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On vortex rings around vortices:
an optimal mechanism
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Stable columnar vortices subject to hydrodynamic noise (e.g. turbulence) present
recurrent behaviours, such as the systematic development of vortex rings at the
periphery of the vortex core. This phenomenon lacks a comprehensive explanation,
partly because it is not associated with an instability stricto sensu. The aim of the
present paper is to identify the physical mechanism triggering this intrinsic feature
of vortices using an optimal perturbation analysis as a tool of investigation. We find
that the generation of vortex rings is linked to the intense and rapid amplification of
specific disturbances in the form of azimuthal velocity streaks that eventually evolve
into azimuthal vorticity rolls generated by the rotational part of the local Coriolis
force. This evolution thus appears to follow a scenario opposite to the classical
lift-up view, where rolls give rise to streaks.

1. Introduction
Vortices are ubiquitous in fluid flows, appearing in the tiniest scales of turbulence

as well as in the largest geophysical ones. They have been the focus of considerable
research effort over the past few decades. Partly motivated by industrial concerns
related to the potential hazard of wing-tip vortices to following planes (e.g. see Stafford
2006), most of these studies aimed to depict the modal instabilities developing in
vortices. As a result, several stability criteria have been elaborated in order to identify
the candidates for an instability of centrifugal, inflectional (Gallaire & Chomaz
2003) or elliptic nature (Kerswell 2002). But some generic behaviours systematically
exhibited by vortices still lack a convincing description. One can cite vortex bursting,
a localized ‘turbulent burst’ affecting the vortex core while possibly travelling (Spalart
1998; Moet et al. 2005), vortex meandering, an erratic displacement of the vortex core
occurring at large wavelengths (Devenport et al. 1996; Jacquin et al. 2005), or the
systematic development of vortex rings at the periphery of vortices in both numerical
simulations (Melander & Hussain 1993) and experiments (Beninati & Marshall 2005,
and the references therein).

Similarly, in the context of plane shear flows, a phenomenon exhibited as a typical
response of the flow in the presence of noise has long failed to be described with
standard modal analyses. More specifically the emergence of elongated longitudinal
velocity structures, or streaks, in response to an external forcing, is an intrinsic feature
of shear flows. Furthermore, these streaks appear to play a key role in the transition
process (Schmid & Henningson 2001). While standard analyses have failed in depicting
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the mechanism of emergence of these recurrent patterns, alternative ideas, coined ‘non-
modal’ in contrast to classical analyses, have reconsidered the concept of stability.
Basically, by allowing disturbances to continuously deform while growing, these
approaches have succeeded in identifying ‘optimal’ initial conditions that maximize
their energy growth at a given time. Interestingly, these optimal disturbances exploit
energy amplification mechanisms that are filtered out with traditional approaches.
In particular, one of these mechanisms, the so-called ‘lift-up effect’ (Landahl 1975)
is classically invoked to explain the emergence of streaks. This effect appears when
studying the dynamics of an optimal disturbance in the form of rolls (of crossflow
velocity components) which transform into strong streaks (or streamwise velocity
variations). As such amplification mechanisms exploit specific properties of shear
flows, one may expect that other mechanisms arise in the context of vortices, and are
responsible for non-modal behaviours. Such behaviours were reported in Smith &
Montgomery (1995) and Nolan & Farrell (1999) for two-dimensional vortex flows.
Recently, Antkowiak & Brancher (2004) carried out an optimal perturbation analysis
to examine these phenomena in the three-dimensional case, and found an intense
core contamination mechanism. Pradeep & Hussain (2006) pursued this analysis and
found evidence of axisymmetric transient growth for a non-diffusive vortex. They
interpreted this behaviour in terms of tilting and stretching of vorticity (Kawahara
et al. 1997), in line with the classical view of the emergence of vortex rings by the
wrapping up of external vorticity and the merger of the wrapped-up structures.

Our goal in this work is to revisit the understanding of vortex rings formation at the
periphery of vortices, a phenomenon so frequent that some simulations have mimicked
the influence of turbulence on a vortex column by adding such surrounding vortex
rings (Marshall 1998). Using tools that have proven to be successful in another context,
we identify a simple physical mechanism that optimally promotes the emergence of
vortex rings. This mechanism is specific to rotating flows and appears to act in
a fashion that is the reverse of the classical lift-up effect, so that streaks (here
corresponding to azimuthal velocity variations) now generate rolls (here azimuthal
vortex rings) as an outcome. We therefore suggest that vortex rings emerge around
vortices just as streaks naturally appear in shear flows.

2. A disturbed vortex
The flow considered in this article is the classical Lamb–Oseen Gaussian vortex,

spreading under the action of viscosity. Using the characteristic scales Ω0, the initial
angular velocity at the vortex centre, r0, the initial dispersion radius of the vortex,
and ν, the kinematic viscosity, we can express the vorticity Z(r, t) and the angular
velocity Ω(r, t) in the following non-dimensional form:

Z(r, t) =
2

1 + 4t/Re
exp(−r2/(1 + 4t/Re)), Ω(r, t) =

1 − exp(−r2/(1 + 4t/Re))

r2
.

The Reynolds number defined with these characteristic scales,

Re =
Ω0r

2
0

ν
=

Γ

2πν
, (2.1)

is the only control parameter of the flow. Here, Γ is the circulation of the vortex.
In order to identify the perturbation with the most growth, the evolution equations

for an arbitrary disturbance have first to be derived (Fabre, Sipp & Jacquin 2006). In
the classical cylindrical coordinates (r, θ, z), a general hydrodynamic disturbance is
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described by its velocity field u = (ur, uθ , uz) and pressure p. Expressing uz and then
p as functions of ur and uθ , it is possible to write the whole initial value problem for
this reduced set of variables:

F (u) = L
∂u
∂t

+ Cu − 1

Re
Du = 0 (2.2)

Restricting the scope of this study to axisymmetric disturbances, and considering
normal mode disturbances of the form f (r, t)eikz, the following expressions for
operators L, C and D hold:

L =

(
δk 0
0 1

)
, C =

(
0 −2Ω

Z 0

)
, D =

(
�kδk 0

0 �k

)
, (2.3)

where

�k =
∂2

∂r2
+

1

r

∂

∂r
− 1

r2
− k2 and δk = 1 − 1

k2
�0. (2.4)

For a given disturbance, classically we consider the kinetic energy contained in a
cylinder of height one wavelength and of infinite radius. Normalized with the factor
k/4π2, it can be expressed as:

E(t) =
1

2

∫ ∞

0

(ūrur + ūθuθ + ūzuz) r dr =
1

4
(Lu, u) (2.5)

where an overbar stands for complex conjugation, and where the scalar product (a, b)
is defined as

∫ ∞
0

āT b r dr+ c.c.

3. Some technical background
In the present work, the general framework for the optimal perturbation

identification described in Corbett & Bottaro (2001) has been adopted. This optimal
control-theory-based strategy presents the advantage of not requiring the steadiness
of the flow. As this technique is now classical, only a brief outline will be presented
in the following.

A classical variational formulation of the problem is employed to identify the initial
condition inducing the most growth. To this end, it proves useful to introduce u0, the
form of the perturbation at initial time of energy E0, so that u and u0 are now related
through the relation

H(u, u0) = u(0) − u0 = 0. (3.1)

The optimal perturbation is then the particular initial condition maximizing the
energy growth

G(τ ) =
E(τ )

E0

(3.2)

at a given time τ . Equivalently, the optimal perturbation is the particular u0 maxi-
mizing the functional

I(u0, u) = G(τ ), (3.3)

subjected to the constraints F (u) = 0 and H(u, u0) = 0. The constrained optimization
problem is circumvented by introducing the Lagrange functional

L(u, u0, a, c) = I(u, u0) − 〈F (u), a〉 − (H(u, u0), c), (3.4)

already including the constraints by means of appropriate Lagrange multipliers. Here
the scalar product 〈a, b〉 is defined as

∫ τ

0

∫ ∞
0

āT b r dr dt + c.c.
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At a stationary point, the directional derivatives of L vanish. More specifically, the
cancellation of these derivatives with respect to a and c allows the constraints (2.2)
and (3.1) to be recovered, as expected. The condition for the gradient with respect to
u to vanish implies that a satisfies the following adjoint equation:

F+(a) = −L
∂a
∂t

+ C+a − 1

Re
Da = 0, (3.5)

revealing this Lagrange muliplier as an adjoint variable. Here operator C+ is expressed
as

C+ =

(
0 Z

−2Ω 0

)
. (3.6)

Cancelling the u derivative of L provides transfer relations between the adjoint and
direct spaces. Finally, the gradient of the functional with respect to the control can
be written

∇u0
I = −2

E(τ )

E2
0

u0 + a(0). (3.7)

For a given u0, a(0), computed at the expense of successive integrations of the direct
and adjoint equations, allows the functional gradient to be determined. Different
strategies can then be elaborated to improve the control, for example the elementary
fixed step gradient procedure used in this study.

The preceding approach is designed to identify the initial condition maximizing
energy growth at a fixed time τ . A second step may consist in looking for the optimal
time τopt, the result of an optimization with respect to time. The corresponding
initial condition is then called a global optimal perturbation, or, in short, the
optimal perturbation. In some cases, it will be of interest to find the optimal
perturbation corresponding to fixed time τ < τopt. In that case, the corresponding
optimal perturbation will be termed a short-term optimal (Corbett & Bottaro 2001).

In the numerical treatment of the problem, the spatial derivatives are approximated
with a Chebyshev pseudospectral method (e.g. Fornberg 1995), where the Gauss–
Lobatto grid is algebraically mapped onto the semi-infinite physical space. The parity
of the functions is taken into account in the expression of the derivatives (Kerswell
& Davey 1996). All calculations are carried out using Matlab and the DMSuite
package developed by Weideman & Reddy (2000).

4. Axisymmetric amplification
4.1. Quantitative overview

Figure 1 reports the maximal growths achieved with axisymmetric disturbances. It can
already be seen that considerable energy amplification (of order of 104) is obtained,
though asymptotic exponential decay is predicted with modal analysis. The plot also
reveals that large amplification occurs especially at large axial wavelengths. In this
limit, the amplification is accompanied by a tendency for the optimal time τopt to
diverge.

4.2. A note on the k → 0 limit

The behaviour of energy growth near the bidimensional limit k = 0 deserves comment.
It is useful to stress again that unlike classical linear stability analyses, the present
study does not require ‘freezing’ the diffusion of the base flow. With viscous diffusion
taken into account, the present results are therefore valid whatever the time scale of
amplification (which can be of order of a thousand periods of rotation of the vortex
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Figure 1. (a) Maximal amplification reached with axisymmetric optimal perturbations, as a
function of the axial wavenumber k. (b) Corresponding optimal time.
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Figure 2. Re = 1000. Amplification curves associated with the short-term optimals for
optimization times τ = 1, 2 . . . 40 rotation periods of the vortex. The computations have been
carried out as long as τ < τopt, except for τ = 20 where the whole curve is represented for all
k (dotted curve). The optimal wavenumber kmax is shown on each curve with an open circle,
and the filled circle shows the theoretical limit G(k = 0) = 1.

core in the present case). Another comment associated with these results is the fact
that no amplification can occur in the exact two-dimensional limit. Basically this limit
corresponds to a slight modification of the base vorticity profile, and is therefore
subjected to the same diffusion mechanism and time scale as the base flow. The
mathematical counterpart of this statement is the self-adjointness of the governing
operator in this limit, or, alternatively, the cancellation of the production term in the
energy equation due to the vanishing of radial velocity (Smith & Montgomery 1995;
Pradeep & Hussain 2006). G(k =0, t = 0) = 1 therefore constitutes an upper bound
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Figure 3. k = 1, Re = 1000. Evolution of a typical optimal disturbance. (a) t = 0, (b) t = τopt/3
and (c) t = τopt. The contours represent the azimuthal velocity uθ level (solid: positive, dotted:
negative). The velocity field represents the velocity components ur and uz of the perturbation.
The diffusive base flow is plotted underneath (solid: vorticity, dotted: azimuthal velocity).

for the energy growth G(k =0, t). But this behaviour is associated with a singular
limit, as shown in figure 2, which plots the amplification curves obtained with initial
conditions maximizing their energy at a fixed time τ < τopt, or ‘short-term optimals’
as coined by Corbett & Bottaro (2001). It appears clearly that there is selection of
a particular wavenumber kmax corresponding to the largest energy growth at a given
time depending on the time of optimization τ . As τ is progressively increased, a
drift of this maximum wavenumber to larger wavelengths is observed. But in the
same time, the energy growth in the bidimensional limit is still less than 1. Thus,
the amplification curve becomes increasingly steep near k = 0, allowing large energy
excursion for large-wavelength structures† while preserving the ‘no growth’ condition
in the two-dimensional case.

4.3. Structure of the optimal perturbation

Figure 3 shows the typical evolution of an optimal initial condition. The perturbation
is initially composed of a stack of azimuthal velocity streaks located outside the vortex
core, in the quasi-potential zone. Interestingly, this distribution of azimuthal velocity
streaks is exponentially localized, and therefore does not change the overall circulation
budget. As time evolves, the structure of the optimal perturbation evolves in turn
(recall that this perturbation is not of modal type) and vortex rings (azimuthal vorticity
tori) of alternate signs form and become increasingly stronger. In the evolution
depicted figure 3, the intensification of the vortex rolls is at the expense of the initial
velocity streaks, which slowly diffuse. By the end of the sequence, the vortex rings
contain almost all the energy.

It might be interesting to compare this evolution to the lift-up effect in plane
shear flows that transforms initially weak streamwise rolls into powerful streamwise
streaks. Conversely, the present optimal initial condition consists of a set of azimuthal
(streamwise) velocity streaks that evolves into a stack of strong vortex rings
(streamwise rolls). For convenience, we will therefore denote this counterintuitive

† An analogous behaviour in diffusing plane shear flow has been reported in Luchini (1996).
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evolution the ‘anti-lift-up’ scenario. The associated physical mechanism is investigated
in the following and explained in terms of ingredients specific to swirling flows.

5. The physical mechanism
Two views will be successively adopted in the following. First, based on momentum

conservation equations, the interplay between velocity streaks and vortex rings will
be made explicit, as well as its time dependence. Secondly, a physical picture of the
emergence of vortex rings will be proposed based on angular momentum conservation.
Both complementary views will allow further insight into this simple but non-trivial
phenomenon.

Localized outside the vortex core, the optimal initial condition evolves in a region
that can reasonably be considered as potential. Without base vorticity, the azimuthal
velocity perturbation obeys a pure diffusion equation:

∂uθ

∂t
=

1

Re
�uθ . (5.1)

Similarly, taking the azimuthal projection of the Helmholtz equation for vorticity, we
are left with the following evolution equation for the vortex rings:

∂ωθ

∂t
= 2Ω(r, t)

∂uθ

∂z
+

1

Re
�ωθ . (5.2)

Whereas the streaks evolve free of any hydrodynamic feedback, the vortex rings
are completely driven by the streaks. From equation (5.2), which could alternatively
be interpreted in terms of standard tilting and stretching arguments (Pradeep &
Hussain 2006), it can be seen that the vortex rings development follows a linear time
dependence in the inviscid limit (except in the bidimensional limit where the expected
decay is obvious from (5.1) and (5.2)). Again, this algebraic time dependence, although
simple, is completely filtered out with standard modal arguments (Ellingsen & Palm
1975).

A further insight into the amplification mechanism may now be given, taking an
alternative view based on angular momentum conservation arguments. The Lamb–
Oseen vortex corresponds to an equilibrium where the centrifugal force acting on
fluid particles is balanced by the pressure gradient. Introduction of a perturbation
disturbs this equilibrium. More precisely, a fluid particle subjected to an azimuthal
velocity disturbance uθ will drift radially under the action of the local Coriolis force
Fcoriolis = 2Ω(r, t)uθ er . Indeed, following Batchelor (1967, § 3.2) it can be easily shown
that in a frame corotating with the fluid located at r , we have

∂ur

∂t
= −∂p

∂r
+ 2Ω(r, t)uθ +

1

Re
(�u) · er (5.3)

where uθ represents the same hydrodynamic disturbance as the one in the fixed frame
due to axisymmetry, and the term 2Ω(r, t)uθ explicitly originates from the Coriolis
force. Thus, if located in a high-velocity streak the fluid particle will be expelled
radially outwards, while it will be pushed to the centre-axis if the streak is a low-
velocity region. Generalizing this reasoning for each fluid particle, it is possible to
construct figure 4(a). This alternative view of the initial condition represents the local
Coriolis force field acting in the fluid at initial time. Since an azimuthal velocity
perturbation is purely diffusing in the potential region, it becomes possible to see the
initial stack of streaks as an inhomogeneous distribution of local Coriolis body force,
fixed in the bulk and slowly diffusing, with momentum diffusivity.
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Figure 4. k = 1, Re =1000. (a) ‘Coriolisogram’ of the optimal initial condition and its
Helmholtz decomposition into (b) potential and (c) rotational parts.

But so far, the collective behaviour of the particles has been neglected, and the
‘Coriolisogram’ proposed only offers a partial view of the mechanism. Hydrodynamic
interactions between particles can be investigated by taking the divergence of the
governing equations. This results in the following Poisson equation for the pressure
field p:

�p =
1

r

∂

∂r
(2rΩ(r, t)uθ ), (5.4)

which can be solved numerically, with an appropriate shooting method for example.
The signification of equation (5.4) is made clearer if one recognizes the divergence
of the Coriolis force on the right-hand side. It should now be evident that the
pressure force −∇p is the opposite of the Coriolis force’s potential part. Physically,
the equivalent body force field in figure 4(a) induces compression and dilation of
fluid particles, which are not allowed in the incompressible evolution considered here.
Pressure enforces incompressibility by cancelling the potential part of the Coriolis
force (figure 4b). As a result, the effective force field acting on fluid particles is the
rotational part of the Coriolis force (figure 4c), a result readily visible through the
azimuthal vorticity evolution equation (5.2) where the first term of the right-hand
side is (∇ × Fcoriolis) · eθ . (Note that in the bidimensional limit, the rotational part of
the Coriolis force vanishes.) In summary, the evolution of the optimal perturbation and
the underlying mechanism can be explained on the basis of simple physical arguments:
the initial streaks of azimuthal velocity generate a distribution of Coriolis force whose
rotational part is responsible for the production of azimuthal vorticity and the subsequent
emergence of vortex rings.

The physical understanding of the amplification mechanism allows insight into its
scaling laws. According to equation (5.1), an azimuthal velocity streak of amplitude
O(ε) stays fixed in the fluid on a time scale O(Re). Vortex rings are slaves of the
streaks, as shown with equation (5.2), and encounter an amplification stage bringing
them to an amplitude O(εRe). As for the lift-up effect, a Re2 scaling for the energy
is thus expected. Rescaling the optimal times of figure 1(b), it can be shown that
the diffusive time scale is exactly verified. But so far, the scaling predicted for the
energy growth appears to be an upper bound. The base vorticity, neglected in the
present analysis, is responsible for the alteration of the scaling law (Antkowiak 2005;
Pradeep & Hussain 2006). Indeed, the Re2 scaling has been rigorously verified in an
unpublished study conducted by the first author and Michel Rieutord in the case of
vanishing epicyclic frequency (i.e. potential) Taylor–Couette flow.
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6. Conclusions
A powerful mechanism of disturbance energy amplification has been found in

vortices. Particular initial conditions that optimally exploit this effect have been
exhibited, and their dynamics decrypted. Such optimal disturbances are typically
composed of a stack of azimuthal velocity streaks at the initial time. As time
evolves, this arrangement of streaks continuously deforms and transforms into a set
of contrarotating vortex rings wrapped around the vortex core. The whole process
is characterized by a strong amplification of disturbance kinetic energy, even at
moderate Reynolds numbers. Moreover this amplification scales as Re2 in the ideal
limit of potential base flow, whereas the optimal time follows a diffusive Re time scale.
These scalings, as well as the structures involved (longitudinal streaks and rolls), have
properties analogous with the lift-up phenomenon occurring in plane shear flows. It
must be stressed that these two phenomena act in a reverse fashion, and are based on
totally different physical ingredients: whereas a shearwise disturbance (roll) exploits
the ambient shear to induce large longitudinal deviations (streaks) in a vortical
layer, an azimuthal velocity disturbance (streak) injected in a potential rotating flow
exploits the ambient rotation and triggers the development of intense vortex rings
(rolls) as a consequence of angular momentum conservation through the generation
of a particular distribution of Coriolis force.

This mechanism is generic in two ways. On the one hand, it does not depend
on the core vorticity profile, as it is active in the quasi-potential part of the flow.
On the other hand, though shown with a particular perturbation profile here, it will
be activated by any azimuthal velocity disturbance localized outside the vortex
core. In particular, a continuous random forcing should exploit the underlying
physical mechanism presented here. Eventually, the result of the optimal perturbation
(sometimes termed a ‘pseudomode’) should emerge from the noise, as demonstrated
in the case of plane shear flows (Farrell & Ioannou 1993). Obviously, this conjecture
has to be confirmed with a proper stochastic forcing analysis, which is currently
under way (some former RDT analyses conducted on vortices are already clues
of such behaviours, see Miyazaki & Hunt 2000). If confirmed, this scenario would
explain the propensity of vortices to develop characteristic vortex ring structures at
their periphery when submerged in a disturbed environment such as a turbulent
background.

Another result of the present study raises some questions about standard modal
stability analyses of vortices. These assume on the one hand that transients have died
away (asymptotic long time analysis), but require on the other hand the steadiness of
the flow. This latter assumption implicitly restricts the validity in time of such analyses,
the diffusive time scale O(Re) being an upper bound. Conversely, the present work,
considering the viscous spreading of the vortex, shows that transients may exist, if not
arise, precisely on this diffusive time scale. Therefore these results suggest that care
should be taken with predictions obtained with modal approaches, at least regarding
the evolution of axisymmetric perturbations.

Finally, an interesting mechanism that is undetectable with standard approaches
has been shown in vortices, using the optimal perturbation identification as a
tool of investigation. This mechanism is specific to rotating flows and is not just
a variant of well-known plane shear flows mechanisms. As illustrated here, the
optimal perturbation analysis thus provides with a useful framework for revealing
original physical mechanisms that exploit the intrinsic properties of the flow: shear
or differential rotation, but also potentially stratification, surface tension, etc.
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