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Transient energy growth for the Lamb–Oseen vortex
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The transient evolution of infinitesimal flow disturbances which optimally induce algebraic growth
in the Lamb–Oseen~Gaussian! vortex is studied using a direct-adjoint technique. This optimal
perturbation analysis reveals that the Lamb–Oseen vortex allows for intense amplification of kinetic
energy for two-dimensional and three-dimensional perturbations of azimuthal wavenumberm51. In
both cases, the disturbances experiencing the most growth initially take the form of concentrated
spirals at the outer periphery of the vortex which rapidly excite bending waves within the vortex
core. In the limit of large wavelengths, the optimal perturbation leads to arbitrarily large growths via
an original scenario combining the Orr mechanism with vortex induction. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1626123#
id
w
ts
tin
g

lim
e
le

th
ity

d
le
t t

o
o
ia
on
te
ti

es

a
n

a
ne
s
y

m
sic

the
ric
lar

an-

hese
ed

3D
mi-
rtex

nt
n-

a-

ar

in-
y-

een

or-

istic
-
ba-
ure
The stability properties of vortices have received cons
erable attention in recent years partly because of a rene
interest in the dynamics of trailing vortices behind aircraf
More specifically, the strong and persistent counter-rota
vortex pair generated at the trailing edge of airplane win
represent a potential hazard to forthcoming planes thus
iting take-off and landing cadences in airports. It has be
shown in the last decades that these vortices are unstab
long-1 and short-wave instabilities2 due to the underlying
strain field induced by the companion vortex. Moreover,
presence of an axial flow is at the origin of other instabil
mechanisms.3

By contrast, an isolated vortex with no axial flow an
monotonically decreasing positive vorticity, hereafter cal
an axisymmetric monopole, is linearly stable with respec
two-dimensional~2D! and three-dimensional~3D! perturba-
tions ~see, for instance, the temporal stability analysis
Fabre and Jacquin4!. In particular, it is stable with regard t
both the centrifugal and inflection-point Rayleigh criter
Stability analyses of this kind of vortex generally focus
2D perturbations. In the inviscid case, a deformed vor
relaxes toward an axisymmetric state after an exponen
~Landau! damping followed by algebraic decay at long tim
of the initial asymmetric perturbations.5,6 At large but finite
Reynolds numbers, asymmetric perturbations asymptotic
decay on a Re1/3 time scale via a shear–diffusio
mechanism.7,8

Interesting algebraic evolution of 2D disturbances h
also been reported in the case of inviscid hollow hurrica
like vortices:9,10 long time asymptotics has revealed the po
sibility for linear growth of the perturbation kinetic energ

a!Electronic mail: antko@imft.fr
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even if the flow is exponentially stable. But this mechanis
is only active under the necessary condition that the ba
flow angular velocity has a local maximum other than at
vortex axis, which is not the case for the axisymmet
monopole. Yet a generalized stability analysis of monopo
vortices maintained by radial inflow has also revealed tr
sient growth for 2D spiral-shaped perturbations.11 Moreover,
the same authors have found that the linear response of t
flows to random forcing involved a similar spiral-shap
dominant structure.12 Finally, recent theoretical studies13

have suggested that interactions between a vortex and
external turbulence could excite bending waves, via a do
nant linear process that may eventually destroy the vo
after about 10 rotation times in the nonlinear regime.

In that context our objective in this Letter is to prese
preliminary results revealing the potential for intense tra
sient amplification of kinetic energy for specific perturb
tions ~optimal perturbation! in the linear regime. It is argued
that this transient growth could eventually trigger a nonline
transition in an otherwise linearly stable vortex.

The present work analyzes the temporal evolution of
finitesimal 3D perturbations with velocity components in c
lindrical coordinatesu(r ,u,z,t)5(ur ,uu ,uz)

T in a steady in-
compressible axisymmetric vortex flowU(r )5(0,rV,0)T.
The basic flow under consideration here is the Lamb–Os
model, with angular velocityV(r )5 @12exp(2r2)#/r2 and
associated axial vorticityZ(r )52exp(2r2). Here space and
time have been respectively nondimensionalized by the v
tex radiusr 0 and the~maximum! angular velocity at the axis
V0 . The Reynolds number based on these character
scales is Re5V0r0

2/n, wheren denotes the kinematic viscos
ity. Linearizing the Navier–Stokes equations around this
sic flow, it is possible to eliminate the perturbation press
© 2004 American Institute of Physics
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L2 Phys. Fluids, Vol. 16, No. 1, January 2004 A. Antkowiak and P. Brancher
and axial velocity to get a complete description of the p
turbation in terms ofṽ5(ur ,uu)T. Then, injecting a classica
normal modes decomposition, ṽ(r ,u,z,t)5v(r ,t)
3exp@i(kz1mu)#, wherek ~real! andm ~integer! are, respec-
tively, the axial and azimuthal wavenumbers, yields the f
lowing system forv, rewritten in compact form:

F~v!5L
]v

]t
1Cv2

1

Re
Dv50, ~1!

with the associated boundary conditions that the perturba
is regular atr 50 and tends to 0 at infinity. Derivation of~1!
is straightforward.4 D is a viscous diffusion operator and th
operatorL results from the elimination of pressure and ax
velocity from the original linearized Navier–Stokes equ
tions. Disturbance and basic flow are coupled through
advection operatorC.

Classical linear stability theory focuses on the long tim
behavior of the normal modes by assuming exponential t
dependence of the formv(r ,t)5v(r )e2 ivt. The analysis
then reduces to an eigenvalue problem for the complex
sationsv, which are all stable for the Lamb–Oseen vorte4

Nevertheless, it is noteworthy that the advection operatoC
is highly non-normal, except in the trivial casek5m50 or
in the special case of solid-body rotation. This property, h
due to differential rotation, implies that short time transie
amplification can be anticipated.14

This conjecture can be addressed by computing the
timal perturbation, i.e., the initial condition which maximize
the energy gainG(t)5Et /E0 during a finite time interval
@0,t#, where the perturbation energy at timet is given by

Et5
1

2 E0

`

~ ūrur1ūuuu1ūzuz!rdrU
t

.

Here the overbars indicate transpose conjugate quantitie
Different techniques can be used to determine the o

mal initial conditions.15–18 The formalism employed in the
present work comes from optimal control theory. It has be
successfully used to compute the optimal perturbation
swept boundary layers.19 Since we follow closely the proto
col described in Corbett and Bottaro,19 we only give a syn-
thetic presentation of this approach in the following.

The optimization problem lies in maximizing the ener
growthG(t) ~theobjective! at a given timet under thecon-
straintsof respecting~1! and the associated boundary con
tions. The initial conditionv0 is used as acontrol to be ad-
justed in order to meet the objective. This constrain
optimization problem can be solved by considering
equivalent unconstrained problem for the Lagrangian fu
tional:

L~v,v0 ,a,c!5G~t!2^F~v!,a&2~H~v,v0!,c!,

introducing the adjoint variablesa(r ,t)5(a,b)T and c(r )
5(c,d)T which play the roˆle of Lagrange multipliers. Here
H(v,v0)5v(r ,0)2v0(r ) corresponds to the constraint th
the initial conditionv(r ,0) matches the controlv0(r ). The
inner products appearing in the functional are
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~p,q!5E
0

`

p̄"q r dr 1complex conjugate,

^p,q&5E
0

t

~p,q! dt.

The task is then to determinev, v0 , a andc which renderL
stationary, i.e., corresponding to a local extremum. Setting
zero variations ofL with respect to these variables yield
boundary conditions and the following~adjoint! system for
the variablea:

F1~a!52L
]a

]t
1C1a2

1

Re
Da50, ~2!

whereC1 is the adjoint operator ofC. It also yields transfer
relations between the direct and adjoint variables at timet
50 andt5t as well as the expression of the optimal pertu
bation. The reader is referred to the paper by Corbett
Bottaro19 for the details of the derivation. The computatio
of the optimal perturbation is carried out via the followin
iterative algorithm: from an initial guess~random noise! v0

the direct system~1! is integrated tot5t; transfer relations
are then applied to provide initial conditions for th
backward-in-time integration of the adjoint system~2! until
t50 thus providing improved initial conditions for the ne
iteration. In practice this procedure converges within 4 to
iterations~i.e., G(t) varies less than 1022).

The spatial treatment of the direct and adjoint system
based on a pseudospectral Chebyshev method.20 The equa-
tions are discretized on the Gauss–Lobatto grid algebraic
mapped on the semi-infinite physical domain.20 All compu-
tations are done usingMATLAB and theDMSuite package de-
veloped by Weideman and Reddy.21 A special trick of the
method has been to take advantage of the variables p
thus allowing to reduce the number of collocation points
a given accuracy.4 Convergence tests have been perform

FIG. 1. Optimal energy growth and corresponding optimal time~in rotation
periods! versus axial wavenumber.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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L3Phys. Fluids, Vol. 16, No. 1, January 2004 Transient energy growth for the Lamb–Oseen vortex
by varying the stretching of the mapping and the numbe
collocation points from 40 to 120 without any drama
changes in the results.

We next discuss preliminary results obtained for the p
ticular casem51. The evolution of the optimal growth with
respect to the axial wavenumberk is reported in Fig. 1, to-
gether with the corresponding timetopt at which it occurs. It
can be seen that considerable growth can be reached, ev
moderate Reynolds numbers. A remarkable feature is
presence of a relative maximum in energy neark.1.4 inde-
pendently of the Reynolds number, indicating some th
dimensional core sized mechanism efficient in redirect
energy from the mean flow to the perturbation. The ene
value at this peak scales with the Reynolds number. Figu
shows the optimal disturbance structure corresponding to
maximum. This perturbation is att50 composed of a set o
spiraling vorticity sheets with a left-handed orientation th
evolve so as to produce a strong bending wave within
vortex core. Due to three-dimensionality, the dynamics
such a perturbation is quite intricate~stretching and tilting!
and is not yet fully understood. Nevertheless, this dynam
might involve an analog of the 3D mechanism analyzed
Farrell and Ioannou.22 These authors present a generalizat
of the so-called Orr and lift-up mechanisms in plane sh
flows which could constitute an interesting basis for the
tailed analysis of the present results.

Though stretching and tilting vanish as large wav
lengths are approached, the potential for substantial trans
growth still exists. More specifically, the 2D limit exhibits
striking feature: the growth increases linearly24 with terminal
time t ~Fig. 3!. Figure 4 depicts the evolution of a typical 2
optimal perturbation. The associated vorticity field initial
takes the form of spirals that tend to thicken and to lie furt
from the vortex core ast is increased~data not shown!. This

FIG. 2. Isosurfaces of axial vorticity for the optimal 3D case. The lev
correspond to680% of maximum vorticity, at initial time~left! and optimal
time ~right!.

FIG. 3. Evolution of growth with terminal time~in rotation periods! in the
2D case at Re51000.
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field satisfied the linearized vorticity equation:

~3!

where three parts have been underbraced: an advection
which materially advects the vorticity perturbation, an indu
tion part corresponding to redirection of vorticity from th
mean flow to the disturbance~both parts coming from the
linearization of the advection term in the complete equati!
and a diffusion term. Let us examine how these terms in
act as time evolves. The initial structure of the optimal p
turbation is a set of vorticity sheets in the form ofleading
spirals~by opposition totrailing spirals, as for the advection
of a passive scalar spot!. This initial condition is located at
the limb of the vortex, where the induction term is neg
gible. As time flows~middle of Fig. 4!, the initial leading
spirals are advected and unfolded via an analog of the
mechanism. This process results in a local reorganizatio
the external perturbation vorticity that promotes vortex
duction on the vortex axis as the spirals unroll. This origin
global sequel of the Orr mechanism initiated at the ou
periphery of the vortex thus eventually leads to a contami
tion of the vortex core by exciting translational~bending!
modes: quickly, an inner bipolar vortical structure grows, a
at larger times most of the kinetic energy is associated w
this ‘‘translation.’’ Maximum growth is reached at termina
time, before the resulting unblended spirals are stirred b
into trailing spirals. Though the whole process is clearly
viscid, viscosity plays a roˆle in the selection of the initial
characteristic radial scale of the optimal disturbance~the
greater the Reynolds number, the thinner the vortic
sheets!.

We now present a simple model intended to mimic t
combined effects of advection and induction, and to illustr
the initial destructive interference between vorticity spira
In this model, the evolution of points vortices advected b
1/r flow initially organized along spirals is examined, an
the resulting induced velocity at the center is evaluat
Starting with two filaments rolled up in spiral form, the a
tion of the mean external shear flow (.1/r ) is to materially
advect the vorticity and to concentrate the spiral. Figure
represents the evolution of resulting radial velocity at t
center, which is a measure of the induction term. Its actio
negligible at initial time, due to destructive interference
intertwined spirals. But, as time evolves, the spirals beco

FIG. 4. Cross section of axial vorticity in the 2D case. The contour p
levels are660% of maximum absolute vorticity.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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L4 Phys. Fluids, Vol. 16, No. 1, January 2004 A. Antkowiak and P. Brancher
unwound. As a consequence, their action focuses on the
ter and redirects vorticity from the mean flow to the distu
bance.

The important point of the present Letter is thatm51
disturbances injected in a vortex are subject to transient
plification. The physical mechanism feeding the transi
growth is not restricted to a local Orr mechanism, but
cludes also a global effect of vortex induction. It is notew
thy that these two mechanisms are not specific to the Lam
Oseen vortex, or even to vortices, but are generic to
flows with the two hydrodynamic ingredients: shear and
tation. Nevertheless, several questions remain unanswe
First, in the linear regime, what are the respective roles
stretching and tilting in the 3D case? Is the peak in Fig. 1
result of a resonance phenomenon? Moreover, the nonli
regime of the optimal perturbation will be investigated v
direct numerical simulations in order to address the
evance of a ‘‘bypass’’14 transition scenario in such a flow
Back to aircraft vortices, the similarity between the result
optimal evolution~a core contamination by external distu
bance leading to a translation! and the long-wave erratic dis
placements of experimental vortices, a phenomenon kn
as vortex meandering,23 also encountered in tornado- an
hurricane-like flows,11 appears puzzling and worthy of fur
ther investigation. Finally, an exhaustive parametric stud
currently under way in order to investigate other azimut
wavenumbers and the influence of base flow diffusion.25
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