

∫ 1

−1

(
− log

(√
(x̄ − ξ̄ )2 +

(
ȳ − ζ̄

)2)
+ log

(√
1 − 2(x̄ξ̄ + ȳζ̄ ) + (x̄2 + ȳ2)(ξ̄ 2 + ζ̄ 2)

))
dξ̄ .

We finally obtain the two-dimensional slip velocity:

ūe(x̄) = −
1
π

(
2
x̄

−

(
1 +

1
x̄2

)
log
(
1 + x̄
1 − x̄

))
. (C.5)
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This last solution, contrary to the one determined in axisym-
metric geometry, could be expressed explicitly. Although the for-
mulation of these two solutions are different, their structure are
very similar (see Fig. C.14). As for all the previous problems studied
in this paper the slip/impact velocity has a logarithmic singularity
close to the contact line. In this last calculation, this singular
structure directly emerge from the Green’s function appropriated
to this problem.
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