
rspa.royalsocietypublishing.org

Research
Cite this article: Neukirch S, Antkowiak A,
Marigo J-J. 2013 The bending of an elastic
beam by a liquid drop: a variational approach.
Proc R Soc A 469: 20130066.
http://dx.doi.org/10.1098/rspa.2013.0066

Received: 1 February 2013
Accepted: 5 June 2013

Subject Areas:
mechanical engineering, *uid mechanics,
mathematical modelling

Keywords:
capillarity, one-dimensional elasticity,
bifurcation, irreversibility

Author for correspondence:
Sébastien Neukirch
e-mail: sebastien.neukirch@upmc.fr

The bending of an elastic beam
by a liquid drop: a variational
approach
Sébastien Neukirch1,2, Arnaud Antkowiak1,2 and

Jean-Jacques Marigo3

1CNRS, UMR 7190, Institut Jean Le Rond d’Alembert, 75005
Paris, France
2UPMC Univ Paris 06, UMR 7190, Institut Jean Le Rond d’Alembert,
75005 Paris, France
3CNRS, Ecole Polytechnique, UMR 7649, Lab. Méca. Solides, 91128
Palaiseau Cedex, France

We study the interaction of a liquid drop with
an elastic beam in the case where bending effects
dominate. We use a variational approach to derive
equilibrium equations for the system in the presence
of gravity and in the presence or absence of contact
line pinning. We show that the derived equilibrium
equations for the beam subsystem reveal the external
forces applied on the beam by the liquid and vapour
phases. Among these, the force applied at the triple
line (the curve where the three phases meet) is found
to lie along the liquid–vapour interface.

1. Introduction
The present trend towards miniaturization of engineering
systems and machines is giving surface effects the
leading role: in a system of size L, the respective scalings
of volume (L3) and surface (L2) forces are such that the
latter outrange the former as soon as L is small enough.
Among other surface effects, surface tension is now
widely used at small scales, for example, to self-assemble
microsystems [1]. The concept of force is not easy to
explain to recalcitrant students: has anyone already seen
a force? How to be sure of the direction of an applied
force? Capillary forces are no exception, and conceptual
questions about it recurrently emerge [2]. These capillary
forces are now used to bend small elastic structures [3],
and it has been previously shown that under certain
conditions water droplets could be encapsulated by
elastic strips [4–6]. In these works, models were derived
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using a force approach where the capillary force applied on the beam at menisci was assumed
to be along the liquid–air interface. This assumption has recently been questioned [7], and to
investigate the matter, we here study the interaction of a liquid drop with a flexible beam from
an energy point of view. In particular, we derive equilibrium equations of the system from a
variational approach that is merely built on the classical hypothesis of the presence of surface
energies arising at interfaces between the three phases: solid, liquid and vapour. As a refinement
to previous works, we here also consider the hydrostatic pressure in the liquid drop and show
how the interacting equations for the shape of the liquid–air interface and the elastic beam are
solved simultaneously.

In §2, we recall that the Young–Dupré relation for the contact angle of a drop lying on a
substrate can be derived from a variational approach where the concept of force is not invoked,
as first realized by Gauss [8,9] and see also Kirchhoff [10]. In §3, we consider the case where
the substrate is a flexible beam, and we add gravity (for the beam and the liquid) in §4. In §5,
we extend our model to the case of contact line pinning and we finally illustrate our results by
computing the behaviour of a drop-beam system as the drop evaporates. Conclusion follows in §6.

2. Liquid drop on rigid substrate, no gravity
We consider the equilibrium of a liquid drop of given volume sitting on a rigid substrate of length
L (figure 1). If the drop is small enough, then gravity and the hydrostatic part of the pressure
can be neglected, and consequently, the liquid–air interface is circular. For the sake of simplicity,
we adopt a two-dimensional framework where the liquid–vapour interface is a cylindrical arc
(figure 1a). This two-dimensional approximation has been used in Antkowiak et al. [5] and
Rivetti & Neukirch [6] where it has been shown to reasonably reproduce experimental data. We
call r its radius, w its height and 2β its opening angle. The liquid–vapour interface then comprises
(i) a cylindrical surface of area 2βrw, and (ii) two planar caps, each of area A = r2(β − sin β cos β).
The wetting angle is equal to β, and the wetted length of the beam is noted 2D. To each of the
three different interfaces, liquid–solid, liquid–vapour and solid–vapour, we associate an energy
per area: γ#s, γ#v and γsv, respectively. The energy of the system is then given by the sum:

E(β, r, D) = 2(wβr + A)γ#v + 2wDγ#s + 2w(2L − D)γsv. (2.1)

To minimize E under the constraints of (i) fixed volume V = Aw = wr2(β − sin β cos β), and
(ii) geometric relation D = r sin β, we then introduce the Lagrangian:

L= E − ηw(2D − 2r sin β) − µw[r2(β − sin β cos β)], (2.2)

where η and µ are Lagrange multipliers. We note γ = γ#v and %γ = γ#s − γsv. Equilibrium
equations are found by imposing that derivatives of L with regard to the three variables
β, r, D vanish

∂L
∂β

= 0 = 2wrγ + 2ηwr cos β − µwr2(1 − cos 2β), (2.3a)

∂L
∂r

= 0 = 2wβγ + 2ηw sin β − 2µwr(β − sin β cos β) (2.3b)

and
∂L
∂D

= 0 = 2w%γ − 2ηw. (2.3c)

Combining (2.3a) cos β + (2.3b) r sin β and (2.3a) sin β – (2.3b) r cos β yields γ = µr and γ cos β +
η = 0, and using (2.3c) gives η = %γ . We finally arrive at

%γ + γ cos β = 0 (2.4)

and
µ = γ

r
. (2.5)
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Figure 1. (a,b) A two-dimensionalmodel of a liquiddropat rest ona rigid substrate. In theabsenceof gravity, the liquid–vapour
interface is a circular arc of radius r. The contact angleβ is set by the balance of the interfaces energies, see equation (2.5), and
the wetted length 2D depends on the drop volume V. (Online version in colour.)

The first equation is the well-known Young–Dupré relation giving the contact angle and can be
interpreted as a force balance of the triple point in the horizontal direction. The second equation
gives the Laplace pressure inside the liquid drop. In the vertical direction, force balance is also
achieved: the vertical forces acting on the rigid substrate are the distributed Laplace pressure µ

and the surface tension γ#v , with the total downward force being 2Dwµ and the total upward force
being 2γ#v sin β. Using (2.5) and D = r sin β, we see that these two forces equilibrate. We shall see
in §3 that when the substrate is a thin elastic strip, these forces induce flexural deformations.

3. Liquid drop on a *exible beam, no gravity
We now consider the case of a liquid drop sitting on an elastic strip (figure 2), and we look for
equilibrium equations governing the bending of the elastic strip by capillary forces. We still work
under the hypothesis where gravity and the hydrostatic part of the pressure can be neglected,
yielding a circular liquid–air interface. In addition to the sum of the three interface energies:

Eγ = 2(wβr + A)γ#v + 2wDγ#s + 2w(2L − D)γsv (3.1)

we consider the bending energy of the elastic strip. We use the arc-length s along the strip to
parametrize its current position r(s) = (x(s), y(s)). The unit tangent, t(s) = dr/ds, makes an angle
θ (s) with the horizontal axis: t = (cos θ (s), sin θ (s)). The bending energy density is proportional to
the square of the curvature θ ′(s):

Eκ = 1
2

YI
∫L

−L
[θ ′(s)]2 ds, (3.2)

where YI is the bending rigidity of the strip (Y is Young’s modulus of the beam material, and
I = h3w/12 is the second moment of area of the section of the beam). We minimize E = Eκ + Eγ

under the following four constraints. First, the liquid volume V is fixed. It is given by V = wA,
where A is the area in between the liquid–air interface and the liquid–solid interface:

A = r2
(

β − 1
2

sin 2β

)
+ 2x(D)y(D) −

∫ x(D)

x(−D)
y dx. (3.3)

Second, we have the geometric constraint:

x(D) = r sin β (3.4)

that is due to the intersection of the circular liquid–vapour interface and the beam at s = D. As
the variables x(s), y(s) and θ (s) all appear in the present formulation, we have to consider the
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Figure 2. An elastic strip bent by capillary forces. In the absence of gravity, the liquid–vapour interface is a circular arc, and the
strip outside the interaction region is straight. The system is invariant is the z-direction, withwidthw. (Online version in colour.)

continuous constraints relating them. These are our third and fourth constraints:

x′(s) = cos θ (s), y′(s) = sin θ (s). (3.5)

These continuous constraints necessitate the use of varying Lagrange multipliers ν(s) and λ(s). We
therefore introduce the Lagrangian:

L= Eκ + Eγ − µw

[

r2
(

β − 1
2

sin 2β

)
+ 2x(D)y(D) −

∫D

−D
yx′ ds

]

− ηw[x(D) − r sin β] +
∫L

−L
ν(s)[x′ − cos θ ] ds +

∫L

−L
λ(s)[y′ − sin θ ] ds. (3.6)

As we will treat only symmetric solutions, we focus on the positive s interval: s ∈ [0; L] with the
following boundary conditions:

x(0) = 0, y(0) = 0, θ (0) = 0. (3.7)

We also remark that in this elastica model, the varying Lagrange multiplier ν(s) and λ(s) will be
found to be the internal force components (appendix A). As the external force coming for the
meniscus will make the internal force discontinuous as s passes through s = D, we split the two
last integrals in the Lagrangian (3.6) and write:

s ∈ [0; D) : ν(s) = νi(s), λ(s) = λi(s) (3.8)

and

s ∈ (D; L] : ν(s) = νe(s), λ(s) = λe(s). (3.9)

Dropping out constant terms, we arrive at:

L(x, y, θ , β, r, D) = 1
2

YI
∫L

0
[θ ′(s)]2 ds + wβrγ + wD%γ − ηw

[∫D

0
x′ ds − r sin β

]

− µw

[
r2

2

(
β − 1

2
sin 2β

)
+

∫D

0
x′ ds ×

∫D

0
y′ ds −

∫D

0
yx′ ds

]

+
∫D

0
νi(s)[x′ − cos θ ] ds +

∫L

D
νe(s)[x′ − cos θ ] ds

+
∫D

0
λi(s)[y′ − sin θ ] ds +

∫L

D
λe(s)[y′ − sin θ ] ds, (3.10)

where γ = γ#v and %γ = γ#s − γsv.
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(a) First variation
The energy E and the Lagrangian L are functions of the variables x, y, θ , β, r, D. We note
X = (x, y, θ , β, r, D) and we consider the conditions for the state Xe to minimize the energy E.
Calculus of variation shows that a necessary condition is

L′(Xe)(X̄) = d
dε

L(Xe + εX̄)
∣∣∣∣
ε=0

= 0, (3.11)

where X̄ = (x̄, ȳ, θ̄ , β̄, r̄, D̄). Moreover, boundary conditions (3.7) imply that x̄(0) = 0, ȳ(0) = 0, θ̄ (0) =
0. Noting that:

∫A+εĀ

0
f (x) dx =

∫A

0
f (x) dx + εĀf (A) + O(ε2) (3.12)

we evaluate the first variation (3.11) to be

L′(Xe)(X̄) = YI
∫L

0
θ ′θ̄ ′ ds + wβ r̄γ + wβ̄rγ + wD̄%γ − µw

[

rr̄
(

β − 1
2

sin 2β

)
+ β̄r2

2
(1 − cos 2β)

]

− µw

[∫D

0
x̄′ ds ×

∫D

0
y′ ds +

∫D

0
x′ ds ×

∫D

0
ȳ′ ds + D̄x′(D)y(D) + D̄x(D)y′(D)

]

+ µw

[∫D

0
ȳx′ ds +

∫D

0
yx̄′ ds + D̄y(D)x′(D)

]

− ηw

[∫D

0
x̄′ ds + D̄x′(D) − r̄ sin β − rβ̄ cos β

]

+
∫D

0
νi(s)[x̄′ + θ̄ sin θ ] ds +

∫L

D
νe(s)[x̄′ + θ̄ sin θ ] ds

+
∫D

0
λi(s)[ȳ′ − θ̄ cos θ ] ds +

∫L

D
λe(s)[ȳ′ − θ̄ cos θ ] ds (3.13)

where we have used (3.5) at s = D to eliminate some terms related to the last four integrals. We
require this expression to vanish for all x̄(s), ȳ(s), θ̄ (s), β̄, r̄ and D̄. For (3.13) to vanish for all β̄, we
must have, as before

rwγ − µw
r2

2
(1 − cos 2β) + ηwr cos β = 0. (3.14)

For (3.13) to vanish for all r̄, we must have, as before:

βwγ − µwr(β − sin β cos β) + ηw sin β = 0. (3.15)

Combining these last two equations, we obtain:

µr = γ and γ cos β + η = 0, (3.16)

where µ is identified to the Laplace pressure. For (3.13) to vanish for all D̄, we must have:

w%γ − µwx(D)y′(D) − ηwx′(D) = 0. (3.17)

Using (3.4), (3.5) and (3.16), we obtain:

%γ + γ cos[β + θ (D)] = 0. (3.18)

This is the Young–Dupré relation for the wetting angle β + θ (D) between the beam and the liquid–
air meniscus. Requiring (3.13) to vanish for all θ̄ yields, after integration by parts:

YI[θ ′θ̄ ]D
0 +

∫D

0
[−YIθ ′′ + νi sin θ − λi cos θ ]θ̄ ds

+ YI[θ ′θ̄ ]L
D +

∫L

D
[−YIθ ′′ + νe sin θ − λe cos θ ]θ̄ ds = 0 (3.19)
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which implies that the curvature θ ′(s) is continuous as s goes through D and that it vanishes at
the s = L extremity. Moreover, we obtain the moment equilibrium equations:

YIθ ′′ = νi sin θ − λi cos θ for s ∈ [0; D) (3.20)

and

YIθ ′′ = νe sin θ − λe cos θ for s ∈ (D; L], (3.21)

where we see that the continuous Lagrange multipliers ν(s), and λ(s) can be identified as the x and
y components of the internal force: nx ≡ ν and ny ≡ λ. Requiring (3.13) to vanish for all x̄ yields,
after integration by parts:

[(−µw(y(D) − y) − ηw + νi)x̄]D
0 −

∫D

0
(µwy′ + ν′

i )x̄ ds + [νe x̄]L
D −

∫L

D
ν′

ex̄ ds = 0. (3.22)

The fact that we have x̄(0) = 0, but arbitrary x̄(D) and x̄(L) implies

νe(L) = 0, νe(D) − νi(D) = −ηw, ν′
e = 0, ν′

i = −µwy′. (3.23)

Requiring (3.13) to vanish for all ȳ similarly implies

λe(L) = 0, λe(D) − λi(D) = −µwx(D), λ′
e = 0, λ′

i = µwx′, (3.24)

where we see that Laplace pressure generates an outward normal force µw(y′, −x′) that causes
the internal force (νi, λi) to vary. In addition, we see that the internal force vanishes at the s = L
extremity and that it experiences a discontinuity at s = D. Using (3.4) and (3.16) we find that:

(
νe(D)
λe(D)

)
−

(
νi(D)
λi(D)

)
= γ w

(
cos β

− sin β

)
(3.25)

is the external force applied on the beam at s = D is along the meniscus, as used in Neukirch
et al. [11] and Antkowiak et al. [5].

Once γ , %γ , YI and the volume V are set, the equilibrium configuration is found by solving
the nonlinear boundary value problem for s ∈ (0; D), given by equations (3.5), (3.20), (3.21), (3.23)
and (3.24), with left boundary conditions (3.7) and right boundary conditions θ ′(D) = 0, νi(D) =
−γ w cos β and λi(D) = γ w sin β. The presence of unknown parameters β, r and D is balanced by
additional conditions (3.3), (3.4) and (3.18).

We remark that, as in the case of a rigid substrate (§2), the sum of the distributed Laplace
pressure f1 =

∫D
0 −µwx′ ds applied along the y-axis on the beam (equation (3.24)) is balanced by

the y component of the meniscus force at s = D: f2 = γ w sin β, that is f1 + f2 = 0.

(b) Equilibrium solutions
We now solve the boundary value problem for different values of the parameters, for example, A,
γ , %γ . We note θY the wetting angle, defined by %γ + γ cos θY = 0, and we use θY instead of %γ as
parameter. We start with non-dimensionalizing the equilibrium equations. The configuration of
the beam in the region s ∈ (D; L] is trivial: the beam is straight, and there is no stress θ ′(s) ≡ M(s) ≡ 0
and νe(s) ≡ λe(s) ≡ 0. The value of the length L is therefore of no importance, it can be anything as
long as L > D. Consequently, we use

√
A as unit length, and YI/A as unit force. The equilibrium

equations for the dimensionless quantities (with over-tildes) read:

x̃′(s̃) = cos θ , ỹ′(s̃) = sin θ , (3.26a)

θ ′′(s̃) = ñx sin θ − ñy cos θ (3.26b)

and ñ′
x(s̃) = −

(
γ̃

r̃

)
sin θ , ñ′

y(s̃) =
(

γ̃

r̃

)
cos θ , (3.26c)
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Figure 3. Inclination θ (D̃) of a beam deformed by a liquid drop, in the absence of gravity. (a) θ (D̃) as a function of the non-
dimensionalized surface tension γ̃ , for several value of the wetting angle θY . (b) θ (D̃) scaled with f (θY ), see formula (3.30).
Near the origin, curves for di,erent θY collapse on a straight line of slope unity.

where γ̃ = Aγ w/(YI) is a dimensionless quantity measuring the strength of surface tension.
Volume conservation (3.3) now reads

1 = r̃2
(

β − 1
2

sin 2β

)
+ 2x̃DỹD − 2

∫ D̃

0
ỹ cos θ ds̃. (3.27)

The boundary conditions at s = 0 are x̃(0) = 0, ỹ(0) = 0 and θ (0) = 0. The boundary conditions at
s̃ = D̃ are:

x̃(D̃) = r̃ sin β, θ ′(D̃) = 0, ñx(D̃) = −γ̃ cos β, ñy(D̃) = γ̃ sin β, θ (D̃) + β = θY. (3.28)

For each value of the fixed parameters γ̃ and θY, we numerically solve this boundary value
problem with a shooting method where the six unknowns θ ′(0), ñx(0), ñy(0), β, D̃ and r̃ are
balanced by the five boundary conditions (3.28) and the constraint (3.27). Results for the
inclination of the beam at s̃ = D̃ are plotted in figure 3a. We remark that equations (3.26b) and
(3.26c) can be simplified to

θ ′(s) = − γ̃

2r
y2 + nx(0)y − γ̃

2r
x2 − ny(0)x + θ ′(0), (3.29)

and boundary conditions (3.28) imply ñy(0) = 0.
We also look for analytical solutions when the surface tension is small γ̃ ' 1, that is when

the elastocapillary length is large: Lec =
√

YI/(γ w) (
√

A. We develop unknowns in the power of
γ̃ : x̃(s̃) = x̃0(s̃) + γ̃ x̃1(s̃) + · · · , ỹ(s̃) = 0 + γ̃ ỹ1(s̃) + · · · , θ (s̃) = 0 + γ̃ θ1(s̃) + · · · , D̃ = D̃0 + γ̃ D̃1 + · · · ,
etc. We find x̃0(s̃) = s̃, θ1(s̃) = s̃(3D2 − s̃2)/(6r) and ỹ1(s̃) = s̃2(6D2 − s̃2)/(24r̃), β0 = θY, D̃0 = r̃0 sin θY
and 1/r̃0 =

√
θY − sin θY cos θY. This yields:

θ (D̃) = γ̃

3
sin3 θY

θY − sin θY cos θY
+ O(γ̃ 2) = γ̃ f (θY) + O(γ̃ 2) (3.30)

and

ỹ(D̃) = 5γ̃

24
sin4 θY

(θY − sin θY cos θY)3/2 + O(γ̃ 2). (3.31)

4. Liquid drop on a *exible beam, in the presence of gravity
We now consider the situation where gravity is no longer neglected. The beam has mass per
length τ , and the weight of the beam introduces the term

∫L

0
τgy(s) ds (4.1)
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in the potential energy (3.10). Yet, the main difference is that the liquid–air interface is no longer
a circular-arc and its shape ylv(x) has to be solved for. The liquid–air interface energy is now

γ w
∫ x(D)

0

√
1 + y′

lv(x)2 dx + 2γ A. (4.2)

In addition, the weight of the liquid (of density ρ) has to be accounted for, yielding the term:

ρgw
∫ x(D)

0

∫ ylv

y
y dy dx. (4.3)

Finally, the constraint of constant volume now reads

A =
∫ x(D)

0

∫ ylv

y
dy dx. (4.4)

As carried out previously, the beam geometry is parametrized with the arc-length s: x(s), y(s), θ (s).
As for the liquid–air interface, we introduce the relative height h = ylv − y(D) and we parametrize
it with the same variable s: h(s) = h(x(s)) (figure 4). The arc-length s along the beam is thus the
unique independent variable. Dropping out constant terms in the energy, the Lagrangian of the
system reads

L(x, y, θ , h, D) = 1
2

YI
∫L

0
[θ ′(s)]2 ds +

∫L

0
τgy ds + wD%γ + γ w

∫D

0

√
x′2 + h′2 ds

+ ρgw
∫D

0

1
2

[(h + y(D))2 − y2]x′ ds − µw
∫D

0
(h + y(D) − y)x′ ds

+
∫D

0
νi(s)[x′ − cos θ ] ds +

∫L

D
νe(s)[x′ − cos θ ] ds

+
∫D

0
λi(s)[y′ − sin θ ] ds +

∫L

D
λe(s)[y′ − sin θ ] ds. (4.5)

Boundary conditions are x(0) = y(0) = θ (0) = 0, h′(0) = 0 and h(D) = 0. As in §3, we note X =
(x, y, θ , h, D) and we look for Xe such that the first variation L′(Xe)(X̄) vanishes when X is
changed from Xe to Xe + εX̄. We compute the first variation of L with regard to the variable
X = (x, y, θ , h, D):

L′(Xe)(X̄) = YI
∫L

0
θ ′θ̄ ′ ds +

∫L

0
τgȳ ds + wD̄%γ + γ w

∫D

0

x′x̄′ + h′h̄′
√

x′2 + h′2
ds + D̄γ w

√
x′(D)2 + h′(D)2

+ ρgw
∫D

0

{
hh̄x′ + hȳ(D)x′ + hy′(D)D̄x′ + h̄y(D)x′ + y(D)ȳ(D)x′

+ D̄y(D)y′(D)x′ − yȳx′ + 1
2

[(h + y(D))2 − y2]x̄′
}

ds

− µw
∫D

0
[(h̄ + ȳ(D) + D̄y′(D) − ȳ)x′ + (h + y(D) − y)x̄′] ds

+
∫D

0
νi(s)[x̄′ + θ̄ sin θ ] ds +

∫L

D
νe(s)[x̄′ + θ̄ sin θ ] ds

+
∫D

0
λi(s)[ȳ′ − θ̄ cos θ ] ds +

∫L

D
λe(s)[ȳ′ − θ̄ cos θ ] ds. (4.6)
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Figure 4. A *exible beam bent by a liquid drop, in the presence of gravity. Owing to symmetry, we consider only positive x’s.
(Online version in colour.)

We now require the first variation to vanish for all x̄, ȳ, θ̄ , h̄ and D̄. Collecting terms involving h̄
and h̄′ yields, after integration by parts:

γ w

[
h′h̄

√
x′2 + h′2

]D

0

+
∫D

0

(

−γ w

(
h′

√
x′2 + h′2

)′

+ ρgw(h + y(D))x′ − µwx′
)

h̄ ds. (4.7)

The first term is γ wh′(D)h̄(D)/
√

x′(D)2 + h′(D)2. Boundary conditions require that h + εh̄ vanishes
at s = D + εD̄; this yields h̄(D) = −D̄h′(D). Consequently, this first term effectively goes into the
equation for D̄, see (4.10). The second term of (4.7) has hence to vanish for all h̄(s), which implies
that the liquid–air interface h(s) obeys the equation:

[ρgw(h + y(D)) − µw]x′ = γ w

(
h′

√
x′2 + h′2

)′

. (4.8)

Integrating this equation from s = 0 to s = D yields

ρgwÂ − µwx(D) = γ w sin ϕ(D), (4.9)

where Â =
∫D

0 (h + y(D))x′ ds is the area between the liquid–air interface and the horizontal axis,
and where ϕ is the angle the interface makes with the horizontal. Evaluating (4.8) at s = 0 reveals
that the Lagrange multiplier µ is the hydrostatic pressure at the origin.

Requiring (4.6) to vanish for all D̄ yields

w%γ + wγ

√
x′(D)2 + h′(D)2 − wγ

h′(D)2
√

x′(D)2 + h′(D)2
+ y′(D)(ρgwÂ − µwx(D)) = 0. (4.10)

Using x′(D)/
√

x′(D)2 + h′(D)2 = cos ϕ(D), x′(D) = cos θ (D), y′(D) = sin θ (D), and (4.9) we arrive at:

%γ + γ cos[θ (D) + β] = 0, (4.11)

where β = −ϕ(D). This is Young–Dupré relation for the wetting angle θ (D) + β. We collect terms
involving x̄ and x̄′ in (4.6) and we integrate by parts to obtain:

[{
wγ x′

√
x′2 + h′2

+ 1
2
ρgw(h + y(D))2 − 1

2
ρgwy2 + νi − µw(h + y(D) − y)

}

x̄

]D

0

−
∫D

0

{(
wγ x′

√
x′2 + h′2

)′

+ ρgw(h + y(D))h′ − ρgwyy′ − µw(h′ − y′) + ν′
i

}

x̄ ds

+ [νex̄]L
D −

∫L

D
ν′

ex̄ ds = 0. (4.12)
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The fact that we have x̄(0) = 0, but arbitrary x̄(D) and x̄(L) implies

νe(L) = 0, (4.13)

ν′
e(s) = 0, (4.14)

νe(D) − νi(D) = wγ x′(D)
√

x′(D)2 + h′(D)2
= wγ cos ϕ(D) = wγ cos β (4.15)

and ν′
i = −(µw − ρgwy)y′ − [ρgw(h + y(D)) − µw]h′ − γ w

(
x′

√
x′2 + h′2

)′

. (4.16)

Considering the identity x′(x′/
√

x′2 + h′2)′ + h′(h′/
√

x′2 + h′2)′ = 0 and (4.8), equation (4.16)
reduces to

ν′
i = −(µw − ρgwy)y′. (4.17)

Requiring (4.6) to vanish for all ȳ similarly yields, after the use of (4.9):

λe(L) = 0, λe(D) − λi(D) = −wγ sin β (4.18)

and

λ′
e = τg, λ′

i = τg + (µw − ρwgy)x′. (4.19)

Finally, requiring (4.6) to vanish for all θ̄ yields the same equation as before, see equations (3.20)
and (3.21).

From (4.15) and (4.18), we see that the internal force experiences the same discontinuity as in
the case without gravity (3.25): here also the external force applied on the beam at s = D is along
the meniscus.

(a) Equilibrium solutions
We now solve the boundary value problem for different values of the parameters, for example, A,
γ , %γ , τ . We note θY the wetting angle, defined by %γ + γ cos θY = 0, and we use θY instead of %γ

as parameter. We start with non-dimensionalizing the equilibrium equations. As the configuration
of the beam in the region s ∈ (D; L] is no longer trivial, we use L as unit length, EI/L2 as unit
force, and EI/L as unit moment. For the beam, the equilibrium equations for the dimensionless
quantities (with over-tildes) read

x̃′(s̃) = cos θ , ỹ′(s̃) = sin θ , (4.20a)

θ ′′(s̃) = ñx sin θ − ñy cos θ (4.20b)

and ñ′
x(s̃) = −P sin θ , ñ′

y(s̃) = τ̃ + P cos θ , (4.20c)

where P is the dimensionless hydrostatic pressure P = (L/Lec)2[µ̃ − (L/Lc)2ỹ] for the region s̃ ∈
[0; D̃) and P = 0 for s̃ > D̃. We have introduced the dimensionless pressure µ̃ = µL/γ , the capillary
length Lc =

√
γ /(ρg) and the elastocapillary length Lec =

√
YI/(γ w) [12].

The equations for the liquid–air interface (4.8) can be rewritten using (i) the angle ϕ the
interface does with the horizontal, and (ii) the arc-length σ along this interface:

ϕ′(σ̃ ) =
(

L
Lc

)2
[h̃ + ỹ(D̃)] − µ̃ (4.21a)

and

h̃′(σ̃ ) = sin ϕ, ξ̃ ′(σ̃ ) = cos ϕ, (4.21b)

where σ̃ = σ/L. The liquid–air interface has total contour length #.
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Figure 5. A *exible beam bent by a liquid drop, in the presence of gravity. (Online version in colour.)

As soon as values for the fixed parameter Lec/L, Lc/L, τ̃ , Ã and θY are given, the boundary
value problem can be solved with a shooting procedure, where θ ′(0), ñx(0), ñy(0), µ̃, h̃(0), D̃, #̃

are seven unknowns. Integration of (4.20) is performed for s̃ ∈ [0; D̃), and integration of (4.21) is
performed for σ̃ ∈ [0; #̃]. At s̃ = D̃, a jump in the force vector is introduced according to (4.15) and
(4.18) with β = −ϕ(#̃) and nx = ν, ny = λ. Then, integration of (4.20) is performed for s̃ ∈ (D̃; 1).
Seven boundary equations have then to be fulfilled

θ ′(1) = 0, ñx(1) = 0, ñy(1) = 0, h̃(#̃) = 0, ξ̃ (#̃) = x̃(D̃), θ (D̃) + β = θY (4.22)

together with the volume condition

Ã =
∫ #̃

0
h̃ cos ϕ dσ̃ −

∫ D̃

0
[ỹ − ỹ(D̃)] cos θ ds̃. (4.23)

A solution for Lec/L = 0.175, Lc/L = 0.982, τ̃ = 2, Ã = 0.039 and θY = 110◦ is shown in figure 5.
The seven unknowns of the shooting procedure are found to be θ ′(0) = 1.887, ñx(0) = 9.15, ñy(0) =
−3.32, µ̃ = 5.24, h̃(0) = 0.219, D̃ = 0.201 and #̃ = 0.333.

5. Pinning, receding and advancing of the contact line
We now turn to the case of contact line pinning and we show, following Alberti & DeSimone [13],
that pinning, receding and advancing of the contact line can be treated in a variational approach
where irreversibility conditions are introduced. We consider the drop of figure 1, lying at
equilibrium on a rigid substrate with its contact angle β equal to the Young–Dupré angle θY,
defined by %γ + γ cos θY = 0, β(t = 0) = θY. At time t = 0, evaporation starts to take place, and we
study the subsequent behaviour of the drop. In the absence of contact line pinning, the contact
angle β will stay at β(t) = θY, and the wetted length D will decrease in order to keep on fulfilling
the volume constraint. In the presence of contact line pinning, the length D will first stay fixed,
and the contact angle β will decrease: β(t > 0) < θY to fulfill the volume constraint. Eventually, as
β(t) reaches a receding threshold, the contact line will start to move: D = D(t).

As in §2 we start with the interfaces energies, equation (2.1), and we use the constraint
D = r sin β to eliminate the variable r: per unit w, the energy is 2γ Dβ/ sin β + 2D%γ . As D
decreases from D(t = 0), receding of the contact line is associated with an energy dissipation k > 0
per unit area [14,15], which we introduce in the energy:

E(D, β) = 2γ D
β

sin β
+ 2D%γ + k(D(0) − D). (5.1)

At each time step t = ti, we look for the equilibrium of the drop with a fixed volume, hence
we still minimize this energy under the constraint V(ti)/w = r2(β − sin β cos β) = (D/ sin β)2(β −
sin β cos β). At the next time step ti+1, the volume constraint remains, but the imposed volume
V(ti+1) is smaller than V(ti). Moreover, we introduce the irreversibility condition D(ti+1) ≤ D(ti),
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which we note D ≤ D− and finally write the Lagrangian:

L= E(D, β) − λ(D− − D) − µD2
(

β

sin2 β
− cos β

sin β

)
, (5.2)

where µ is the Lagrange multiplier associated with the volume equality constraint, and where
λ is the Lagrange multiplier associated with the inequality constraint D ≤ D−. The necessary
conditions for having a minimum are:

∂L
∂β

= 0 ⇒ µD = γ sin β, (5.3)

∂L
∂D

= 0 ⇒ 2γ cos β + 2%γ − k + λ = 0 (5.4)

and KT ⇒ λ ≥ 0, (D− − D) ≥ 0, and λ(D− − D) = 0, (5.5)

where the last line lists the classical Kuhn–Tucker (KT) conditions [16] arising in the case of
inequality constraints. These three conditions express the fact that either the pinning force λ is zero
and sliding occurs D < D−, or the pinning force is strictly positive λ > 0 preventing the contact
line to move: D = D−. We now introduce an angle θ1 such that 2(%γ + γ cos θ1) = k. Positivity
of the dissipation k implies that θ1 < θY. Equation (5.4) becomes 2γ (cos β − cos θ1) + λ = 0 and
eliminating λ in (5.5), we finally obtain:

cos θ1 − cos β ≥ 0, (5.6a)

D− − D ≥ 0 (5.6b)

and (cos θ1 − cos β)(D− − D) = 0 (5.6c)

which means that either D is fixed to D− and β > θ1 (contact line pinning) or β = θ1 and D
decreases D < D− (contact line sliding, here receding or dewetting), as was used in Rivetti &
Neukirch [6].

Note that for the sake of simplicity we have presented only equations for receding of the
contact line, but the present treatment can be performed for the general case where advancing
and receding can both occur (see [17]).

(a) Illustration
We here illustrate the present theory on an imaginary experiment where one deposits a drop
on an elastic strip (figure 4) and wait for evaporation to take place [4,18]. After deposition, the
drop contact angle θ (D) + β takes some intermediate value between receding (θ1) and advancing
values. We fix parameters Lec = 0.2L, Lc = 0.8L and τ̃ = 1.4, and we first solve equations (4.20)–
(4.23) for several values of the receding angle θ1 in the sliding hypothesis θ (D) + β = θ1. We then
solve the equations for several values of D(0) in the pinning hypothesis D = D(0). Results are
shown in figure 6.

In a typical experiment, starting at Ã = A/L2 = 0.14 with D(0)/L = 0.26, evaporation first results
in the decrease of the contact angle, following the curve CD1 in figure 7. As the contact angle
θ (D) + β reaches θ1 (with say θ1 = 2), the system switches branch at point P1 and follows the
constant contact angle curve Cθ down to Ã = 0. This branching can be understood by looking
at energy curves. In figure 7b, we plot the energy as given by the first five terms of (4.5)
supplemented by the dissipation term −kwD, with k = %γ + γ cos θ1. At point P1 and going
towards small A, the energy on curve Cθ is seen to be smaller than the energy on CD1. If now
one starts at Ã = 0.14 with D(0)/L = 0.43, during evaporation, then the system follows curve CD2
down to point P2. We note that in the neighbourhood of point P2 the energy on curve Cθ is larger
than the energy on curve CD2. Moreover, in the neighbourhood of P2, configurations on Cθ are
unstable. We suggest that at P2 the system jumps to another configuration, with same volume.
Such a configuration might be on the stable part of curve Cθ , or might be a configuration with
x(L) = 0, where the extremities of the beam contact.
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Figure 6. Bifurcation diagram for the system of -gure 4 with Lec = 0.2L, Lc = 0.8L and τ̃ = 1.4. The -rst set of 11 (red
or grey) curves correspond to equilibrium in the sliding hypothesis θ (D) + β = θ1, with θ1 = 1.2, 1.3, . . . , 2.2. These
curves all have a limit point for the variable Ã= A/L2. Dashed parts of the curves correspond to unstable equilibria.
The second set of 10 (black) curves correspond to equilibrium in the pinning hypothesis D= D(0), with D(0)/L=
0.2, 0.3, 0.32, 0.34, 0.35, 0.36, 0.37, 0.38, 0.4, 0.45. (Online version in colour.)
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Figure 7. Evaporation experiment with Lec = 0.2L, Lc = 0.8L and τ̃ = 1.4. The curve Cθ corresponds to equilibrium in the
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evaporation starts on CD2 at A/L2 = 0.14, then the system reaches point P2. There, con-gurations on Cθ are unstable and have
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Figure 8. Cantilever beam sagging under the combined actions of its own weight τ g and of a localized shear force F at its
left end. (Online version in colour.)

6. Conclusion
In conclusion, we have recalled that the classical Young–Dupré relation for the contact angle of a
drop lying on a rigid substrate can be derived from a variational approach where the concept
of force is not invoked. The variational approach has then been extended to the case where
the substrate is a flexible beam, and we have shown that the Young–Dupré relation still holds.
Moreover, provided that Lagrange multipliers introduced in the variational formulation can be
identified with internal force components in the beam, we have found that the external force
applied on the elastic beam at the triple point is tangential to the liquid–vapour interface. We
then extended the approach to the case where gravity is included and found that these two
results continue to hold. The present result showing that in the case a flexural deformations the
external force on the elastic beam is along the meniscus is in contradiction to what is found in
Marchand et al. [7] in the case of extensional deformations. Namely Marchand et al. [7] suggest
that a supplementary force is acting at the meniscus, along the tangent to the beam. Such a
tangential point force would typically generate extensional deformations, not considered in our
present model. We therefore conclude that extensional deformations have to be introduced in our
variational formulation before we can further investigate this discrepancy.

Finally, we have shown how contact line pinning can be dealt with in the variational
formulation and we have illustrated our model with the study of the evaporation of a drop
deposited on a flexible beam and have shown that, depending on the initial spreading of the
drop on the beam, evaporation might lead to a flat or a folded system.
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Appendix A. Planar elastica
The equilibrium equations for the system in figure 8 are [19,20]

x′(s) = cos θ , y′(s) = sin θ , (A 1a)

YIθ ′(s) = M, M′(s) = Nx sin θ − Ny cos θ (A 1b)

and N′
x(s) = −pext

x , N′
y(s) = −pext

y , (A 1c)

where s is the arc-length of the beam, M is the internal bending moment, N = (Nx, Ny) is the
internal force, (x, y) is the current position of the central line and θ is the angle between the tangent
of the centre line and the horizontal axis. The bending moment is linearly related to the curvature



15

rspa.royalsocietypublishing.org
ProcRSocA469:20130066

..................................................

θ ′(s) through the bending rigidity YI, where Y is Young’s modulus and I is the second moment
of area of the beam cross section. In the case of a rectangular cross section of thickness h and
width w, I = h3w/12 when bending occurs in the plane of the thickness h. The beam is clamped
at s = 0, and a vertical force (0, −F) is applied at the s = L extremity. We also consider the self-
weight of the beam pext = (0, −τg), where τ is the mass per unit arc-length of the beam. The left
boundary conditions are x(0) = 0, y(0) = 0, θ (0) = 0, and the right boundary conditions are Nx(L) =
0, Ny(L) = −F and M(L) = 0.

The equilibrium equations can be recovered by considering the energy:

E = 1
2

YI
∫L

0
[θ ′]2 ds + τg

∫L

0
y ds + Fy(L), (A 2)

and the Lagrangian

L(x, y, θ ) = E +
∫L

0
νi(s)[x′ − cos θ ] ds +

∫L

0
λi(s)[y′ − sin θ ] ds (A 3)

subjected to the left boundary conditions. The conditions for the vanishing of the first variation
of the Lagrangian will yield the equilibrium equations (A 1) together with the right boundary
conditions [21].
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