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a b s t r a c t

Motivated by recent experimental observations of capillary-induced spooling of fibers inside droplets both in
spider capture silk and in synthetic systems, we investigate the behavior of a fiber packed in a drop. Using a
simplified 2D model, we provide analytical predictions for the buckling threshold and the deep post-
buckling asymptotic behavior. The threshold for spooling is found to be in particularly good agreement with
experimental results. We further solve the Elastica equations for a fiber confined in a soft potential, and track
the equilibrium paths using numerical continuation techniques. A wealth of different paths corresponding to
different symmetries is uncovered, and their stability is finally discussed.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The mechanical properties of spider silk are often presented as
outstanding [1,2]. An indeed, most silk threads outperform the best
man-made fibers, such a Kevlar, at least in terms of toughness [3]. To
a large extent, these properties rely on the molecular architecture of
the silk. For example, it has been shown that the building blocks of
flagelliform silk involve molecular nanosprings [4]. In 1989 however,
a team comprising a zoologist and a physicist reported on coiling and
packing of the core filament inside a glue droplet [5]. This windlass
mechanism, as it was called, provided indirect evidence that the glue
droplets may as well play a role in the mechanical response of the
silk thread. These results have been a subject of debate in the
community, and it is only very recently that the mechanism has
been observed to be active in a real spider web, see Fig. 1 (left) [6]. A
natural question that arises in this context is the role played by the
molecular structure of the silk and the glue in the observed coiling.
An experimental answer to this question is provided in Fig. 1 (right),
where a micron-sized artificial thread bearing a silicon oil droplet
also exhibits the coiling mechanism and packing behavior, therefore
demonstrating that capillarity and elasticity are sufficient ingredients
to explain the mechanism.

Interestingly, the shape adopted by the filament inside the drop
can be as different as a perfectly ordered closely packed annular
bundle or a completely disordered tangle. This behavior is

reminiscent of the organization of packed wires in rigid [7] and
elastic [8] spherical shells, patterns of folded structures such as plant
leaves or crumpled paper [9,10], and DNA packing inside capsids [11–
13]. The purpose of the present paper is to explore theoretically in a
simplified setting the shape and stability of strongly post-buckled
states in order to lay down the basis for a deeper understanding of
the windlass mechanism.

The paper is organized as follows. In Section 2 we present the
problem and the equilibrium equations. In Section 3 we perform a
linear stability analysis of the straight beam and predict the buckling
threshold. Experimental results are confronted to theoretical in
Section 4. Finally, we describe the non-linear response of the system
in terms of equilibrium solutions and their stability in Section 5.

2. Model

We consider an elastic beam in interaction with a liquid disk and
under the action of a tensile end-load. As indicated in Fig. 2, we
restrict to planar deformations of the beam, X and Y denoting the
horizontal and vertical directions respectively. The beam has length L
and a circular cross-section of radius h. We work under the slender
(Lch) Euler–Bernoulli hypotheses where the beam is considered
inextensible and unshearable. Configurations are thus fully described
by the position and orientation of the centerline. We use the arc-
length SA ½0; L� and note θðSÞ the angle between the tangent of the
beam and the horizontal. The presence of the liquid disk generates
capillary forces due to the contrast of surface energy, the interaction
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energy of the beamwith the liquid being smaller than the interaction
energy of the beam with the air. Capillary forces are two-fold:
(i) meniscus forces applied on the beam at the entrance and exit of
the disk, and (ii) barrier forces that prevent the beam from exiting
the disk elsewhere than at the meniscus points. We consider that the
drop is undeformable and thus remains a disk throughout the
experiments. As shown in Appendix A, meniscus forces are pointing
toward the center of the disk (see Eqs. (A.15) and (A.18)) and their
intensity is related to the angle between their direction and the
tangent to the beam at the meniscus points (see Eq. (A.25)). A soft-
wall barrier potential [14]

VðX;YÞ ¼ V0

1þρ�ð1=RÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX�XCÞ2þðY�YCÞ2

q ð1Þ

is used to retain the beam inside the disk, centered on ðXC ;YCÞ and of
radius R. The small dimensionless parameter ρ is introduced to avoid
the potential to diverge at the meniscus points A and B, where the
rod enters and exits the disk. The intensity V0 of the potential is
chosen to be small, the hard-wall limit being V0-0. Kinematics,
relating the position (X,Y) of the rod and the inclination θof its
tangent ð cosθ; sinθÞ with the horizontal, the bending constitutive
relation, relating the curvature θ0ðSÞ to the moment M(S), and finally
force ðNx;NyÞ and moment balance are detailed in Appendix A and
read

X0ðSÞ ¼ cosθ; Y 0ðSÞ ¼ sinθ ð2aÞ

EIθ0ðSÞ ¼M; M0ðSÞ ¼Nx sinθ�Ny cosθ ð2bÞ

N0
xðSÞ ¼ χ

∂V
∂X

þδðS�SAÞΛA
XA�XC

R
þδðS�SBÞΛB

XB�XC

R
ð2cÞ

N0
yðSÞ ¼ χ

∂V
∂Y

þδðS�SAÞΛA
YA�YC

R
þδðS�SBÞΛB

YB�YC

R
ð2dÞ

where S is the arc-length along the rod, and ð Þ0 ¼ dðÞ=dS. We define
the coordinates of point A as ðXA;YAÞ ¼ ðXðSAÞ;YðSAÞÞ, same for point
B. Note that the potential V has the dimension of an energy per unit of
arc-length of the beam. For SA ½SA; SB� the rod lies inside the disk and
we have χ¼1, otherwise χ¼0. The Dirac distribution δðSÞ localizes
meniscus forces at points A and B. The rod material has Young's
modulus E and the second moment of area I¼ πh4=4. The intensities
ΛA and ΛB of the meniscus forces are unknown but related to surface
tension γLV through Eq. (A.25), where Fγ ¼ 2πhγLV cosαY with αY

being the Young–Dupré wetting angle (γSV�γSL ¼ γLV cosαY ), and
where VA ¼ VB ¼ V0=ρ are small compared to Fγ . We restrict ourself
to cases where the disk is centered on the mid-point of the rod, that is
we introduce Σ such that SA ¼ L=2� Σ and SB ¼ L=2þΣ. The rod has
then 2Σ of its arc-length spent inside the disk. Finally the external
applied tension is noted T ¼NxðLÞ.

2.1. Non-dimensionalization

We use the diameter D¼ 2R of the disk as unit length, and the
buckling load EI=D2 as unit force. We thus introduce the following
dimensionless quantities:

s¼ S
D
; σ ¼Σ

D
; ℓ¼ L

D
; ðx; yÞ ¼ ðX;YÞ

D
; n¼ND2

EI
; t ¼ TD2

EI
ð3aÞ

f γ ¼
FγD

2

EI
; m¼MD

EI
; λA;B ¼

ΛA;BD
2

EI
; ðv; v0Þ ¼

ðV ;V0ÞD2

EI
ð3bÞ

and δðsÞ ¼DδðSÞ. We then have

vðx; yÞ ¼ v0 1þρ�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
x�xC

�2þ y�yC
� �2q� ��1

and

x0ðsÞ ¼ cosθ; y0ðsÞ ¼ sin θ ð4aÞ

θ0ðsÞ ¼m; m0ðsÞ ¼ nx sinθ�ny cos θ ð4bÞ

n0
xðsÞ ¼ χ

∂v
∂x

þ2δðs�sAÞλAðxA�xCÞþ2δðs�sBÞλBðxB�xCÞ ð4cÞ

n0
yðsÞ ¼ χ

∂v
∂y

þ2δðs�sAÞλAðyA�yCÞþ2δðs�sBÞλBðyB�yCÞ ð4dÞ

where ð Þ0 ¼ dðÞ=ds, and sA ¼ ℓ=2�σ, sB ¼ ℓ=2þσ.

2.2. Boundary-value problem

We consider v0, ρ, f γ , and ℓ as fixed parameters and we look for
equilibrium solutions by integrating (4) with the initial conditions

xð0Þ ¼ 0; yð0Þ ¼ 0; θð0Þ ¼ 0; mð0Þ ¼m0; nxð0Þ ¼ nx0;

nyð0Þ ¼ ny0 ð5Þ

where m0, nx0, and ny0 are unknowns to be accompanied with σ,
xC, yC, λA, and λB. We therefore have eight unknowns which are
balanced by the following seven conditions. At the s¼ ℓ end of the
rod, clamped boundary conditions read

yðℓÞ ¼ 0; θðℓÞ ¼ 0 ð6Þ

The requirement that points A and B lie on the circle yields the
conditions

½xA�xC �2þ½yA�yC �2 ¼ 1=4; ½xB�xC �2þ½yB�yC �2 ¼ 1=4 ð7Þ

Fig. 1. Experiments on fibers bent inside liquid drops. Left: microscopic photograph of spider capture silk. Flagelliform core filaments are seen to be coiled and packed inside
a (typically 300μ wide) glue droplet. Right: same mechanism reproduced artificially with a 200 μm synthetic droplet and fiber (see experimental verification section in
Section 4). Reproduced from [6].

Fig. 2. An elastic beam held in tension at its extremities, and buckling under the
action of compressive forces at a disk. The beam is clamped at both ends. The
deformation of the beam is described by the angle θðSÞ between the tangent to the
beam and the x-axis, where SA ½0; L� is the arc-length along the beam.
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and the three force balances related to forces coming from the disk
read

nxðs�A Þ ¼ nxðsþB Þ ð8aÞ

nyðs�A Þ ¼ nyðsþB Þ ð8bÞ

�2f γþvAþvB�2λA½ðxA�xCÞ cosθðsAÞþðyA�yCÞ sinθðsAÞ�
þ2λB½ðxB�xCÞ cosθðsBÞþðyB�yCÞ sinθðsBÞ� ¼ 0 ð8cÞ

The solution set is thus a 8�7¼ 1 dimensional manifold and we
plot in Section 5 different solution paths for several values of the
parameter f γ .

3. Buckling threshold

The trivial solution xðsÞ ¼ s, yðsÞ ¼ θðsÞ ¼mðsÞ ¼ nyðsÞ ¼ 0 to
Eq. (4) with boundary conditions (5)–(8), exists for any value of
the load t. Nevertheless, for given values of the parameters v0, ρ,
f γ , and ℓ, there is a threshold value of t under which the trivial
solution ceases to be stable and buckling occurs. We look for the
first buckling mode which is symmetrical with respect to the axis
joining the center of the disk ðxC ; yCÞ and the beam midpoint
ðxðℓ=2Þ; yðℓ=2ÞÞ. We linearize Eqs. (4) for small deflections,
jyðsÞj � ϵ, and small slopes, jθðsÞj � ϵ, with 0oϵ51, see
Appendix B for a comprehensive exposition of this perturbation
expansion. As in the buckling configuration the rod has virtually
no packing interaction with the disk, we set v0 ¼ 0. The first four
equations of system (4) become x0ðsÞ ¼ 1, y0ðsÞ ¼ θðsÞ, θ0ðsÞ ¼mðsÞ,
and m0ðsÞ ¼ nxðsÞθðsÞ�nyðsÞ. We then have xC ¼ ℓ=2, xA ¼ ℓ=2�σ,
and xB ¼ ℓ=2þσ. At order ϵ0, Eq. (7) yields σ ¼ 1=2. As symmetry
imposes yA¼yB and θðsAÞ ¼ �θðsBÞ, Eq. (7) at order ϵ2 imposes
yC ¼ yA ¼ yB. Then (8c) at order ϵ0 yields 2f γ ¼ λAþλB and, as
symmetry requires λA ¼ λB, we finally obtain f γ ¼ λA ¼ λB. Follow-
ing symmetry we introduce ŝ ¼ s�ℓ=2. The three functions yðŝÞ,
θðŝÞ, and mðŝÞ are then respectively even, odd, and even functions
of the variable ŝ. We focus on the right half of the system,
ŝA ½0;ℓ=2�. Eq. (4c) is integrated to yield nxðŝÞ ¼ t� f γ for
ŝA ½0;1=2� and nxðŝÞ ¼ t for ŝA ½1=2;ℓ=2�. Eq. (4d) shows that
nyðŝÞ ¼ const: and from m0ðŝÞ ¼ nxðŝÞθðŝÞ�nyðŝÞ we see that nyðŝÞ
has to be odd, hence zero. We finally arrive at the reduced system

θ″ ¼ �ðf γ�tÞθ for ŝA ½0;1=2� ð9Þ

θ″ ¼ tθ for ŝA ½1=2;ℓ=2� ð10Þ
and we restrict to the f γ4tZ0 case. Integrating these equations
and using the boundary conditions θðŝ ¼ 0Þ ¼ 0¼ θðŝ ¼ ℓ=2Þ and
the matching conditions θðŝ ¼ 1=2� Þ ¼ θðŝ ¼ 1=2þ Þ and mðŝ ¼

1=2� Þ ¼mðŝ ¼ 1=2þ Þ, we obtain the buckling condition

ffiffiffiffiffiffiffiffiffiffiffi
f γ�t

q
tanh

ðℓ�1Þ ffiffi
t

p

2
þ

ffiffi
t

p
tan

ffiffiffiffiffiffiffiffiffiffiffi
f γ�t

q
2

¼ 0 ð11Þ

which is plotted in Fig. 3. The two interesting asymptotic limits of
the curve defined by (11) are (i) if t-0 then f γ-π2þ8=ℓ, and (ii)
if f γ-þ1 then t-f γ�4π2.

3.1. Approximations to the buckling load

In the case where ℓ51, we simplify Eq. (11) and find

ffiffiffiffiffiffiffiffiffiffiffi
f γ�t

q
þ

ffiffi
t

p
tan

ffiffiffiffiffiffiffiffiffiffiffi
f γ�t

q
2

¼ 0 ð12Þ

This formula has the same large f γ limit as (11) and in fact as
ℓ-þ1, the curve defined by (11) tends to the curve defined by
(12) everywhere but in a boundary layer around ðf γ ; tÞ ¼ ðπ2;0Þ.
Indeed even if ℓ is large, for small t the tanh term cannot be
approximated by 1 if t � 1=ℓ2. It is convenient to have an explicit
formula t ¼ tðf γÞ for buckling and we introduce the approximation

tbðf γÞ ¼ f γ�4π2� 108π4

3π4�40π2þð3π2�28Þf γþð32π�6π3Þ
ffiffiffiffiffi
f γ

q ð13Þ

This last formula has the same behavior as (12) at low t: we have
tbðf γ ¼ π2Þ ¼ 0, and t0bðf γ ¼ π2Þ ¼ 0. Moreover (13) also shares the
large f γ limit of (11) and (12): tb ¼ �4π2þ f γþ⋯. We see in Fig. 3
that the curves defined by (12) and (13) are in fact hard to
distinguish.

Fig. 3. Buckling curve for ℓ¼ 5. (Left) Curves defined by Eqs. (11)–(13). At this scale the three curves are almost indistinguishable. The asymptote t ¼ f γ�4π2 is shown
dashed. (Right) Zoom corresponding to the rectangle shown on the Left. The approximations (12) and (13) are still hard to distinguish, but are seen to deviate from the exact
curve (11), shown continuous and black.

Fig. 4. Experimental verification of the windlass activation as function of the
parameter f γ . The windlass mechanism is active as soon as the meniscus force f γ is
greater than π2.
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4. Experimental verification

In order to verify experimentally and quantitatively the mech-
anics of the windlass, we place a drop on a fiber and test whether the
fibre coils in the drop. The fibre is made of BASF Thermoplastic
PolyUrethan (TPU) that is melt-spinned. This process involves melt-
ing down the TPU, then applying a large extension rate to the liquid
filament while it cools down rapidly in the ambient air. It results in
reproducible, meter-long micronic fibres (1–20 μm in radius) with
portions away from the edges having small perturbations in radius
(typically o5% every 1000 radii). Calipers are used to further
manipulate the samples. Clamping is achieved with cured Loctites

glue. The system size is measured optically with a Leica macroscope
(VZ85RC) mounted on a micro-step motor and a 3 megapixels Leica

DFC-295 camera (400� magnification, 334 nm/pixel picture resolu-
tion) with a Phlox 50�50 mm backlight, at 60,000 lux or alte-
rnatively an optical fibre with LED lamp (Moritex MHF-M1002) with
circular polarizer. The fibre radius is then extracted by image analysis,
using imageJ (http://imagej.nih.gov/ij/). For the droplet, we select
silicone oil Rhodorsil 47V1000, the figure 1000 referring to its
viscosity compared to water. High viscosity was chosen in order to
be able to deposit drops on the fibre by brushing, and for its slow
evaporation properties. Using the condition that meniscus forces
have to support the weight of the droplet and be strong enough to
buckle the beam, we find that to be bendable, a TPU fibre must be
below 7:2 μm in radius, with ETPU ¼ 1773 MPa; γsilicone–oil=air ¼
21:1 mN=m;αY ;silicone–oil=TPU ¼ 27751 and ρsilicone–oil ¼ 960 kg=m3

the silicone oil density.

Fig. 5. Post-buckling paths: (left) force–displacement curves for f γ ¼ 20, where t is the applied tension and δthe end-shortening, and (right) energy Ê as function of δ. Solid
lines represents both Ax configurations, where the beam shape is symmetric with respect to the axis joining the center of the disk ðxC ; yC Þ and the beam midpoint
ðxðℓ=2Þ; yðℓ=2ÞÞ, and Pt configurations, where the beam shape is symmetric with respect to the beam midpoint Pt. Dashed lines correspond to L1 and L2 configurations.

Fig. 6. Post-buckling configurations. Top row shows Ax configurations, symmetric with respect to the axis joining the center of the disk ðxC ; yC Þ and the beam midpoint
ðxðℓ=2Þ; yðℓ=2ÞÞ. Middle row shows Pt configurations, symmetric with respect to the beam midpoint Pt. Bottom row represents L1 and L2 configurations. The circles have
center ðxC ; yC Þ and radius ð1þρÞ=2.

Fig. 7. Equilibrium paths for f γ ¼ 10;20;…;50 with the vertical axis rescaled according to Eq. (14). (Left) Axis-symmetric (Ax) configurations and (right) point-symmetric (Pt)
configurations. Direction of increasing f γ is indicated with the arrows.
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We deposit a drop on a fibre with a known radius and we
slowly bring the caliper forks closer to impose compression on the
fibre. If the drop is able to coil the fibre, the macroscopic
consequences are easily visible to the naked eye. If at first try
the drop does not coil, the sample is tested again with a random
compression and a slight shake to overcome any possible metast-
ability. The couple drop/fiber is given an activity index of 1 if
coiling is achieved and 0 otherwise (see Fig. 4). The experimental
results show that coiling is present whenever f γ4π2, with a error
of margin of 3%, consistent with Eq. (11).

5. Non-linear post-buckling computations

5.1. Equilibrium paths

We now analyze the post-buckling regime by numerically
solving the non-linear system of equilibrium equations. We use a
shooting method to solve the boundary-value problem (4)–(8) and
a pseudo-arc-length continuation algorithm to follow the solution
as parameters are varied, both these routines being implemented
in Mathematica. For large f γ values, typically f γ415, numerical
difficulties arise and we thankfully switch to the AUTO package
[15]. We fix ℓ¼ 10, v0¼0.02, ρ¼0.2, and we compute force-
extension bifurcation diagrams for several values of f γ . We show
in Fig. 5 such a diagram for f γ ¼ 20 where the tension t is plotted
as a function of the end-shortening δ¼ ℓ�xðℓÞ. The diagram
comprises four different equilibrium paths: (i) path Ax where
configurations are symmetric with respect to the axis joining the
center of the disk ðxC ; yCÞ and the beam midpoint ðxðℓ=2Þ; yðℓ=2ÞÞ,
(ii) path Pt where configurations are symmetric with respect to the
beam midpoint, (iii) path L1 where configurations are looping once
inside the disk, and (iv) path L2 where configurations are looping
twice inside the disk. Few of these configurations are shown in
Fig. 6. In a typical experiment the system is first completely
straight, held by a large tension t. This situation corresponds to a
point on the vertical axis of Fig. 5, above the buckling threshold. As
t is decreased the systems reach the start of the Ax path, and the
beam buckles. For f γ ¼ 20, the numerically found value of the
buckling tension tC3:66 is to be compared to tbð20ÞC3:76 given
by (13), and tC3:73 given by (11). As the system branches on the
Ax path, tension goes up again – we have a subcritical bifurcation.
The slope of the Ax path is calculated analytically in Appendix B
and is plotted in Fig. B1 for comparison. As the beam enters deeper
in the post-buckling regime, bending localizes inside the disk and
the tails remain approximatively straight. The path eventually
reaches a plateau, see formula (14), where the beam coils in a
circular way inside the disk and the bending energy in the beam
can then be approximated by ð1=2ÞEI=R2½L�XðLÞ�. We also plot the
t40 part of the path Pt. This path also reaches the same plateau as
the beam coils in the same circular way inside the disk. In addition
we plot paths along which the beam adopts configurations with
one (path L1) or two (path L2) loops. The relevance of these paths
could be questioned for two reasons: (i) configuration on path L1
do not have the same topology as far as twist is considered: a full
turn of twist would be necessary to connect configurations on
path Ax or Pt with configurations on path L1, see [16,17], and (ii)
these paths are not connected to the vertical axis δ¼0. We plot in
Fig. 5 (right) the energy Ê ¼ EκþEwþEγ�PγSVLþFγðΔþDÞ as a
function of the end-shortening δ and we see that, for some range
of the end-shortening δ, configurations on paths L1 or L2have a
lower energy than configurations on paths Ax or Pt. These remarks
call for a stability analysis of the equilibrium configurations, as
well as a study of configurations deformed in 3D, where twist, link,
and writhe would be computed [18].

5.2. Approximate analytical model for the plateau regime

As explained in [6], in the regime where the end-shortening
δ¼ ℓ�xðℓÞ is large, that is when several coils of the beam are
present in the disk, the external tension t reaches a plateau and no
longer varies as more coils are added. The plateau value of the
tension is calculated by a balance of energy as a beam length ΔS
enters the disk. The work done by the tension T is �TΔS, the work
done by the meniscus force Fγ is þFγΔS, and the energy spent to
bend the beam in coils is �ð1=2ÞðEI=R2ÞΔS. The sum of these
energies is zero on the plateau, which yields

t ¼ f γ�2 ð14Þ

in dimensionless quantities. In Fig. 7 we plot Ax and Pt equilibrium
paths for f γ ¼ 10;20;…;50 with the vertical axis rescaled according
to (14). The collapse of the curves for δ≳4 confirms relation (14).

6. Conclusion

This paper presents a first venture into the complex equilibria
adopted by a fiber buckled, coiled, and packed by a droplet. Using a
simple 2D model and numerical continuation techniques, we have
uncovered several equilibrium paths characterized by different
symmetries (point-symmetric, axis-symmetric, single or double-
looped) and provided clues for the bifurcations between these
different states. Analytical predictions for the buckling threshold,
as well as the asymptotic behavior (plateau regime) for the deep
post-buckling regime have been derived. The agreement between
experiments and theory for the windlass activation threshold is
certainly promising, and calls for an extension of the present
model to 3D (including twist and writhe), and a deeper compar-
ison between the experimentally observed ordered and disordered
packing modes and the theoretical prediction. Finally the defor-
mation of the drop on its own, considered rigid throughout this
study, and its interplay with the shape adopted by the fiber also
deserves a dedicated investigation.
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Appendix A. Variational derivation of the equilibrium
equations

To prevent the beam from exiting the disk elsewhere than at
the meniscus points, we use a (soft wall) barrier potential [14]

VðX;YÞ ¼ V0

1þρ�ð1=RÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX�XCÞ2þðY�YCÞ2

q ðA:1Þ

where the disk has center ðXC ;YCÞ and radius R. The small
dimensionless parameter ρ is introduced to avoid the potential
to diverge at the meniscus points A and B, where the rod enters
and exits the disk. The internal energy of the system comprises the
bending energy Eb of the rod, the barrier energy Ew of the circle,
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and surface energy Eγ

Eκ ¼
1
2
EI
Z SA

0
κ21 dSþ

1
2
EI
Z SB

SA
κ22 dSþ

1
2
EI
Z L

SB
κ23 dS ðA:2aÞ

Ew ¼
Z SB

SA
VðXðSÞ;YðSÞ;XC ;YCÞ dS ðA:2bÞ

Eγ ¼ PγSVSAþPγSLðSB�SAÞþPγSVðL�SBÞ ðA:2cÞ
where P ¼ 2πh is the perimeter of the cross-section of the rod, and
V0 has the dimension of an energy per unit length. The curvatures
κiðSÞ are defined in each region of the rod. We add the work done
by the external load Tex and obtain the potential energy of the
system

EκþEwþEγ�TXðLÞ ðA:3Þ
We minimize this energy under the following constraints:

SAþSB
2

¼ L
2

ðA:4aÞ

½XðSAÞ�XC �2þ½YðSAÞ�YC �2 ¼ R2 ðA:4bÞ

½XðSBÞ�XC �2þ½YðSBÞ�YC �2 ¼ R2 ðA:4cÞ
Eq. (A.4a) imposes that the capturing disk is centered on the mid-
point of the rod. We introduce Σ such that SA ¼ L=2� Σ and
SB ¼ L=2þΣ. The rod has then 2Σ of its arc-length spent in the
disk. As the variables X(S), Y(S), κðSÞ and θðSÞ all appear in the
formulation, we have to consider the continuous constraints
relating them:

X0ðSÞ ¼ cosθðSÞ; Y 0ðSÞ ¼ sinθðSÞ; θ0ðSÞ ¼ κðSÞ ðA:5Þ
We consequently write the Lagrangian

LðX;Y ;θ; κ1; κ2; κ3;XC ;YC ;ΣÞ

¼ �TXðLÞþ
Z L=2�Σ

0

EI
2
κ21þPγSVþν1ðSÞ½X0 � cosθ�þμ1ðSÞ

�
�½Y 0 � sinθ�þη1ðSÞ½θ0 �κ1�

�
dS

þ
Z L=2þΣ

L=2�Σ

EI
2
κ22þPγSLþν2ðSÞ½X0 � cosθ�

�

þμ2ðSÞ½Y 0 � sinθ�þη2ðSÞ½θ0 �κ2�þV ðX;Y ;XC ;YCÞ
�
dS

þ
Z L

L=2þΣ

EI
2
κ23þPγSVþν3ðSÞ½X0 � cos θ�

�

þμ3ðSÞ½Y 0 � sinθ�þη3ðSÞ½θ0 �κ3�
�
dS

þΛA

2R
ð½XðL=2� ΣÞ�XC �2þ½YðL=2�ΣÞ�YC �2�R2Þ

þΛB

2R
ð½XðL=2þΣÞ�XC �2þ½YðL=2þΣÞ�YC �2�R2Þ ðA:6Þ

The rod is clamped as both extremities, boundary conditions read

Xð0Þ ¼ 0; Yð0Þ ¼ 0; θð0Þ ¼ 0; YðLÞ ¼ 0; θðLÞ ¼ 0 ðA:7Þ

A.1. First variation

We note U ¼ ðX;Y ;θ; κ1; κ2; κ3;XC ;YC ;ΣÞ and we consider the
conditions for the state Ue to minimize the energy E. Calculus of
variations shows that a necessary condition is

L0ðUeÞU ¼ d
dϵ

LðUeþϵU Þ
����
ϵ ¼ 0

¼ 0 ðA:8Þ

where U ¼ ðX ;Y ;θ ; κ1; κ2; κ3;XC ;YC ;Σ Þ. The bar sign represents a
small perturbation of the variable. Moreover boundary conditions
(A.7) imply that

X ð0Þ ¼ 0; Y ð0Þ ¼ 0; θð0Þ ¼ 0; Y ðLÞ ¼ 0; θðLÞ ¼ 0 ðA:9Þ

Noting that
R AþϵA
0 f ðxÞ dx¼ R A

0 f ðxÞ dxþϵAf ðAÞþOðϵ2Þ we evaluate
the first variation (A.8)

L0ðUeÞðU Þ ¼ �TX ðLÞ�2FγΣþVAΣþVBΣ

þ
Z L=2�Σ

0
ðEIκ1κ1þν1ðSÞ½X

0 þθ sinθ�þμ1ðSÞ½Y
0 �θ cos θ�

þη1ðSÞ½θ
0 �κ1�Þ dS

þ
Z L=2þΣ

L=2�Σ
ðEIκ2κ2þν2ðSÞ½X

0 þθ sinθ�

þμ2ðSÞ½Y
0 �θ cosθ�þη2ðSÞ½θ

0 �κ2�þV Þ dSZ L

L=2þΣ
ðEIκ3κ3þν3ðSÞ½X

0 þθ sinθ�

þμ3ðSÞ½Y
0 �θ cosθ�þη3ðSÞ½θ

0 �κ3�Þ dS

þΛA

R
½XðL=2� ΣÞ�XC �½X ðL=2� ΣÞ�ΣX0ðL=2�ΣÞ�XC �

þΛA

R
½YðL=2� ΣÞ�YC �½Y ðL=2� ΣÞ�ΣY 0ðL=2� ΣÞ�YC �

þΛB

R
½XðL=2þΣÞ�XC �½X ðL=2þΣÞþΣX0ðL=2þΣÞ�XC �

þΛB

R
½YðL=2þΣÞ�YC �½Y ðL=2þΣÞþΣY 0ðL=2þΣÞ�YC � ðA:10Þ

where Fγ ¼ PðγSV�γSLÞ, VA ¼ VðXðSAÞ;YðSAÞÞ, VB ¼ VðXðSBÞ;YðSBÞÞ,
and V ¼ ð∂V=∂XÞXþð∂V=∂YÞY þð∂V=∂XCÞXCþð∂V=∂YCÞYC . Note also
that we have used (A.5) at S¼ L=27Σ to eliminate several terms.
Requiring (A.10) to vanish for all κ i, i¼ 1;2;3, we obtain

EIκiðSÞ ¼ ηiðSÞ; i¼ 1;2;3 ðA:11Þ
and hence identify the Lagrange multipliers ηiðSÞ with the bending
moment M(S) in the beam. Requiring (A.10) to vanish for all θ
yields, after integration by parts

½η1ðSÞθ �L=2�Σ0 þ
Z L=2�Σ

0
ðν1ðSÞ sinθ�μ1ðSÞ cosθ�η01ðSÞÞθ dS

þ½η2ðSÞθ �L=2þΣ
L=2�Σ þ

Z L=2þΣ

L=2�Σ
ðν2ðSÞ sinθ�μ2ðSÞ cosθ�η02ðSÞÞθ dS

þ½η3ðSÞθ �LL=2þΣþ
Z L

L=2þΣ
ðν3ðSÞ sin θ�μ3ðSÞ cosθ�η03ðSÞÞθ dS¼ 0

ðA:12Þ
Due to the boundary conditions (A.9), part of the boundary terms
vanish. Nevertheless, arbitrariness of θ at S¼ L=27Σ implies that
η1ðL=2� ΣÞ ¼ η2ðL=2�ΣÞ and η2ðL=2þΣÞ ¼ η3ðL=2þΣÞ: the bend-
ing moment is continuous at the entry and the exit of the disk.
Moreover, from the requirement that (A.1) vanishes for all θðSÞ, we
obtain the equations for the equilibrium of the bending moment

η0iðSÞ ¼M0ðSÞ ¼ νiðSÞ sinθ�μiðSÞ cosθ; i¼ 1;2;3 ðA:13Þ
Requiring (A.10) to vanish for all X yields, after integration by parts

ΛA

R
½XðL=2�ΣÞ�XC �X ðL=2�ΣÞþ½ν1ðSÞX �L=2�Σ0

�
Z L=2�Σ

0
ν01ðSÞX dS�TX ðLÞ

þ½ν2ðSÞX �L=2þΣ
L=2�Σ þ

Z L=2þΣ

L=2�Σ

∂V
∂X

�ν02ðSÞ
� 	

X dS

þΛB

R
½XðL=2þΣÞ�XC �X ðL=2þΣÞ

þ½ν3ðSÞX �LL=2þΣ�
Z L

L=2þΣ
ν03ðSÞX dS¼ 0 ðA:14Þ

Boundary conditions (A.9) cancel part of the boundary terms, but
arbitrariness of X at S¼ L=27Σ implies

ν2ðL=2� ΣÞ�ν1ðL=2� ΣÞ ¼ΛA

R
½XðL=2�ΣÞ�XC � ðA:15aÞ
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ν3ðL=2þΣÞ�ν2ðL=2þΣÞ ¼ΛB

R
½XðL=2þΣÞ�XC � ðA:15bÞ

while arbitrariness of X at S¼L implies

ν3ðLÞ ¼ T ðA:16Þ
Eq. (A.16) enable us to identify ν3 and therefore ν1 and ν2 with the
x-component, Nx, of the resultant force in the beam. By extension
the μi are identified to the y-component, Ny, of this force. Eqs.
(A.15) are then seen as jumps in the x-component of the internal
force due to the external force coming from the disk. Moreover,
from the requirement that (A.14) vanishes for all X ðSÞ, we obtain
the equilibrium equations for the x-component of the resultant
force in the beam

ν01ðSÞ ¼ 0; ν02ðSÞ ¼
∂V
∂X

; ν03ðSÞ ¼ 0 ðA:17Þ

The same procedure for the variable Y yields

μ2ðL=2� ΣÞ�μ1ðL=2� ΣÞ ¼ΛA

R
½YðL=2�ΣÞ�YC � ðA:18aÞ

μ3ðL=2þΣÞ�μ2ðL=2þΣÞ ¼ΛB

R
½YðL=2þΣÞ�YC � ðA:18bÞ

and

μ0
1ðSÞ ¼ 0; μ0

2ðSÞ ¼
∂V
∂Y

; μ0
3ðSÞ ¼ 0 ðA:19Þ

Eqs. (A.18) are then seen as jumps in the y-component of the
internal force due to the external force coming from the disk, and
Eqs. (A.19) are the equilibrium equations for the y-component of
the resultant force in the beam. Requiring (A.10) to vanish for all
XC yields

�ΛA

R
½XðL=2� ΣÞ�XC ��

ΛB

R
½XðL=2þΣÞ�XC �

þ
Z L=2þΣ

L=2�Σ

∂V
∂XC

dS¼ 0 ðA:20Þ

We use the identity ∂V
∂XC

¼ � ∂V
∂X and (A.17) to obtain

ν2ðL=2þΣÞ�ν2ðL=2� ΣÞ ¼ �ΛA

R
½XðL=2�ΣÞ�XC �

�ΛB

R
½XðL=2þΣÞ�XC � ðA:21Þ

The same procedure for the variable YC yields

μ2ðL=2þΣÞ�μ2ðL=2� ΣÞ ¼ �ΛA

R
½YðL=2� ΣÞ�YC �

�ΛB

R
½YðL=2þΣÞ�YC � ðA:22Þ

Considering (A.21), (A.22), (A.15), and (A.18) together yields

ν1ðL=2� ΣÞ ¼ ν3ðL=2þΣÞ ðA:23Þ

μ1ðL=2� ΣÞ ¼ μ3ðL=2þΣÞ ðA:24Þ
which means that the internal force in the beam at the entrance of
the disk is equal to the internal force at the exit of the disk. We
therefore have that the total external force applied on the beam by
the disk is zero. Finally requiring that (A.10) vanishes for all Σ
yields

�2FγþVAþVB�
ΛA

R
½XðL=2� ΣÞ�XC �X0ðL=2� ΣÞ


þ½YðL=2� ΣÞ�YC �Y 0ðL=2�ΣÞ�
þΛB

R
½XðL=2þΣÞ�XC �X 0ðL=2þΣÞ


þ½YðL=2þΣÞ�YC �Y 0ðL=2þΣÞg ¼ 0 ðA:25Þ
In summary the equilibrium of the beam is governed by the
system

X0ðSÞ ¼ cosθ ðA:26aÞ

Y 0ðSÞ ¼ sin θ ðA:26bÞ

EIθ0ðSÞ ¼M ðA:26cÞ

M0ðSÞ ¼Nx sinθ�Ny cosθ ðA:26dÞ

N0
xðSÞ ¼ χ

∂V
∂X

þδðS�SAÞΛA
XA�XC

R
þδðS�SBÞΛB

XB�XC

R
ðA:26eÞ

N0
yðSÞ ¼ χ

∂V
∂Y

þδðS�SAÞΛA
YA�YC

R
þδðS�SBÞΛB

YB�YC

R
ðA:26fÞ

with χ¼1 for SA ½SA; SB� and χ ¼ 0 otherwise, and where δðS�S⋆Þ is
the Dirac distribution centered on S¼ S⋆ and XA;B ¼ XðL27ΣÞ and
YA;B ¼ YðL27ΣÞ.

Appendix B. Incipient post-buckling regime

We here focus on configurations on path Ax. With regard to the
shifted arc-length variable ŝ ¼ s�ℓ=2, introduced in Section 3, the
variables have the following symmetries:

xð� ŝÞ ¼ 2xC�xðŝÞ; yð� ŝÞ ¼ yðŝÞ; θð� ŝÞ ¼ �θðŝÞ ðB:1aÞ

mð� ŝÞ ¼mðŝÞ; nxð� ŝÞ ¼ nxðŝÞ; nyð� ŝÞ ¼ �nyðŝÞ ðB:1bÞ
The variable nyðŝÞ, an odd function of ŝ, has also to verify (A.24),
which reads nyðŝ ¼ �σÞ ¼ nyðŝ ¼ σÞ. Consequently nyð7σÞ ¼ 0 and,
as nyðŝÞ is constant for j ŝ j4σ, we have that nyðŝÞ � 0, 8 j ŝ j4σ.
Moreover, in the limit where the barrier potential tends to zero,
v0-0,1n0

yðŝÞ � 0 inside the disk. Being an odd function, nyðŝÞ is
then such that

nyðŝÞ � 0 8 ŝ ðB:2Þ
The consequence is that the force jumps (A.18) for nyðŝÞ at the
entry ŝ ¼ �σ and exit ŝ ¼ þσ of the disk are zero:
λA½yA�yC � ¼ 0¼ λB½yB�yC �. We discard the cases λA ¼ 0 and
λB ¼ 0 for which there would not be any meniscus force at all,
and conclude

yA ¼ yC ¼ yB ðB:3Þ
Conditions (A.4b) and (A.4c) now read ðxA�xCÞ2 ¼ 1=4 and
ðxB�xCÞ2 ¼ 1=4 which yields

xA ¼ xC�1=2 and xB ¼ xCþ1=2 ðB:4Þ
As nxð� ŝÞ ¼ nxðŝÞ, the force jumps (A.15) imply that
λA½xA�xC �þλB½xB�xC � ¼ 0. Using (B.4), we conclude that

λA ¼ λB ðB:5Þ
Finally, using the global force balance (A.25), (B.3), (B.4), and (B.5),
and still in the limit v0-0, we obtain

f γ ¼ λB cosθB ðB:6Þ
Taking advantage of the symmetries (B.1), we now rewrite the
boundary-value problem (4)–(6) for the interval ŝA ½0;ℓ=2�. Using
the external tension t, we write the x-component of the force as
nxðŝÞ � t, 8 ŝA ½σ;ℓ=2� and using the jumps at ŝ ¼ σ we obtain
nxðŝÞ � t�λo0, 8 ŝA ð0;σÞ where we note λ¼ λA ¼ λB. We there-
fore have to solve

dxin=dŝ ¼ cosθin
; dθin

=dŝ ¼min;

dmin=dŝ ¼ �ðλ�tÞ sinθin for ŝA ½0;σ� ðB:7aÞ

dxout=dŝ ¼ cosθout
; dθout

=dŝ ¼mout;

1 The repulsion from the disk is only important for configurations in the deep
post-buckling regime.
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dmout=dŝ ¼ �ðλ�tÞ sin θout for ŝA ½σ;ℓ=2� ðB:7bÞ
These are six differential equations with two unknowns para-
meters λ and σ. Boundary conditions are

xinð0Þ ¼ xC ; θinð0Þ ¼ 0; xinðσÞ ¼ xCþ1=2;

f γ ¼ λ cosθinðσÞ; θoutðℓ=2Þ ¼ 0 ðB:8Þ

and matching conditions are

xoutðσÞ ¼ xinðσÞ; θoutðσÞ ¼ θinðσÞ; moutðσÞ ¼minðσÞ ðB:9Þ
Hence, for each given value of t, f γ , ℓ, the eight boundary and
matching conditions define a well-posed problem for Eqs. (B.7).
For simplicity reasons, we replace the last condition in (B.8) by
θoutðþ1Þ ¼ 0, that is we work in the large ℓ limit. We look for a
small amplitude solution to this boundary-value problem, that is
we develop each variable in power of ϵ, where ϵ is a small
parameter. As buckling happens through a pitchfork bifurcation,
two symmetric (ϵ40, where the beam is buckled upward, and
ϵo0, where the beam is buckled downward) branches emerge
from the ϵ¼ 0 buckling point. Taking advantage of this symmetry
we introduce the following series:

xin;outðŝÞ ¼ xCþ ŝþϵ2xin;out2 ðŝÞþOðϵ4Þ ðB:10Þ

θin;outðŝÞ ¼ ϵθin;out
1 ðŝÞþϵ3θin;out

3 ðŝÞþOðϵ5Þ ðB:11Þ

min;outðŝÞ ¼ ϵmin;out
1 ðŝÞþϵ3min;out

3 ðŝÞþOðϵ5Þ ðB:12Þ

t ¼ t0þϵ2t2þOðϵ4Þ ðB:13Þ

λ¼ f γþϵ2λ2þOðϵ4Þ ðB:14Þ

σ ¼ 1=2þϵ2σ2þOðϵ4Þ ðB:15Þ
Solving the problem (B.7)–(B.9), we find at order ϵ1 that

θin
1 ðŝÞ ¼ sin ðŝ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
f � t0

p
Þ ðB:16Þ

θout
1 ðŝÞ ¼ e

ffiffiffi
t0

p
=2 sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
f � t0

p
2

 !
e� ŝ

ffiffiffi
t0

p
ðB:17Þ

and that t0 is solution to the equation

ffiffiffiffiffiffiffiffiffiffiffiffiffi
f � t0

p
cos

ffiffiffiffiffiffiffiffiffiffiffiffiffi
f � t0

p
2

 !
þ

ffiffiffiffiffi
t0

p
sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
f � t0

p
2

 !
¼ 0 ðB:18Þ

which is (12). At order ϵ2, we find

λ2 ¼
1
2
f γ sin

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
f � t0

p
2

 !
ðB:19Þ

σ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
f � t0

p
� sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
f � t0

p� 

8

ffiffiffiffiffiffiffiffiffiffiffiffiffi
f � t0

p ðB:20Þ

xin2 ðŝÞ ¼
sin ð2ŝ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
f � t0

p
Þ�2ŝ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
f � t0

p
8

ffiffiffiffiffiffiffiffiffiffiffiffiffi
f � t0

p ðB:21Þ

xout2 ðŝÞ ¼ sin ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
f � t0

p
Þ

8
ffiffiffiffiffiffiffiffiffiffiffiffiffi
f � t0

p �1
8
þ

sin 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
f � t0

p
2

 !
ðeð1�2ŝÞ ffiffiffit0p

�1Þ

4
ffiffiffiffiffi
t0

p ðB:22Þ

At order ϵ3, we find θin
3 ðŝÞ,min

3 ðŝÞ, θ
outðŝÞ, andmoutðŝÞ and from their

matching conditions (B.9), we obtain

t2 ¼
f 2γ ð4þ5

ffiffiffiffiffi
t0

p Þ� f γt0ð2þ3
ffiffiffiffiffi
t0

p Þþ2t20�2f γ ½f γð
ffiffiffiffiffi
t0

p �2Þþ4t0� cos ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
f � t0

p
Þ

8f γð2þ
ffiffiffiffiffi
t0

p Þ
ðB:23Þ

We now compute the end-shortening δ¼ ℓ�xðs¼ ℓÞ ¼
ℓ�2½xoutðŝ ¼ ℓ=2Þ�xC �, still in the limit where ℓ-þ1. Using
(B.10) and (B.22) we find δ¼ ϵ2δ2 with

δ2 ¼
1
4
þ

sin 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
f � t0

p
2

 !

2
ffiffiffiffiffi
t0

p � sin
ffiffiffiffiffiffiffiffiffiffiffiffiffi
f � t0

p
4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
f � t0

p ðB:24Þ

Finally we write

t ¼ t0þϵ2t2 ¼ t0þ
t2
δ2
δ ðB:25Þ

We plot in Fig. B1 paths Ax for f γ ¼ 20;30;40 and 50 and the
straight lines given by (B.25).

References

[1] R. Foelix, Biology of Spiders, Oxford University Press, Oxford, 2010.
[2] F.G. Omenetto, D.L. Kaplan, New opportunities for an ancient material, Science

329 (5991) (2010) 528–531.
[3] F. Vollrath, D.P. Knight, Liquid crystalline spinning of spider silk, Nature 410

(6828) (2001) 541–548.
[4] N. Becker, E. Oroudjev, S. Mutz, J.P. Cleveland, P.K. Hansma, C.Y. Hayashi,

D.E. Makarov, H.G. Hansma, Molecular nanosprings in spider capture-silk
threads, Nat. Mater. 2 (4) (2003) 278–283.

[5] F. Vollrath, D.T. Edmonds, Modulation of the mechanical properties of spider
silk by coating with water, Nature 340 (6231) (1989) 305–307.

[6] H. Elettro, S. Neukirch, F. Vollrath, A. Antkowiak, In-drop Capillary Spooling of
Spider Capture Thread Inspires Highly Extensible Fibres, arXiv:1501.00962, 2015.

[7] N. Stoop, J. Najafi, F.K. Wittel, M. Habibi, H.J. Herrmann, Packing of elastic wires
in spherical cavities, Phys. Rev. Lett. 106 (2011) 214102.

[8] R. Vetter, F.K. Wittel, H.J. Herrmann, Morphogenesis of filaments growing in
flexible confinements, Nat. Commun. 5 (2014).

[9] L. Boué, M. Adda-Bedia, A. Boudaoud, D. Cassani, Y. Couder, A. Eddi, M. Trejo,
Spiral patterns in the packing of flexible structures, Phys. Rev. Lett. 97 (16)
(2006) 166104.

[10] E. Couturier, S. Courrech du Pont, S. Douady, The filling law: a general
framework for leaf folding and its consequences on leaf shape diversity,
J. Theoret. Biol. 289 (2011) 47–64.

[11] J.C. LaMarque, T.-v.L. Le, S.C. Harvey, Packaging double-helical DNA into viral
capsids, Biopolymers 73 (3) (2004) 348–355.

[12] W.S. Klug, M.T. Feldmann, M. Ortiz, Three-dimensional director-field predictions
of viral DNA packing arrangements, Comput. Mech. 35 (2) (2005) 146–152.

[13] A. Leforestier, F. Livolant, Structure of toroidal DNA collapsed inside the phage
capsid, Proc. Natl. Acad. Sci. 106 (23) (2009) 9157–9162.

[14] R.S. Manning, G.B. Bulman, Stability of an elastic rod buckling into a soft wall,
Proc. R. Soc. A: Math. Phys. Eng. Sci.: Math. 461 (2060) (2005) 2423–2450.

[15] E. Doedel, H.B. Keller, J.P. Kernevez, Numerical analysis and control of
bifurcation problems: bifurcation in infinite dimensions, Int. J. Bifurc. Chaos
01 (04) (1991) 745–772.

[16] G.H.M. van der Heijden, S. Neukirch, V.G.A. Goss, J.M.T. Thompson, Instability
and self-contact phenomena in the writhing of clamped rods, Int. J. Mech. Sci.
45 (1) (2003) 161–196.

[17] V.G.A. Goss, G.H.M. van der Heijden, J.M.T. Thompson, S. Neukirch, Experi-
ments on snap buckling, hysteresis and loop formation in twisted rods, Exp.
Mech. 45 (2) (2005) 101–111.

[18] H. Elettro, S. Neukirch, A. Antkowiak, Equilibrium and stability of a twisted rod
confined in a liquid drop, 2015, in preparation.

Fig. B1. Paths Ax for f γ ¼ 20;30;40 and 50 with their slope at the origin given by
(B.25).

H. Elettro et al. / International Journal of Non-Linear Mechanics 75 (2015) 59–6666

http://refhub.elsevier.com/S0020-7462(15)00059-1/sbref1
http://refhub.elsevier.com/S0020-7462(15)00059-1/sbref2
http://refhub.elsevier.com/S0020-7462(15)00059-1/sbref2
http://refhub.elsevier.com/S0020-7462(15)00059-1/sbref3
http://refhub.elsevier.com/S0020-7462(15)00059-1/sbref3
http://refhub.elsevier.com/S0020-7462(15)00059-1/sbref4
http://refhub.elsevier.com/S0020-7462(15)00059-1/sbref4
http://refhub.elsevier.com/S0020-7462(15)00059-1/sbref4
http://refhub.elsevier.com/S0020-7462(15)00059-1/sbref5
http://refhub.elsevier.com/S0020-7462(15)00059-1/sbref5
http://arXiv:1501.00962
http://refhub.elsevier.com/S0020-7462(15)00059-1/sbref7
http://refhub.elsevier.com/S0020-7462(15)00059-1/sbref7
http://refhub.elsevier.com/S0020-7462(15)00059-1/sbref8
http://refhub.elsevier.com/S0020-7462(15)00059-1/sbref8
http://refhub.elsevier.com/S0020-7462(15)00059-1/sbref9
http://refhub.elsevier.com/S0020-7462(15)00059-1/sbref9
http://refhub.elsevier.com/S0020-7462(15)00059-1/sbref9
http://refhub.elsevier.com/S0020-7462(15)00059-1/sbref10
http://refhub.elsevier.com/S0020-7462(15)00059-1/sbref10
http://refhub.elsevier.com/S0020-7462(15)00059-1/sbref10
http://refhub.elsevier.com/S0020-7462(15)00059-1/sbref11
http://refhub.elsevier.com/S0020-7462(15)00059-1/sbref11
http://refhub.elsevier.com/S0020-7462(15)00059-1/sbref12
http://refhub.elsevier.com/S0020-7462(15)00059-1/sbref12
http://refhub.elsevier.com/S0020-7462(15)00059-1/sbref13
http://refhub.elsevier.com/S0020-7462(15)00059-1/sbref13
http://refhub.elsevier.com/S0020-7462(15)00059-1/sbref14
http://refhub.elsevier.com/S0020-7462(15)00059-1/sbref14
http://refhub.elsevier.com/S0020-7462(15)00059-1/sbref15
http://refhub.elsevier.com/S0020-7462(15)00059-1/sbref15
http://refhub.elsevier.com/S0020-7462(15)00059-1/sbref15
http://refhub.elsevier.com/S0020-7462(15)00059-1/sbref16
http://refhub.elsevier.com/S0020-7462(15)00059-1/sbref16
http://refhub.elsevier.com/S0020-7462(15)00059-1/sbref16
http://refhub.elsevier.com/S0020-7462(15)00059-1/sbref17
http://refhub.elsevier.com/S0020-7462(15)00059-1/sbref17
http://refhub.elsevier.com/S0020-7462(15)00059-1/sbref17

	Coiling of an elastic beam inside a disk: A model for spider-capture silk
	Introduction
	Model
	Non-dimensionalization
	Boundary-value problem

	Buckling threshold
	Approximations to the buckling load

	Experimental verification
	Non-linear post-buckling computations
	Equilibrium paths
	Approximate analytical model for the plateau regime

	Conclusion
	Acknowledgments
	Variational derivation of the equilibrium equations
	First variation

	Incipient post-buckling regime
	References




