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Abstract

   In this paper we address the mechanics of ply formation in DNA supercoils. We extend
the variable ply formulation of Coleman and Swigon to include end loads, and the derived
constitutive relations of this generalised ply are shown to be in excellent agreement with
experiments. We make a careful physical examination of the uniform ply in which two
strands coil around one another in the form of a helix. We next address the problem of
determining the link (Lk), twist (Tw) and writhe (Wr) of a closed DNA plasmid from an
inspection of its electron micrograph. Previous work has made use of the topological
relation, Lk = Tw + Wr , but we show how this kinematic result can be augmented by the
mechanics solutions. A very precise result is achieved in a trial calculation.

1. Introduction

   Spatial deformations of the DNA molecule are central to its biological functioning. To
transcribe the genetic code, DNA must screw 'through' an RNA polymerase. This involves
a rotation at about 10 turns per second which can induce large twisting stresses in the
DNA. The double-helix of most DNA molecules is right-handed, and if this intrinsic
internal twist is increased by stress the molecule is said to be overwound: conversely, it is
underwound. If DNA becomes excessively twisted or knotted, it is unable to function, and
to overcome this the body has a de-knotting enzyme, the topoisomerase. This remarkable
enzyme can cut the molecule, untwist it to alleviate the stress, and re-join it. This un-
knotting is so vital, that some anti-cancer drugs aim to poison the enzyme: by disabling the
topoisomerase, they stop cancer cells from growing out of control.
   Many significant deformation phenomena operate on a scale at which the internal double-
helix of the DNA is irrelevant, and a long strand behaves as if it were a slender elastic rod
or fibre. The length scales involved are nicely described by Calladine & Drew (1997),
who point out that if a DNA molecule were magnified a million times it would have the
thickness of a kite string, and would stretch from London to Cambridge (≈ 100 km). There
is, indeed, an explosion of research by biologists and mathematicians on the mechanics of a
long elastic fibre modelling a single DNA molecule. See for example: Stump et al 1998,
Swigon 1999, Tobias et al 2000, Coleman et al 2000, Stump & Fraser 2000, Coleman &
Swigon 2000. The results can be of great help to molecular biologists in understanding and
controlling the spatial writhing of a molecule.
   One topic that is attracting attention is the super-coiling of DNA, in which the long fibre
representing the double helix adopts a configuration such as that illustrated in fig 1. This
shows a silicone rubber rod forming a left-handed variable balanced ply (VBP) with one
free end loop. The helical angle varies along the ply, and at the un-looped end there is a
visible separation followed by a discrete point contact. This VBP-skip-fly phenomenon
was discovered by Coleman and Swigon (2000).
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   The interwound configuration of this rubber rod is said to form a ply. The simplest way
to observe a ply physically is to twist a long rubber rod of circular cross-section. If, after
imposing the twist, the ends are brought together, the rod will buckle locally and jump into
this familiar ply-plus-loop form. Extensive experimental and theoretical studies of the
initial buckling and localised post-buckling, prior to self-contact, have been made by the
present authors and others (Thompson & Champneys 1996, Champneys & Thompson 1996,
Champneys et al 1997, van der Heijden & Thompson 1998, van der Heijden et al 1998,
Goriely & Tabor 1998). This work uses the static- dynamic analogy, and has covered rods
of circular and non-circular cross-section. Meanwhile the symmetry and bifurcation
properties of closed but non-contacting rods have been studied extensively by Maddocks
and co-workers: see for example Manning & Maddocks (1999).
   A molecule of DNA often forms a closed loop, called a plasmid. An electron micrograph
of a plasmid, reproduced by Calladine & Drew (1997), shows negatively supercoiled,
interwound DNA as prepared from E. coli bacteria. Four ply-plus-loop regimes are clearly
visible in this micrograph (the sketch is purely notional, and cannot be used for link or
writhe estimates). A basic configuration of a twisted plasmid, derived analytically from
elastic rod theory by Coleman & Swigon (2000), is shown in fig 2: we discuss this picture
in section §9. A straight central region forms a left-handed variable ply, closed by two free
end loops. Under such conditions the ply is described as balanced: conversely, if the loops
carry forces or moments, we call it loaded.
   The paper is organised as follows. Section §2 discusses the modelling of plies, §3
introduces the kinematics of link, twist and writhe, and §4 describes how an experimental
ply can be made. In §5 we present our direct mechanical formulation of the variable-angle
loaded ply, and its specialisations. In §6 we examine solutions of the variable balanced
ply: §6.1 gives a phase-space view, §6.2 summarises plasmid solutions of Coleman &
Swigon (2000), §6.3 covers related work on a wrench-loaded rod. Section §7 is devoted to
the solution of the uniform balanced ply: while §8 looks at the uniform loaded ply with an
energy formulation, derived constitutive relationships, and experimental verification. In §9
we show that our mechanics results can determine writhing characteristics from a DNA
micrograph. After concluding remarks in §10, Appendix 1 gives our principal notations and
Appendix 2 sketches a new variational formulation of the generalised ply. 

2. Modelling of a ply

   In analysing the mechanics of ply formation, a DNA molecule can be regarded as an
elastic rod with circular cross-section of radius r. This rod can usually be treated as
homogeneous, inextensional, and (linearly) elastic in response. All we then need to know
about its mechanical properties is the ratio, γ , of its torsional stiffness, C, to its bending
stiffness, B. Molecular biologists have made many experiments to estimate γ , and it is
thought to lie in the interval 0.7<γ <1.5. See Horowitz & Wang (1984), Bouchiat & Mezard
(1998), Strick, et al (1996), Heath, et al (1996). A comparison of discrete and continuum
modelling is made by Manning, et al, (1996): a continuum rod model with intrinsic
curvature is fitted to experimentally motivated base-pair-level discrete DNA models.
Equilibrium energies of closed rings predicted by the continuum model match those of the
underlying discrete model to within 0.5 %. A discussion of possible nonlinear coupling
between the bending and twisting of DNA is given by Calladine (1980).
   Now for laboratory experiments we might want to model a strand of DNA with a solid
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circular rod of metal or rubber. For such a rod we have γ  = C/B = 1/(1+ν ), where ν is
Poisson's ratio of the material. Typically, for a metal rod engineers take ν = 1/3, giving γ  =
3/4, while for a rubber rod they take ν  = 1/2, giving γ  = 2/3. At the bottom end of the
biological range we have γ  = 0.7 corresponding to ν  ≈ 0.43,  while at the top end we have
γ  = 1.5, ν  = -1/3. This negative value of ν is not observed for any normal material.
   Two major contributions to our understanding of the mechanics of a ply have been made
recently. First, Fraser and co-workers (Fraser & Stump 1998, Stump et al 1998) derived
the equation of a uniform balanced ply (UBP). This has two segments of rod winding
around themselves, and touching each other on a straight central line, the ply axis.
Conditions are assumed to be uniform along the unloaded ply, so the centre line of a
segment forms a helix of radius r and constant helical angle θ. This solution will only be
observed if the correct boundary conditions are applied at the ends, and will not be
observed in a ply bounded by free end loops. It may however hold approximately in the
central region of a very long ply between 'boundary layers' in which θ adjusts to allow
separation (into, for example, a loop).
   Second, Coleman & Swigon (2000) derived the equation of a variable balanced ply,
which allows θ  to vary, with the two segments lying as if wound on a cylinder of radius r.
Any finite-length ply between free end loops will always have a variable θ , and it is the
extra flexibility of the variable ply that allows the rods to separate at the ends without the
unphysical point moment that had to be introduced by Fraser and his co-workers.
   In the present paper, we relax the condition of balance, and present the equations of a
variable loaded ply (VLP) which we might refer to more simply as a generalized ply
(GP). This carries a wrench, comprising a tensile force, G, and a twisting moment N acting
about the tension axis. This GP can exist under a wide range of end conditions, and is
easily specialised to either of the previous two cases when G = N = 0. Note that this GP
solution arises as a special case of a general study of a rod constrained to lie on a cylinder
(van der Heijden, 2001): all that is required is to set the radius of the cylinder to r. For
asymmetric rods on a cylinder see van der Heijden, Champneys & Thompson (2002). Here,
however, we give a direct physical derivation that throws much extra light on the
mechanics and will be of particular value to biologists who do not have a background in
continuum mechanics. We examine the predicted constitutive relations of the ply, and show
them to be in good agreement with a new experimental result.

3. Topology of Link, Twist and Writhe

3.1 The striped rod

   Before studying the mechanics of a ply, we need a clear understanding of the kinematics
involved. Consider an initially straight elastic rod of circular cross-section, with length L
and radius r. We imagine the rod to be axially inextensional, so its length L will never
vary. While the rod is straight and unstressed, we imagine parallel lines to be painted on its
surface, parallel to its straight centre-line. We refer to this as our striped rod.

3.2 The kinematic twist rate

   While it remains straight, we imagine the striped rod to be twisted uniformly by applying
a rotation about the centre-line, φ, ( in radians) to one end while the other end is held fixed.
The kinematic twist rate is then defined as τ ≡ φ / L, taken to be positive if the stripes on
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the surface form a right-handed helix. The stripes then look like a normal screw thread,
and the vector arrows representing τ  on the end of a rod point outwards (like tension).
Imagining the cylindrical surface of the twisted rod to be unrolled, the planar stripe angle,
ψ , between the helical stripes and the centre-line is in many ways a more convenient
measure of the twist rate than τ , and we note that they are related precisely by

tan ψ  = τ r        (1)

We take this as our definition of ψ, noting however that it will not be the unrolled angle of
the stripes on a bent rod. The outer tensile fibre of a rod whose centre line is bend into a
circle of radius R has, by similar triangles,  a strain (elongation/length) equal to r/R: and if
the centre-line of the rod lies on a cylinder of radius r with helical angle θ  we have R = r /
sin2θ. So the strain is sin2 θ , and rather than (1) the angle will be given by tan ψ  = τ r/(1 ±
sin2θ), the plus sign for the tensile face, the minus sign for the compressive face. These
differences can be appreciable. The total twist in the rod, Tw, (measured not in radians but
in complete turns) is the integral of τ / 2π  over L, which for constant τ  gives

Tw = τ L / 2 π .        (2)

The sign convention for Tw follows naturally from that of τ.

3.3 Link and Writhe

   To introduce the topological concepts of link and writhe, we imagine gluing the two ends
of our striped rod together to form a closed loop. If we just bend the rod in a plane and glue
the ends together without inserting any twist, it will adopt a circular shape, and the stripes
will all be circles. Suppose, however, that having bent it in a plane and brought the ends
together we insert, at the last minute, a number of full turns of twist just before gluing. We
define this number as the link, Lk, taken to be positive if it induces positive τ  in the planar
ring. For as long as the glued ring remains planar, we have Lk = Tw.
   Strictly, the link of a plasmid will vary by integer increments because each sugar-
phosphate chain of the double helix must join to itself: and in mathematical topology the
link is also normally taken to be integer. However, in the context of elastic rod theory
(where the ends of a rod can be glued together at any angle) it is convenient to ignore this
technicality and speak as if Lk varies continuously.
   Now Lk is a topological invariant. If we get hold of the glued ring and distort it, in or out
of the plane, in any way we choose, the link will not change. The total twist does however
change, and the two are related by the important result (see for example: Calugareanu,
1961; White, 1969; Fuller, 1971),

Lk = Tw + Wr        (3)

The writhe, Wr, is just a property of the shape of the rod's centre-line, defined as follows.

3.4 Directional writhe and signed crossings

   The writhe is perhaps best introduced as the number of (signed) crossings in a view,
averaged over all views (Fuller, 1971). The number of crossings in a single view is called
the directional writhe, Dr : in the particular side view of fig 2, for example, a count of the
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number of crossings gives Dr = 8. In general, in calculating Dr, we must take the number of
signed crossings, according to the right-hand rule explained in fig 3. Averaging over all
views we then obtain

Wr = < Dr >        (4)

4.  Making an experimental ply

4.1 A ply from two straight rods

   To conclude our discussion of kinematics, it is necessary to consider how we propose to
make a ply, either conceptually or in an actual laboratory experiment. To make a right-
handed ply, we take two identical rubber rods of circular cross-section, each of length L,
as illustrated in fig 4. Both are initially straight, and they are laid side by side on a bench
with their left-hand ends fixed. While remaining straight, each rod is given a left-handed
twist by turning the right-hand ends through a positive angle A, anti-clockwise when
looking down the rod from left to right. Since our convention for twist is right-handed, this
makes our initial rate, 0τ , numerically equal to - A/L.
   We define this straight twisted configuration as the α-state of the ply. The stripe angle, ψ
, is given by (1), and we write its initial value as αψ  with tan αψ  = 0τ r. To make a fairly
uniform ply, angle A should correspond to at least 5 complete turns. The rods are now
joined together at both ends. For a demonstration they can be clipped together with a paper
clip, or wrapped together with tape. For an experiment, we can cast the ends together in a
moulding. Thinking of these two straight, planar rods and their mouldings as one closed
entity, the writhe is zero, and (2), (3), give πτ 2/20 LLk = . This invariant link (which will
be at least 10) will be preserved when we release the rods from the bench, and load the
resulting ply.
   Before release, the straight rods already form an example of our loaded ply, because the
resultant applied constraint is simply a twisting moment, 02 τCN = , with zero tension (G =
0). In fact, when we leave go of the rods (still clipped together at their ends) they might
jump into a variety of spatial forms, one of which will be a right-handed balanced ply,
with approximately constant θ. A controlled way to get this ply would be to hold the two
clips, and just let them rotate slowly about the ply axis until the ply reaches equilibrium
under zero wrench. We can finally load this ply by applying any wrench, (G, N), to the
mouldings. Notice that once the rods are released, the moulding will not provide the
correct end conditions for a uniform ply, but we can expect any significant non-uniformity
to be localised near the ends (as confirmed in fig 12).

4.2 A ply from a single rod

   An alternative way to make the ply would be to start with a single straight rod of length
just over 2L. After putting in a twist rate 0τ while straight, we glue the 2 ends to form a
plane circle with Wr = 0,  πτ /0 LLk =  . With Lk greater than 10, the released circle will
normally form a balanced ply with two end loops: though other equilibrium shapes may be
possible. We can finally imagine the end loops to be cast in a mould, to give roughly the
same as in §4.1, with the excess length taken up by the end loops.
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4.3 Kinematics of ply manufacture

    In terms of the current angle θ , assumed constant, we now need to write down the writhe
of the two helical rods of §4.1. To do this we use the result of Fuller (1978) that for a
single rod 1 + Wr = area/2π  (mod 2). Here the area is that enclosed, cumulatively, by the
orbit of the unit tangent vector on the unit sphere. Application of this result, as in van der
Heijden & Thompson (2000) gives immediately their eqn (65), which for our two-strand
ply becomes

Wr  = K(1- cos θ ) - K(1 + cos θ ) = - L sin 2θ /2π r  
      (5)

where K is the number of helical waves in one rod given by K = L sin θ /2π r. With the
conservation of link, (3) now gives us

 Lk (π r/L)  = r0τ  =  tan αψ   =  τ r  - ½ sin 2θ  =  tan ψ  - ½ sin 2θ        (6)

For small angles, this simplifies to θ   ≈  ψ  -  αψ . The kinematic equation (6) relates the
given initial twist rate, 0τ , to the final current twist rate, τ , and will be needed to allow
completion of our uniform ply studies. It was noticeably absent from the paper of Fraser &
Stump (1998) who used instead an energy balance which would not apply in the present
circumstances.

5. Mechanics of the generalised ply

   From now on we shall use the word ply to mean two segments of rod in continuous
contact along a straight ply axis, and winding around this axis in a symmetric way: rotation
of the ply about its axis through 180° leaves the picture unchanged. By the end of the ply
we mean the point at which the continuous line contact ceases. Coleman and Swigon
(2000) have shown that this end point requires very careful consideration.

5.1 Geometry of the ply

   We give here a direct and self-contained physical analysis of the generalised ply,
illustrated in fig 5. This shows a horizontal right-hand ply from the side. Each circular rod
of radius r, bending stiffness B and torsional stiffness C, lies as if its centre-line were
wound on a cylinder of radius r : in the special case of a uniform ply, each rod would have
the form of a helix. A moulding surrounding the end loop is imagined to be loaded by
tension G and twisting moment, N, the latter tending to tighten the mutual winding of the
rods. We ignore friction and gravity, and write the variable ply angle as θ(s) where s is the
distance along the centre-line of either rod. We denote the straight central axis of the ply,
on which the two rods touch, by Ax, and focus on the section, Se, where, in our view, the
rod centre-lines cross. The front rod, Fr, nearest the eye, slopes down to the right at angle θ
 to Ax, while the rear rod slopes up to the right at the same angle. We use Pa to denote any
plane that is parallel to the plane of the paper.

5.2 Force balance for the ply

   We imagine the rods cut, at right angles to their own centre-lines, at Se. On the rods to
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the left of Se transmitted from the rods to the right are: a tension, T, along each rod axis,
lying in Pa; a shear force, V, normal to each rod axis, lying in Pa with the sign convention
of the diagram; a shear force, U, normal to T and V, acting into the paper on Fr. The vector
sum of T and V is decomposed into a force F, normal to Ax, and a force ½ G along Ax, the
latter ensuring the horizontal force balance of the ply to the left of Se and including the
loaded end loop. The equations of decomposition are

V = F cos θ  - ½ G sin θ        (7)

T = F sin θ  + ½ G cos θ        (8)

5.3 Moment balance for the ply

   The transmitted moments are: twisting moment in a rod, Cτ , with vector along the T
vector; bending moment, MP, with vector along the -V vector; and a bending moment MN,
with vector into the paper on Fr. We write the bending moments in terms of the equivalent
rod curvatures as MP = B sin2θ /r (this exact curvature multiplying B is also that of a helix
of constant θ ) and MN = B θ ′ where a prime denotes differentiation with respect to s (this
exact curvature looks intuitive in Pa). The moment balance for the ply and loaded end loop
for twisting about Ax is

Cτ cos θ  + MP sin θ  + Fr = ½ N        (9)

Using (7) and our expression for MP, equation (9) becomes

Vr2  =  - Cτ r cos2θ  - B sin3θ cos θ  - ½ Gr2 sin θ  + ½ Nr cos θ       (10)

5.4 Force balance for a rod element

   We now look at the equilibrium of an element of rod Fr of length δs, starting (say) at
section Se, as drawn. Balancing forces in the plane normal to Ax introduces the contact
pressure force p δs , where we should note that p is the force per unit distance along the
centre-line of one of the rods (not, per unit distance along Ax). Now there are 3 force
components acting across a section of the rod, T, V, U, and the first two have been replaced
by F, G. Since G is parallel to Ax, we are just left with F and U, both of which lie in the
plane normal to Ax. Resolving in this plane along p δs gives pδs = δU +F δα, from which
we obtain p = U′  + (F/r) sin θ . Resolving at right-angles to pδs gives  δF = U δα , from
which we have F′ = (U/r) sin θ . Note that for a uniform ply, with all derivatives zero, we
have U = 0 and pr = F sin θ. We do not need the formulae of this section for the present
analysis, but we use of them in later studies of the uniform plies.

5.5 Moment balance for a rod element

   Taking moments for a rod element about its own centre-line shows immediately that the
twist rate, τ , remains constant along the rod. We next write down the clockwise moments
on the element about an axis out of Pa. The forces T and V, give the moment + V δs. Vector
MP is decomposed into MF = MP cos θ  in the direction of -F, and MA  which plays no part.
So from MP we have - MF δλ   = - B δs sin3θ cos θ / r2 . Twisting moment Cτ  enters by
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virtue of the curvature sin2θ / r giving +Cτ δs sin2θ /r. Finally, including +δMN = +Bθ″ δs,
and multiplying through by r2, we have the balance condition

Vr2 + Bθ″ r2 = B sin3θ  cos θ  - Cτ r  sin2 θ             (11)

Eliminating V  by subtracting (10) from (11), and setting C/B = γ , we have

θ″ r2 = 2 sin3θ cos θ +τ rγ  cos 2θ + ½(Gr2/B) sinθ - ½(Nr/B) cos θ      (12)

as derived by van der Heijden (2001). Notice that this is a differential equation for the
variation of θ(s) along a rod of the ply.

5.6 Specialisation to the variable balanced ply

   With no end loads, we have G = N = 0, and equation (12) for θ(s) becomes

θ″ r2 = 2 sin3θ cos θ +τ r γ  cos 2θ      (13)

agreeing with eqn (2.41) of Coleman & Swigon (2000) if we replace our τ  by their ∆Ω.

5.7 Specialisation to the uniform balanced ply

   Setting G = N = θ ″= 0 retrieves the uniform balanced ply of Fraser & Stump (1998) and
Stump et al (1998), for which the twist rate is given by

τ r γ   =  γ  tan βψ  =  - sin2β  tan 2β         (14)

We define this uniform balanced condition as the β-state of the ply, and write the stripe
angle as βψ  and the helical angle as β. For small angles this simplifies to

τ r γ  ≈ γ βψ  ≈  - 2β 3        (15)

In (14) the negative sign tells us that the current twist rate, τ, is negative in the present
right-hand ply, as is the initial twist rate, 0τ . In general when we make a ply and pass
from the α-state to the β-state we observe:

The twist rate is reduced in magnitude, but does not change its sign

The helical angle of the ply has the opposite sign to the twist rates

The twists have the opposite sign to the space torsion of the helix

The β-state corresponds to a fixed point of the differential equation (13), as we shall
examine in section §6. Looking back through the generalised ply analysis, we retrieve the
following results for the forces in the uniform balanced ply,

γ τ r  = - 2Vr2/B = -  sin2β  tan 2β  )
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)      (16)
T =  p r  = V  tan β   )

The two following versions of Vr2 from (11) and (10) respectively look superficially
incompatible, and can cause confusion: they are easily proved equal using (12):

Vr2 = ½ B sin2β (sin 2β - 2γτ r) = - B cos β (sin3β + γτ r cos β )       (17)

These results from the mechanics analysis agree with those in equation (3.5) of Stump et al
(1998), after a few sign changes due to different conventions. Notice that τ , V, T, p all tend
to infinity as β  tends to 45° due to the tan 2β  in (16). In fact 45° is the lock-up angle, as
we discuss in §7.3.

5.8 Specialisation to the uniform loaded ply

   Setting just θ ″ = 0 in (12) gives us the equation of the uniform loaded ply (ULP) whose
constitutive relations we shall examine later,

2 sin3θ cos θ +τ rγ cos 2θ + ½(Gr2/B) sinθ - ½(Nr/B) cos θ  = 0      (18)

6. Solutions of the variable balanced ply

6.1 Phase portrait

   It is useful to employ the static-dynamic analogy, and examine the solutions of the
differential equation (13) in the phase space obtained by replacing arc length s by time t. In
thinking about this equation we should note that the current twist rate, τ , is constant along a
rod, having been shown to be not a function of s. We do not need its magnitude for the
present discussion: but we note that we could find it in terms of the initial 0τ  using a
suitable generalisation of (5) and (6) to conditions of variable θ. Equating s to a notional t
gives us, then, an equivalent undamped nonlinear oscillator which has the phase portrait
shown in fig 6. The saddle point (S) of this oscillator with θ  = β , found by setting θ ″ = 0,
is of just the UBP of  (14).
   The uniform ply will only exist if the correct boundary conditions are applied at the ends.
In general this will not be the case, as when the ply is closed by end loops. However, a
long (symmetric) ply will often have θ(s) ≈ β  over a long central section. In phase space,
this will correspond to a solution close to S, with small θ ′. The divergence before and
after the slow transit near S gives a 'boundary layer' in which θ(s) adjusts relatively
quickly to accommodate the conditions at the end of the ply (see fig 12). To illustrate this,
we give an over-view of the ply-loop solutions of Coleman & Swigon (2000).

6.2 Writhing of twisted plasmids

   Using their variable ply results, and sophisticated analytical techniques, Coleman &
Swigon (2000) have studied the writhing of a DNA plasmid, modelled as an initially
straight elastic rod of circular cross-section (fig 7). The ends of the rod are imagined to be
glued together after a number of complete turns of twist have been inserted. We shall refer
to this number as the link, Lk, noting however that Coleman and Swigon call it the excess
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link because they use a datum that includes the twisting of the double helix itself. For a
given controlled input of Lk they calculate the spatial equilibrium configuration of the
plasmid, taking full account of all (frictionless) self-contacts. As their measure of
deformation they adopt the writhe, Wr, which is the measure of the spatial shape of the
rod's centre line that we outlined earlier.
   The response under slowly varied Lk is shown in the left-hand picture of fig 7. The rod is
stable in its planar circular state up to the subcritical bifurcation at A0, from which a
dynamic jump would carry the ring to a state of self-contact as illustrated by the double
arrow. The bifurcation at A0 is at

Lk = (B/C)√3,      (19)

a result due to Zajac (1962). Ignoring for the moment the physical jumping behaviour, it is
useful to focus on the post-buckling path that emerges from A0, noting as we go that the
number of self-contact points is shown in square brackets: and a solid (or broken) line
denotes a stable (or unstable) path under controlled Lk.
   Between A0 and A1 we have an unstable falling path with no self-contact. Between A1

and A2 we have a path with one self-contact at a point; between A2 and A3 a path with self-
contact at two points; and between A3 and A4 a path with self-contact at three points. After
A4 a continuous line of self-contact, namely a ply, is observed, together with self-contact at
two points. The jumps that would be encountered under slowly varying Lk are indicated,
and sample computed shapes are superimposed. An experiment that we have performed on
a metal rod confirms the predicted sequence of jumps and contacts.
   The right-hand diagram of fig 7 shows details of the self-contacts as we progress along
the post-buckling path A0 A1 A2 A3 A4 … . We see that a single central point-contact splits
into two at A2, followed by a new central point-contact at A3. At A4 this central point-
contact starts to spread to give us finally a central symmetric ply, which skips off at each
end, only to re-contact at a point shortly after, before the two rods finally fly apart. Fig 1
shows a variable ply with lift-off and re-contact. The continuation of the Lk versus Wr
graph to higher values is shown in fig 8. Also shown as a function of Wr is the central
winding angle, θ(0), and the range of angle encountered in the ply. Notice that the latter is
very small, implying that the ply is very nearly uniform. We return to some of the predicted
rod shapes in §9.
   Coleman et al (2000) have also found co-existing stable states of self-contacting
plasmids, and have evaluated the transition energies (at the mountain passes corresponding
to unstable states) needed to get from one stable state to another. This useful information
governs the thermodynamic probability of observing a stable equilibrium state. They have
also analysed the physical shapes of knotted plasmids (Swigon 1999).
  

6.3 Looping and ply formation of a stretched and twisted rod

   Somewhat analogous to the writhing of a closed plasmid is the response of a single
stretched and twisted rod. If the rod is regarded as infinitely long, its behaviour before
self-contact can be studied by the use of the static-dynamic analogy in which the arc-length
of the static rod is identified as time in an equivalent dynamical system. Specifically,
deformations of a rod of symmetric (or non-symmetric) cross-section are equivalent to the
motions of a symmetric (or non-symmetric) spinning top. The integrable symmetric case
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admits closed form solutions, while the non-integrable non-symmetric case can exhibit
chaos (Thompson & Champneys 1996, Champneys & Thompson 1996, Champneys et al
1997, van der Heijden & Thompson 1998, van der Heijden et al 1998, Goriely & Tabor
1998).
   Calculations for a finite-length pin-ended rod with self-contact are given by Swigon
(1999). Regarding the axial tension, T, as fixed, with the applied end rotation as a slowly
varying control, dynamic jumps and contact regions are similar to those of the plasmids.
The bifurcation at A0 is now given by the Greenhill formula,

Lk = (B/C) √ [1 + (TL2/Bπ 2)].
    (20)

The general pattern of the predicted response has been observed in simple trial
experiments in our laboratory. New theoretical and experimental work on the finite-length,
stretched and twisted rod with camped ends (van der Heijden, et al, 2002) includes a
numerical study of the successive discrete self-contacts and jump phenomena.

7. Solution of the uniform balanced ply

7.1 Prediction of the ply angle

   The final solution for the right-handed UBP is obtained by eliminating τ  between the
kinematic equation (6) and the mechanics equation (14) to give

tan αψ  =  r0τ  = - ½  tan 2β  ( 1  + 2ν  sin2 β   )      (21)

where αψ  is the initial helical angle of the stripes and β  is the balanced solution for θ .
For convenience, we have replaced the stiffness ratio, γ , by Poisson's ratio using γ  = 
1/(1+ν ). If we plot the given r0τ  against the produced ply angle β  we see that r0τ  goes to
infinity as β  approaches 45°. For small angles, (21) simplifies to

αψ  ≈ - β      (22)

Setting θ =β and ψ  = βψ  (stripe angle in the β-state) in the approximation of (6) gives us

βψ ≈ 0. So, to this first order, as we go from the α-state to the β-state we have:

The stripe angle vanishes and is converted into a ply angle of the opposite sign

7.2 The link versus writhe diagram

   It is useful to write down some results in terms of the double angle and ν. Using (6) and
(21) we obtain the link, using (2) and (14) the twist (for two rods of length L), and using
(5) the writhe as follows

 Lk (2π r/L)  =   ν  sin 2β - (1+ν) tan 2β        (23)
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Tw (2π r/L)  =  (1+ν)(sin 2β - tan 2β )      (24)

Wr (2π r/L)  = - sin 2β          (25)

We notice that the writhe takes its maximum numerical value of Wr* = L/2π r at β = 45°.
First order solutions for small angles are

 Lk (2π r/L)  =  - 2β    
    (26)

Tw (2π r/L)  =  - 4(1+ν) β 3        (27)

Wr (2π r/L)  = - 2β          (28)

showing that within this approximation the twist is of smaller order than the link and
writhe: all the total twist of the straight rods has been converted into writhe. The energy
aspects of this conversion are summarised later in §8.3. If we eliminate β between (23) and
(25) we obtain the relation between link and writhe

 Lk  =  Wr {-ν  + (1+ν) /√ [1 - (Wr/Wr*)2 ]}  
    (29)

This gives a graph for our manufactured ply which can be compared with the diagram of
Coleman and Swigon for a plasmid, as illustrated in fig 9.

7.3 The lock-up angle

   Just as r0τ  goes to infinity as β  tends to 45°, so do the internal forces and moments, τ, V,
T and p. Although apparently unrelated, we note that β = 45° is in fact the geometrical lock-
up angle at which a ply self-contacts, making β > 45° kinematically impossible. Analyses
of this geometrical lock-up, and more complex self-contacting situations, are given by
Przybyl & Pieranski (1998). For related problems of optimal and ideal forms, and best
packing, see Stasiak, et al, (1998), Maritan, et al, (2000) and Stasiak & Maddocks (2000).

8. Solution of the uniform loaded ply

   We have seen in the results of Coleman & Swigon (2000) that many long plies are
approximately uniform. So we now use our general formulation to derive the load
deflection characteristics of a ULP subjected to an end wrench (G, N). Each rod in the ply
has length L, and in the balanced state with G = N = 0 the helical angle is β. We want to
find the elongation and end rotation of the ply as functions of G and N, these being the
'corresponding displacements' through which G and N do work. The helical angle, θ, will
vary during the loading process, but we assume the end conditions are such that the ply
always remains (at least approximately) uniform, with θ  constant along its length.
8.1 The two corresponding displacements

   We define g as the variable length of the ply, L cos θ, divided by the radius, r. We next
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define n as the total rotation (in radians) of the whole ply, measured from the datum in
which the 2 rods lie straight side by side. Writing the aspect ratio a ≡ L/r, we have 

g = a cos θ      (30)

n = a sin θ      (31)

g2 + n2 = a2           (32)

giving g(θ) and n(θ) subjected to the constraint of (32).

8.2 A self-contained energy analysis

   With our general mechanics result (18) and the kinematic condition (6) we are already in
a position to fully analyse the uniform loaded ply. However, we give here a quick and self-
contained energy analysis which is instructive and illuminating: it shows the energy
balances at work, when high twist is alleviated by the rod bending into a writhed
configuration. A similar energy analysis for the generalised ply using the calculus of
variations to minimise the potential energy with respect to θ(s) is given by van der
Heijden, Thompson & Neukirch (2001) and is summarised here in Appendix 2.
   Our right-handed ULP with end wrench (G, N) has one degree of freedom, θ . The
curvature of a helical rod is κ = sin2 θ /r , and as in (5) the writhe of the two rods is Wr = -
½ (a/π) sin 2θ. The twist rate, using Lk = Tw + Wr, is given by τ r  = 0τ r + ½ sin 2θ . The
bending energy of the two rods, UB , the torsional energy, UC , and the energy of the end
loads, UL , are given by

UB  = ½B2Lκ2 =  (BL/r2) sin4 θ      (33)

UC  = ½C2Lτ2 =  (CL /r2) ( 0τ r +½ sin 2θ )2      (34)

UL = - Ggr - Nn = - GL cos θ - Na sin θ      (35)

The total potential energy is V(θ) = UB + UC + UL, and for equilibrium ∂V/∂θ = 0, giving

        4sin3θ cosθ +2γ( 0τ r + ½ sin 2θ) cos 2θ + (Gr2/B) sin θ - (Nr/B) cos θ  = 0      (36)

The bracketed term after γ  is simply τ r, so this agrees with (18). With G = N = 0 and θ =
β  we have the UBP of Fraser and his co-workers. For given γ and r0τ , together with the
load parameters (Gr2/B) and (Nr/B), equation (36) can be solved for the ply angle θ.
Notice that the ply can be unwound (with G = 0) by adjusting N, until at N = 2C 0τ  we find

θ  = 0, having returned to the α-state of the manufacturing process. Beyond this value of N,
the winding of the ply will be reversed.
8.3 Energy changes in the ply

   It is instructive to compare the elastic energies in the pre-ply (α) and balanced (β) states.
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The strain energy in the straight twisted configuration, Uα , is found from (34) with θ = 0
and tan α = r0τ . Meanwhile, that in the balanced state, Uβ , is obtained by adding (33) and
(34) with θ  = β . They are given by

r2 Uα  = CL tan2 α  ≈  CL α2       (37)

r2 Uβ  = BL sin4 β + CL(tan α + ½ sin 2β)2  ≈  BLβ 4 + CL(α + β)2      (38)

In these two formulae the approximations hold for small angles, and remembering that from
(22) we have α  ≈ - β,  we have

Uα  = order α 2       (39)

Uβ  = order  α 4      (40)

To a first approximation there is no torsional energy in the balanced state, agreeing with
our observation in §7.2 that the twist is of smaller order than the link and writhe. The strain
energy of the balanced ply is an order of magnitude less than that of the pre-ply. The
difference in energy is equal to the work done by N in passing quasi-statically between the
two states with G always zero.

8.4 Contact force in the ULP

   A vital consideration for a loaded ply is the sign of the contact force. The expression for
the force/arclength can be written, using results of §5.4 and (7) and (11) as

pr3 =  sin θ  tan θ  (B sin2θ  cos θ  - Cτ r  sin θ   + ½ Gr 2 )      (41)

As a limit to the range of physically permissible configurations, we shall be particularly
interested in the vanishing of p, for which

Gr 2/B  = sin θ  (2γτ r  - sin 2θ )  =  sin θ  [ 2γτ0r + sin 2θ ( γ  - 1) ]        (42)

where the second equation in terms of τ0 is obtained using (6). If we eliminate θ  between
(36) and (42) we find the locus of p = 0 shown in the control space of fig 10. Crossing this
line as we move away from the origin where G = N = 0 and p is positive, the results
become unphysical because they imply a negative contact pressure between the rods. A
second limit, relevant when G < 0 with the ply under compression, corresponds to Euler
buckling of the ply. However, we are mainly concerned with a very long ply (which can
effectively carry no compression) so we do not examine this limit here.

8.5 Nonlinear constitutive relationships

   The nonlinear constitutive relationships for the ULP, represented by (36), are nicely
displayed by drawing the straight lines corresponding to a sequence of fixed θ  values in
the non-dimensional control space of (Nr/B) against (Gr2/B) as in fig 10. Here, the angle
between a line and the positive Gr2/B axis gives directly the angle θ  which varies in equal
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increments from -45° to +45°. Imagining  θ  to be plotted vertically out of the paper, the
lines are the contours of an equilibrium response surface which exhibits a fold. The upper
part of the surface above the fold (including, for example, the regime of positive N, G and θ
) is stable, while the lower part is unstable. Physically permissible regimes, with positive
contact pressure, are denoted by solid lines. These are separated from the unphysical
broken lines by the trajectory of p = 0 which passes through the pre-ply α-state (solid
circle) through which passes a horizontal line with θ = 0. The balanced state at the origin
with θ  = β is shown as an open circle. Notice that the fold can be reached from the β-state
by suitable control changes, without p becoming negative. The parameters of this figure are

r0τ  = - 1.5, with an initial stripe angle of ψα  = - 56°, and γ  = 1.25. The latter is within the
experiment range for DNA, but note that it corresponds to a solid circular rod of Poisson's
ratio ν = - 0.2. The variation of n with (Gr2/B) in the absence of any applied moment (N =
0) is compared with an experimental study in §8.7.

8.6  Linear constitutive relationships

   With γ, 0τ r and B given, the governing equation of the ULP is (36) together with the
displacements (30) and (31). To determine the linear response about the balanced state, we
write these equations and their derivatives as

F[G, N, θ] ≡ 4sin3θ cosθ +2γ 0τ r cos 2θ+½γsin 4θ +(Gr2/B)sin θ -(Nr/B)cos θ  = 0     (43)

∂F/∂θ  = -4sin4θ +3sin22θ - 4γ 0τ r sin 2θ + 2γ cos 4θ  +(Gr2/B)cos θ +(Nr/B)sin θ       (44)

∂F/∂G = (r2/B) sin θ      (45)

∂F/∂N = - (r/B) cos θ           (46)

g[θ ] = a cos θ ,  dg/dθ  = - a sin θ      (47)

n[θ ]  = a sin θ ,  dn/dθ  = a cos θ      (48)

Independently specifying G and N, we can solve (43) for θ = θ(G, N), and then (47) and
(48) give g and n. Note that we cannot independently specify g and n, due to the constraint
of (32). So we write

g = g[θ(G, N)] n = n[θ (G, N)]           (49)

We want to find the linear flexibility coefficients (evaluated in the balanced β-state),

dg/dG = dg/dθ  ∂θ/∂G dg/dN = dg/dθ  ∂θ/∂N )
)    (50)

dn/dG = dn/dθ  ∂θ/∂G dn/dN = dn/dθ  ∂θ/∂N )

To find the required derivatives we write (43) as the formal identity
F[G, N, θ(G, N)] ≡ 0      (51)

and differentiate this totally with respect to G and N as follows
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dF/dG = ∂F/∂G + ∂F/∂θ  ∂θ/∂G ≡ 0       (52)

dF/dN = ∂F/∂N + ∂F/∂θ  ∂θ/∂N ≡ 0        (53)

giving

∂θ/∂G = - (r2/B)sin θ  / ∂F/∂θ      (54)

∂θ/∂N = (r/B)cos θ  / ∂F/∂θ        (55)

The flexibility coefficients (elements of a non-diagonal flexibility matrix) become

     dg/dG =  (ar2/B)sin2θ / ∂F/∂θ        dg/dN = - (ar/B)sinθ cosθ / ∂F/∂θ )
)    (56)

     dn/dG = - (ar2/B)sinθ cosθ / ∂F/∂θ  dn/dN = (ar/B)cos2θ / ∂F/∂θ )

Evaluating (43) and (44) in the β-state with G = N = 0, and θ = β , we have

4sin3β  cosβ  +2γ 0τ r cos 2β  +½γ sin 4β  = 0      (57)

∂F/∂θ  = -4sin4β +3sin22β - 4γ 0τ r sin 2β + 2γ cos 4β         (58)

Regarding β as the measure of r0τ , we can now solve (57) for r0τ (β) and substitute it into
(58). Then putting (58) into (56) and evaluating at θ =β gives the flexibility coefficients.
We shall not pursue the general problem further, but finally write down the form of the
flexibility coefficients when the angle β is small as

(2C/Lr)dg/dG =β 2+O(β 4)           (2C/L)dg/dN =-β +2(9-5γ)β 3/3γ +O(β 5)
      (59)
(2C/Lr)dn/dG =-β +2(9-5γ)β 3/3γ +O(β 5)   (2C/L)dn/dN = 1+3(γ -2)β 2/γ +O(β 4)

Note that for β = 0, the torsional flexibility is dn/dN = ½ L/C, namely half that of a single
rod of length L. The other coefficients vanish with β , as they should for two straight
inextensional rods. The negative signs correspond to the fact that as we pull a ply, we tend
to unwind it.

8.7 Experimental verification

   Results of an experiment, performed with the assistance of Ben Thompson, grandson of
the first author, are shown in fig 11. A short length of ply was made from two silicone
rubber rods, each of length L = 21 cm, lubricated with oil to minimise frictional forces.
The diameter of the rods was 3.515 mm, and Young's Modulus of the rubber was estimated
to be 1.97 × 106 N/m2. The maximum load applied was 963 g, corresponding to Gr2/B =
1.977. With zero applied twisting moment (N = 0) the graph shows a plot of the measured
end rotation, n, against the dimensionless load parameter corresponding to the applied
axial tension, G. The experimental points, denoted by solid circles, agree well with the
drawn theoretical curve. The slight disagreement at high load is almost certainly due to
factors not considered in the theory, such as the axial extensibility of the rubber rod, and
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the Poisson contraction of its radius.

9. Assessing the link from a plasmid micrograph

   We shall finally see how the theoretical results and concepts can be used to assess the
link, Lk, of a DNA plasmid based on its micrograph image. The studies of Coleman &
Swigon (2000), which include careful stability tests (Tobias et al 2000), show that to
alleviate a high twist, a plasmid will writhe in space to form a super-coil, a common form
of which is the interwound configuration with a ply and two end loops. Fig 2 shows one of
their analysed configurations for which the prescribed link was Lk = 10 and the calculated
writhe was Wr = 7.548. From such a photograph of an interwound plasmid, how can we
best estimate its link?

9.1 Geometry of writhe in a ply

   Since most of the rod is in the ply, it is tempting to use just the ply for our estimate,
ignoring the length of rod in the end loops. Moreover the ply angle, θ, varies only minutely
along the length, so we here assume it to be constant, with the rods in the form of a helix.
The result for the writhe in two interwound helices, equation (5), then gives

Wr =  Dr* cos θ  = ± 2K cos θ           (60)

Here Dr*=2K is the particular directional writhe corresponding to the number of signed
crossings in a side view of a (long) ply, equal to 8 in fig 2. Now from this picture we can
estimate the balanced ply angle as β  ≈ -15°, giving cos β   = 0.965 and our estimate for the
writhe becomes Wr  ≈ 7.73. This compares well with the value of Wr = 7.548 computed by
Coleman and Swigon.

9.2 Mechanics of twist in a ply

   The geometrical arguments employed so far have been used to analyse the writhing of
DNA for many years. However, now that the equations of the ply mechanics are known,
these can be used to extract more information from a micrograph. As we demonstrate
below, we can estimate the link as well as the writhe, just on the basis of a crossings count.
Equation (14) gives us the total twist in our plasmid of length S

Tw (2π r γ /S) = τ rγ   = - sin2β  tan 2β          (61)

We now set the stiffness ratio as γ = 2/3, and the ratio of plasmid radius to rod length, r/S,
equal to 4.1 ×10-3, these being as used by Coleman & Swigon (fig 2). We have finally Tw =
+ 2.25,  giving via (3) our estimate for the link of the plasmid,

Lk = Tw + Wr = 7.73 + 2.25 = 9.98.       (62)

This is in excellent agreement with the link of 10 used by Coleman and Swigon.
10. Concluding Remarks

   We have reviewed and extended recent work on the twisting and writhing of DNA
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molecules, looking especially at the mechanics of supercoiling. We have made a careful
physical examination of the equations governing the so-called ply in which two strands coil
around one another in the form of a helix. We hope that our precise but physical approach,
backed up by experimental work, will be helpful in opening up the rather esoteric subject
of twisted elastic rods to a wide audience of molecular biologists.
   Specifically, we have extended the variable ply formulation of Coleman and Swigon to
include end loads, and the derived constitutive relations of this generalised ply are shown
to be in excellent agreement with experiments. We have addressed the problem of
determining the link, twist and writhe of a DNA plasmid from an inspection of its electron
micrograph. Previous work has made use of topological results, but we have shown how
the kinematics can be augmented by the mechanics, obtaining a very precise result in a
trial calculation.
   In continuation of the present work (van der Heijden et al, 2001) we have made a
variational formulation of the generalised ply, summarised here in Appendix 2, and
computed variable ply solutions with clamped ends, as illustrated here in fig 12. 
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Appendix 1  Notation
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a aspect ratio of rod, a ≡ L/r  (see §8.1).
A angle given to the ends of the two rods when making a ply (see §4.1).
B, C bending and torsional stiffnesses of a rod (see §2).
Dr directional writhe, with Wr = < Dr >  (see §3.4).
Dr* Value of Dr in a special side view (see §9.1).
F a force arising from the decomposition of T and V (see §5.2).
g  non-dimensional length of ply made from two rods of length L (see §8.1).
G, N applied tension and moment (tightening) on a loaded ply (see 5.1).
K number of helical waves in one rod, given by K = L sin θ /2π r (see §4.3).
Lk, Tw, Wr link (turns), total twist (turns), writhe. Related by Lk = Tw + Wr (see §3.3).
MP, MN transmitted moments in a rod (see §5.3).
MF, MA  moments arising from decomposition of MP (see §5.5).
n total rotation in radians of the ply, zero when rods are straight (see §8.1).
r, L radius and length, of circular rod modelling a strand of DNA (see §3.1).
s, t arc-length and time, t, which replaces s in the dynamic analogy (see §5.1).
T, U, V transmitted tension and shears in a rod (see §5.2).
UB , UC , UL  bending energy, torsional energy and energy of the end loads (see §8.2).
β value of θ  in the uniform β-state, saddle of the variable ply (see §5.7).
γ ratio of stiffnesses, γ  ≡ C/B . For DNA we have 0.7<γ <1.5 (see §2).
θ(s) helical angle of the ply, zero for two straight rods (see §5.1).
κ curvature of a helical rod, κ = sin2 θ /r  (see §8.2).
δλ  a small deformation angle (see fig 5).
ν Poisson's ratio of a solid circular rod, with  γ  = C/B = 1/(1+ν )  (see §2).
τ  right-handed twist rate in a rod, in radians per unit length (see §3.2).

0τ initial τ  put into each rod in the making of a ply (see §4.1).

φ end rotation of a rod (see §3.2).
ψ stripe angle of a marked rod, tan ψ  = τ r  (see §3.2).
ψα , ψβ  values of ψ  in the straight α-state and the balanced β-state (see §7.1).

Appendix 2  Variational Formulation of the Generalised Ply

In more recent work, van der Heijden et al (2001) show how a variational approach offers
an elegant derivation of the differential equation of the loaded non-uniform ply, and we
give here a brief synopsis. In place of (33) to (35), the total potential energy of the
generalised ply is

NnGgrdsCBV
L

−−+= ∫0
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With θ  measuring the deviation of the tangent vector from the ply axis, and φ  representing
the internal twist, the total curvature, twist and potential energy can be written as

          θθκ 4
2
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1
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where Ψ is the known integrand of V. The Euler-Lagrange equations are



21

θθ ∂
Ψ∂

=
′∂

Ψ∂
ds
d
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d

Since Ψ is independent of φ  the latter is an ignorable variable and the second equation
proves  τ = const. The first equation gives our differential equation (12) for the loaded
variable ply.

Figure Captions

Figure 1  This photograph shows a rubber rod forming a left-handed variable balanced ply
(VBP) with one free end loop. The helical angle varies along the ply, and at the right-hand
end we see the VBP-skip-fly phenomenon, discovered by Coleman and Swigon (2001).

Figure 2  A left-handed variable balanced ply with end loops analysed and drawn by
Coleman & Swigon (2001). The prescribed link was Lk =10, the derived writhe was Wr =
7.548.

Figure 3  Sign convention for directional writhe, Dr, and hence for writhe, Wr = <Dr>. 
We put continuous arrows on the curve (the original direction chosen being irrelevant) and
count the signed crossings according to the right-hand rule as follows. Point the thumb of
the right hand along the top arrow, and if the curled fingers (with the back of the hand
facing the page) point along the bottom arrow the sign is positive: conversely, it is
negative. The sum of the signed crossings gives us Dr.

Figure 4 Making a ply from two straight twisted rods. In passing from the pre-ply α-state to
the balanced β-state the link is conserved at Lk = -6 . This negative link creates a right-
handed ply.

Figure 5 Forces and moments acting in a right-handed generalised ply (GP) with variable
helical angle, θ(s), subjected at its ends to a wrench (G, N).

Figure 6  Phase portrait of the variable balanced ply (VBP). The saddle fixed point, S,
corresponds to the uniform balanced ply in which the helical angle, θ (here in radians), is
constant. The lower-right picture shows the variation of θ(s) along a trajectory that passes
close to S, illustrating the 'boundary layer' effect.

Figure 7  A sequence of super-coiled DNA plasmids under controlled link as analysed and
drawn by Coleman & Swigon (2001). The right-hand diagram shows clearly the VBP-skip-
fly phenomenon. The analysis is for a diameter to length ratio of 8.2 × 10-3, corresponding
to DNA of diameter 20 Å with 718 base pairs. Stiffness ratio is γ = 2/3, corresponding to ν
= ½.

Figure 8  Continuation of fig 7 to higher Wr. Also shown is the variation of θ at the centre
of the ply, and the range of θ  within the ply (angles in degrees). Note that θ(s) takes its
maximum value at the centre of the ply.

Figure 9  The first diagram compares the link-writhe graph for closed plasmids (top solid
curve) due to Coleman and Swigon (2001) to that for a uniform balanced ply (lower solid
curve). The second shows the extension of the uniform ply graph to higher writhe. In each
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diagram the straight dashed line corresponds to Lk = Wr, where Tw = 0. The vertical line is
the asymptote at Wr*.

Figure 10 Straight lines of constant θ in the control space of end-moment versus end-
tension for a ULP. Physically permissible regimes with positive contact pressure are
shown by solid lines. The pre-ply α-state is shown as a solid circle. The balanced β-state
at G=N=0, with θ  = β, is shown as an open circle. Parameter values: τ0r = - 1.5, γ  = 1.25.

Figure 11 Experimental and theoretical results for a uniform ply under tension.
Experimental results due to Ben Thompson are shown as solid black circles. The
corresponding theoretical result is shown as a continuous curve.

Figure 12 A balanced variable ply satisfying the clamped boundary conditions implied by
the moulding of §4.1. This solution is taken from van der Heijden et al (2001).
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