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Twining plants achieve vertical growth by revolving around supports of different sizes on which
they exert a pressure. These well-known observations raise many intriguing questions that can
be addressed within the framework of elastic filamentary structures. Here, mechanical aspects of
this problem are investigated by modeling the stem close to the apex as a growing elastic rod
with intrinsic curvature and twist. The analysis reveals that vertical growth is achieved thanks to
the presence of discrete contact points as well as regions with continuous contact. Further, the
experimentally observed fact that the plant stem is under tension is shown to be directly related to
the positive contact pressure. Finally, the maximal radius of the pole around which a twiner can
climb is identified.

PACS numbers: 46.70.Hg,46.32.+x,89.20.-a

Climbing plants have developed a fascinating array of
mechanical strategies to achieve vertical growth with-
out being able to support themselves. Hookers, lean-
ers, weavers, rooters, stickers, clingers, tendril-bearers,
or twiners are just a few realizations of the 30 different
ways vines manage to grow by taking advantage of their
surrounding [1]. Twiners, such as garden peas, climb-
ing jasmines, and morning-glories, are perhaps the most
studied of all vines [2]. The growing tip waves around in
a circular motion known as circumnutation until it finds
an appropriate upright support and then start wrapping
around it to extend upward. The tip of the vine keeps nu-
tating and the vine pursue its climbing process by form-
ing a spiral around the support. The growth process of
twining plants raises many interesting mechanical ques-
tions already noted by 19th century botanists and further
studied by Silk, Holbrook and co-workers [3–7].

Can a given twining plant climb around supports of
different sizes? This question was first raised by Charles
Darwin in his book on The movements and habits of
climbing plants[8]. In there he comments: “Most twin-
ing plants are adapted to ascend supports of moderate
though of different thicknesses. Our English twiners, as
far as I have seen, never twine round trees...”. As an ex-
ample, Darwin noted that Solanum dulcamara can twine
around supports of 3mm but not on supports of 5 or 6mm
(see many other examples in [9]). The natural question
is then to determine the critical cylinder radius above
which a plant is no longer able to twine. In the process
of establishing themselves on a pole, twining plants rely
on friction[2, 7]. As noted by Julius von Sachs [10], the
vine may slide off “...if the surface of their vertical sup-
port is too smooth to furnish a strong mutual friction”.
What is the effect of friction in the vine ability to grasp
the pole? Similarly, what is the pressure generated by a
plant on the pole? How does it change with its intrin-
sic properties and shape? Whereas most plants such as

trees or flowers stems are in compression, a peculiar fea-
ture of twining plants is that their stem is in tension [4].
How is this tension generated? There is no applied load
at the tip of the growing plant, gravity only increases
compression and although the stem can build compres-
sive and tensile domains through differential growth the
net effect, once averaged over the cross-section, vanishes.
Therefore, a vine in continuous contact with a pole can-
not generate tension. As we will see, tension is actually
produced when the plant establishes discrete points of
contacts which create anchorage points. The purpose of
this Letter is to identify through simple mechanical ar-
guments how twining vines establish themselves, develop
discrete and continuous contacts, and to answer Darwin’s
question on the critical pole radius.
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FIG. 1: Blue Bindweed (Ipomoea purpurea), a typical twining
plant (illustration from Sachs’ physiology of plants [10] ). The
shoot apex spans from a to b.
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Most authors have studied the helical shape of the
twining vine around the pole. By contrast here we focus
on the formation of these helices by looking at the way
the tip of the vine manages to grasp the pole. The vine
before lignification is a long, thin, elastic filament subject
to twisting and bending. Due to the small linear den-
sity of the vine and the large stresses developed through
self-contact, the gravitational load on the vine has been
found experimentally to be negligible by comparison to
other forces involved in the problem (for instance the lin-
ear weight in Pharbitis nil is about 0.4 mN cm−1 but, it
can exert a contact force of 300 mN cm−1 [4] ). Therefore
it will be omitted in the analysis of the grasping prob-
lem. During the circumnutation process, the vine at the
apex develops intrinsic curvature and torsion. We as-
sume these curvatures to be constant and uniform. This
assumption is also consistent with the vertical and lateral
oscillation of the vine tip observed during growth.

It is therefore reasonable to model the vine as a uni-
form inextensible and unshearable elastic rod with circu-
lar cross-section, constant intrinsic curvature and twist,
in possible contact with a cylindrical support. Since
growth is slow with respect to other time scales in the
problem, the attachment problem consists in finding pos-
sible equilibria of the rod on the cylinder with appropri-
ate boundary conditions. An inextensible and unshear-
able rod of length L may be represented by its centerline
r(s), where s is the arclength (0 ≤ s ≤ L), and an or-
thonormal basis formed by the tangent vector d3(s) = r′,
and two vectors d1(s), d2(s) representing the orientation
of material cross sections. A complete kinetic description
is given by: d′

i = u×di, i = 1, 2, 3 where ( )′ denotes the
derivative with respect to s and u is the strain vector.
The two first components of u are related to the Frenet
curvature κ =

√
u2
1 + u2

2 and u3 is the twist which com-
prises both material twisting and Frenet torsion τ . The
stresses in a cross section at s can be averaged to yield a
resultant force n(s) and resultant moment m(s) acting at
r(s). The balance of linear and angular momenta yields
[11]

n′ + f = 0, m′ + r′ × n = 0, (1)

where f(s) is the body force per unit length applied on the
cross section at s (body couples are ignored here). The
body force is used to model the effect of contact with
the support. To close the system, we assume the lin-
ear constitutive relations m = Bu1d1 + B(u2 − û2)d2 +
C(u3 − û3)d3, where û2 and û3 are, respectively, the in-
trinsic curvature and twist of the rod, and B and C are
the bending and twist rigidities. To gain some insight on
the problem, we first consider a simple two-dimensional
version where the vine, rather than twining around a
pole, is restricted in the plane. In this case û2 = 1/R̂
and û3 = 0. The filament is assumed to be clamped at
its base (s = 0), that is r(0) = (R, 0), d3(0) = (0, 1).
That is, R̂, the natural radius of the vine, corresponds to
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FIG. 2: Diagram of the apex region of a climbing twiner

the radius of the vine when taken away from its support
(see [4] for the experimental procedure that provides the
value of R̂). The clamp models the constraint applied by
the lower part of the plant on the shoot apex. The tip
at s = L lies on the disc and no moment is applied to
it so that its curvature is equal to the intrinsic curvature
u2(L) = û2. We also require the external force at L to be
radial (see Fig. 2). For each length L and ratio of radii
ρ = R/R̂, these boundary conditions ensure the existence
of a discrete set of solutions. Therefore solutions can be
obtained numerically by traditional shooting methods for
boundary-value problems: starting with the initial values
at s = 0 (r(0) = (R, 0), d3(0) = (0, 1),m(0), and n(0) to
be given by an initial guess), Eq. (1) is integrated with
a Runge-Kutta alogrithm, up to s = L where we check
the end conditions. If they are not satisfied, we adjust
the values for m(0) and n(0) until the computed solu-
tion satisfies the boundary conditions. Once a solution is
known, the process of growth on the disk is carried out
by finding solutions with increasing length, using param-
eter continuation. For each solution, we track the angle
α that the tip makes with the tangent to the disk (see
Fig. 2). We refer to the portion of the filament off disk
as the anchor. For small ρ, a typical bifurcation diagram
with distinct equilibria branches is shown in Fig 3. On
the first branch (continuous line) and for small enough L,
we find stable solutions which can be continued up to a
(fold) point where they first penetrate the disk. This is a
bifurcation point where we identify another branch (the
vertical line in Fig. 3) corresponding to solutions having
a segment in continuous contact with the disk in addi-
tion to the anchor part. The length of the continuous
part can be extended arbitrarily while the anchor does
not change shape. The remaining upper part of the first
branch (dotted curve) corresponds to unphysical configu-
rations penetrating the disk. All solutions on the branch
corresponding to large values of α (dash-dotted curve)
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are either unphysical or dynamically unstable (as deter-
mined by computing the linearized dynamics around the
configuration [12]). For larger values of ρ there are also
two branches of equilibria. On the lower branch, there
exist stable configurations for 0 < L < Lmax. At Lmax

a fold point is reached with a loss of stability and a dy-
namical jump occurs to configurations where the filament
rolls on itself and leaves the disk (see Fig. 4). This rolled-
up solutions can have arbitrary length (see vertical line
in Fig. 4). These solutions are not viable for a twining
plants since they do not allow the vine to grow around
the pole by increasing its length. The bifurcation be-
tween these two behaviors defines the maximal radius on
which a vine can grow and is found to occur at the unique
value ρc ' 3.3 where the two branches of equilibria cross.
That is, in the plane a vine cannot grow on disks that
are more than 3.3 times larger than its natural radius.

In the section of the filament in continuous contact
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FIG. 3: Below the critical curvature ratio, 3 = ρ < ρc, fil-
aments can grow by first changing its inclination at the tip
then by adding a continuous segment (in red) of arbitrary
size. Dotted and Dash-dotted curves represent curves that
are either unstable (do not remain attached on the pole) or
unphysical (where the vine enters the disk). They are however
useful to understand the bifurcation.
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FIG. 4: Above the critical curvature ratio 3.5 = ρ > ρc,
filaments attachment on the disk are limited in length. Past
a certain Lmax value, the filaments rolls up on itself and does
not manage further growth to keep growing around the pole.

with the disk the radial component of the force vanishes.

From Eq. (1), we see that the tension n3 = n·d3 balances
the contact force p = f · er so that n3 = R p. Since the
support can only provide repulsive contact force (p > 0),
the previous relation implies that the filament must be in
tension (n3 > 0). This tension is provided by the point-
wise contact force at the end s = L of the filament and
transmitted by the anchor to the part [of the filament]
in continuous contact with the disk. Further use of the
moment balance and of the constitutive relation yields

p =
B

R2

(
1

R̂
− 1

R

)
, (2)

from which we see that the condition ρ > 1 must be
satisfied for p to be positive.

The analysis so far has been restricted to the friction-
less case. However, it has been emphasized by different
authors [2, 7] that friction plays an important role in the
ability of a climbing plant to support its weight. Here
friction is modeled by a tangential component of the disk
reaction force on the tip of the anchor. To understand
its effect, we first consider an equilibrium configuration
obtained in the absence of friction. We then change the
length of the filament without moving the tip. This is
made possible by introducing a tangential component in
the reaction force along eθ at s = L due to friction. As L
keeps increasing (resp. decreasing), the tangential force
component reaches a critical value equal to µ p where
µ < 0 (resp. µ > 0) is the friction coefficient. Past
this value the tip slips incrementally on the disk to find
a new nearby equilibrium configuration where the tan-
gential component equals the critical tangential value.
Therefore, to identify the equilibrium configurations with
friction we increase the length and find configurations
where the tangential force equals µ p. For each friction
coefficient µ we compute, as detailed above, the critcal
value ρc = ρc(µ) defining the bifurcation between fila-
ments that can grow around the disk and filaments that
leave the disk. The results in Fig 5 show that friction can
have a crucial effect on the ability of a plant to remain on
a large disk. Note that in the case of a twining plant, once
the tip is in contact with the pole, friction prevents the
plant from sliding back, therefore corresponding to posi-
tive values of µ. Intuitively, one can understand Darwin’s
problem as follows: for thin supports the vine tip and the
tangent of the support are almost parallel and the vine
follows the support without curling back on itself. For
thicker supports, in order to maintain its grip, the tip
needs to touch the support surface at a larger angle α.
If the support becomes too large, so will the angle α and
the vine will curl back on itself. For increasing friction
the contact angle needed for this to happen will be higher
and consequently the plant can wind on thicker supports.

We now turn our attention to the three dimensional
case. The main properties found in the two-dimensional
case still hold, namely, discrete points of contacts exist
between plant and support, tension is generated by these
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FIG. 5: Change of critical radii ratio as a function of friction.
Positive friction coefficient acts when the tangential force pre-
vents the filament from sliding back whereas negative friction
coefficients correspond to situation where friction prevents the
tip from slipping forward. Range of µ values are consistent
with experimental data in ref [7]. The prediction of an upper
bound of ρc around 8 is consistent with the observation of
Bell [13].

contact points, and attachment is possible only by differ-
ence between intrinsic curvature and twist and geometry
of support. However, there are new subtle difficulties as-
sociated with growing a filament on a cylinder. The base
of the apex where the filament is clamped can now have
an arbitrary orientation. In our model, this orientation is
closely related to the pitch of the plant helix-like shape on
the pole (it was experimentally observed that the plant
adopts an almost uniform helical shape provided that
the number of gyres is large enough and the support is
uniform [13]). Therefore, we investigate the mechanical
origin of the helical shape on the pole and find that for
given intrinsic curvature û2 and twist û3, there exists a
single helical equilibrium on a cylinder of radius R with
pitch angle β. Solving Eq. (1) in cylindrical geometry
yields the trigonometric equation

C(u2 − û2) sin 2β = B(u3 − û3) cos 2β , (3)

where u2 = sin2 β
R and u3 = sin β cos β

R are the curvature
and torsion of the helix. As before, this continuous solu-
tion lying on the cylinder can only be maintained by the
tensile force provided by the anchor. The problem is then
to find an anchor starting with the correct pitch angle and
tension. In general no such solution can be found. We
then return to a three dimensional version of the bound-
ary value problem: the filament is clamped at s = 0
and is simply supported by a radial force at its the tip
s = L where it contacts the pole. Not surprisingly, the bi-
furcation diagram becomes quite complex to study (with
multiple solutions with discrete and continuous contacts).
Rather than providing an exhaustive description, we look
for helix-like solutions, with non-uniform pitch angle, in
continuous contact with the cylinder. The solutions ends
with an anchor (see Fig 6). We can now define a ρmax

as the largest value of ρ = R/R̂ such that the contin-
uous part of the segment can be extended. Extensive
numerical studies show that the value of ρmax obtained

in the planar case provides an upper bound for the three
dimensional case.

FIG. 6: A sequence of three-dimensional solutions to the at-
tachment problem. Note the continuous, almost helical, so-
lution, followed by the anchor that provides tension in the
filament.

The present analysis shows that a mechanical model
for anchoring and attachment based on rod theory can
provide a simple explanation for the limitation of twin-
ing plants to wind around thick supports and for the role
of friction to boost the plant ability to achieve vertical
growth. The model also explains how tension is gener-
ated and shows that both continuous and discrete con-
tact points between stem and pole exist. However, the
present model does not address the fact that the stem,
after it establishes itself on the pole, may adapt its in-
trinsic curvature due to stress and contact. We believe
this remodeling might be important to obtain an accu-
rate picture of the stem shape on the pole, but this non
obvious theoritical treatment must be left for futur work.
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