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We study the mechanical response of elastic rods bent into open knots, focusing on the case of
trefoil and cinquefoil topologies. The limit of a weak applied tensile force is studied both analytically
and experimentally: the Kirchhoff equations with self-contact are solved by means of matched
asymptotic expansions; predictions on both the geometrical and mechanical properties of the elastic
equilibrium are compared to experiments. The extension of the theory to tight knots is discussed.

PACS numbers: 46.25.-y, 46.70.Hg,

Knots have long been considered mainly from a math-
ematical perspective but this topic has today spread to
different areas in science. Fishermen and sailors know
that tying a knot on a rope severely reduces its tensile
strength [1]. More recently knots have been tied on bio-
logical molecules [2], micrometric silica wires [3], or lipid-
bilayer nanotubes [4] and their properties were compared
to unknotted configurations. Sufficiently long polymers
often adopt knotted configurations spontaneously [5]. A
recent survey identified 273 knotted proteins [6, 7], al-
though the biological function of these knots remains un-
clear. Knots are also found in DNA plasmids and the
electrophoretic mobility of a knotted DNA molecule is
related to its topological properties [8].

To date, the tightening of knots has been studied based
on molecular dynamics or ab initio methods [9], meth-
ods from statistical physics [10], purely geometrical mod-
els [11], or perfectly flexible rod models [12]. In this
Letter, we investigate the mechanical response of knots
based on the theory of elasticity. The equilibrium con-
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FIG. 1: Geometry of an open trefoil knot (31) under tension.
Inset: open cinquefoil knot (51).

figurations of open trefoil (31) and cinquefoil (51) knots
are analyzed, see Fig. 1; other knot types can be handled
similarly.

Consider an infinitely long elastic rod with circular
cross section of radius h, flexural modulus EI, bent into
an open knot. The rod is held by a tensile force T applied
at both ends and contacts itself in a braided region. In
the h = 0 case, the solution consists of two straight, half-
infinite tails connected by one circular loop with radius

R. Minimizing the sum of bending energy
[

(2πR) 1
2

EI
R2

]

and potential energy 2π R T accounting for the applied
tension yields [2]:

T = EI/(2R2). (1)

Here, we determine the shape and mechanical response
of knots for small but nonzero h. The entanglement,
which takes place at a point for h = 0, remains localized
for small h [13]. We solve the Kirchhoff equations for
inextensible, unshearable rods with circular cross section:

r′ = t, t′ = (M/EI) × t (2a)

M′ + t × N = 0, N′ + p = 0. (2b)

where s is the arc length, t(s) is the unit tangent to the
3D centerline r(s), M(s) the internal moment, N(s) the
internal force, and p(s) the contact pressure (homoge-
nous to a force per unit length). Primes denote deriva-
tives with respect to s. The main difficulty lies in the
non-penetration condition:

|r(s1) − r(s2)| ≥ 2h (3)

that must hold for all s1 and s2 (with |s1 − s2|/h large
enough to exclude neighboring points from the test). In
such self-contact problems, the contact set and contact
pressure p(s) have to be determined in a self-consistent
way. Another difficulty is that the topology of contact
set is not known beforehand [14]. Problems involving
isolated points of contact [15], or contact sets comprising
straight lines [16], have been treated. An axial tension is
applied at both ends but the latter can freely twist; as a
result, the moment of twist M · t, which is uniform along
the rod, is zero everywhere.

We build a solution of Kirchhoff equations (2) for a
knotted configuration in the small h limit. The rod is
divided into three regions: two outer regions (tails and
loop) and an inner region (braid) where contact takes
place. We introduce the small parameter ǫ = (h/R)1/2

and perform a matched asymptotic expansion of solu-
tions to (2) in the different regions. We first derive a
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scaling law for the length ℓ of the braid, assuming ℓ is
an intermediate quantity, h ≪ ℓ ≪ R. In the braid,
of length ℓ, transverse displacements are of order h: the
centerline has a slope of order h/ℓ with respect to the z
axis. Points in the loop at a distance of order ℓ from the
axis of symmetry y have a slope ∼ ℓ/R. Equating these
two slopes requires ℓ to be of order

√
hR.

The rod configuration in the tails is found, to first
order in ǫ, by solving equations (2) linearized near the
straight configuration (t = ez, M = 0 and N = T ez),
where ex,y,z are unit vectors defined in Fig. 1. The
first order correction for the tails is found to have an
exponential profile, proportional to e−|z|

√
T/EI . Sim-

ilarly, the loop part is solved to first order by lin-
earizing equations (2) near a circular configuration t =
sin(s/R) ey − cos(s/R) ez, M = (EI/R)ex and N = 0,
where −π R < s < π R. The perturbed loop configura-
tion is found to remain planar, although in a plane that
is slightly tilted about the y axis. The details of the
calculations are omitted.

Let us proceed to the inner solution. The braid is the
crucial region where the external tensile load T in the
tails is transformed, with the help of contact forces, into
the internal bending moment EI/R in the loop. Accord-
ing to the previous scalings, the slope in the braid is
small, of order ǫ. Geometric nonlinearities can then be
neglected and the leading order of system (2) for strand
‘a’, with centerline ra = (xa, ya, za), reads: EIx′′′′

a = px
a ,

EIy′′′′
a = py

a, z′a = 1 where px
a = |p| (xb − xa)/(2h) and

py
a = |p| (yb − ya)/(2h) are the components of the con-

tact force, assuming that there is no friction. The equa-
tions for the other strand ‘b’ are similar, with px

b = −px
a

and py
b = −py

a by the action-reaction principle. We take
advantage of the linearity of these equations and sepa-
rate the inner problem into an average and a difference
problem. To this end, we introduce the new variables
〈r(s)〉 = (ra(s) + rb(s))/2 and r = (rb(s) − ra(s))/2.

The average problem gives the position of the curve
lying halfway in between the two strands. It obeys the
Kirchhoff linearized equations: EI〈x〉′′′′ = 0, EI〈y〉′′′′ =
0, with the asymptotic conditions 〈x〉′′ = 1/(2R) at both
ends to allow matching with the loop. Note that the
contact forces cancel out in the average problem. As
a result, it has an obvious solution, namely an arc of
circle with radius 2R, up to a rigid-body rotation and
translation.

The difference problem tells how the two strands con-
tact and wind around each other. The components of
r satisfy the Kirchhoff linearized equations: EI x′′′′ =
|p|x/h, EI y′′′′ = |p| y/h. Based on the previous scaling
analysis, we introduce the rescaled quantities:

u =
xb − xa

2h
, v =

yb − ya

2h
, w =

z

(2hR)1/2
. (4)

Since the tangent deviates only slightly from ez, the arc
length s ≃ z, or w in rescaled coordinates, can be used
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FIG. 2: Difference problem for the braid region. (a) Ge-
ometry. (b) Visualization of the solution for a trefoil knot,
projected in the (v, w) plane, and (c) in the plane (u, v) per-
pendicular to the axis of the cylinder. Only one half of the
symmetric solution is shown. Contact is denoted with thick
curves and points.

to parameterize the deflection given by u and v. The un-
knowns of the difference problem are the functions u(w)
and v(w). As mentioned earlier, the contact set is not
known beforehand in this kind of problems. However,
the non-penetration condition (3) takes a simple form:

u2(w) + v2(w) ≥ 1 for all w. (5)

The self-contact problem then reduces to finding the
configuration of an effective ‘difference’ Kirchhoff rod in
(partial) contact with a fixed external object, namely a
cylinder, as shown in Fig. 2a. Making use of the varia-
tional structure underlying the Kirchhoff equations, we
seek the solutions u(w) and v(w) as minimizers of the
following energy:

E∆ =

∫ +W

−W

u′′2(w) + v′′2(w)

2
dw+v′(W )+v′(−W ), (6)

subjected to the non-penetration constraint (5), and to
the constraint that the ‘difference’ rod makes a prescribed
number of turns around the cylinder: one and a half turn
for trefoil knots and two and a half turns for cinquefoil
knots. The first term in this energy is the bending en-
ergy, proportional to the curvature squared. The last
two terms are the work done by the moments Q along eu

coming from the loop region, as shown in Fig. 2a. The
length 2W of the domain is an arbitrary, large number:
the minimizers do not depend on W as long as W is
beyond the endpoint of the contact region.

We solve the variational problem (5)–(6) with standard
numerical routines for constrained minimization. Note
that there is no numerical parameter left in the formula-
tion. The solution for a trefoil knot is shown in Fig. 2b
and c. The topology of the contact is non trivial: around
the center (w = 0) of the braid, there is an extended
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FIG. 3: Photograph and close-up of an experimental braid,
with ǫ ≈ .074. The two symmetric openings are predicted by
the theory.
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FIG. 4: Braid length ℓ versus intermediate length (h R)1/2

in log-log plot. In inset, the same data is shown in linear
plot. Open symbols and thin line are for trefoil knots. Filled
symbols and thick line are for cinquefoil knots. All rods are
Nitinol wires, except for the single circular data-point, com-
puted from data from Ref. [3]. The lines are the theoretical
prediction (7), with no adjustable parameter.

region |w| ≤ 0.348 with continuous contact. Further
away from the center, the ‘difference’ rod lifts off from
the cylinder to reach, at w = ±1.823, a maximum gap of√

u2 + v2−1 = 0.021 in rescaled units (implying a gap of
0.021× (2h) = 4.3%×h in physical units). This opening
ends up with an isolated contact at w = ±2.681 where
the strands eventually separate for good. The two sym-
metric gaps (for positive and negative w) can be observed
experimentally, as shown in Fig. 3. The contact topology
is the same in the case of cinquefoil knots (51), the central
region with continuous contact being wider. The solution
v(w) to the difference problem vanishes at w = wc, see
Fig. 2b. This corresponds to an apparent crossing of the
two strands, as viewed from the side (along the direction
eu ≈ ex). We use this crossings to define the length ℓ of
the braid, see Fig. 3. In rescaled units, this length is 2wc

that is, in physical units:

ℓ = 2wc

√
2hR, (7)

where wc = 3.506 for trefoil knots, while wc = 7.640 for
cinquefoil knots. This theoretical prediction is compared
with experiments for both kinds of knots, and a good
quantitative agreement is found, see Fig. 4. In exper-

iments, we used naturally straight, super-elastic wires
made of Nitinol, an alloy of nickel and titanium, with
various diameters in the millimetric range and length
L ≈ 2 m; we checked that the rods returned to their
natural straight configuration after the experiments (no
plastic deformation). Note that in fig. 4, we also included
a data-point that we measured from the image of a knot-
ted silica wire with radius 260 nm obtained by scanning
electron microscopy in Ref. [3, Fig. 3a].

It is possible to account for weak friction in the braid
using the present framework. The total contact force,

from one strand to the other, is P =
∫ ℓ/2

−ℓ/2
|p(s)|ds =

σ EI R−3/2 h−1/2, where σ is a numerical constant com-
puted from the inner solution, σ = .492 for trefoil knots,
and p(s) is the radial contact force pointing outwards.
When the strands are sliding along each other in the
braid, a friction force ±µP builds up, where µ is the
dynamic Coulomb friction of the rod onto itself. As a
result, the relation (1) between the applied tension and
the loop radius has to be modified as follows:

T h2

EI
=

ǫ4

2
± µσ ǫ3. (8)

The first term is the elastic contribution, as in equa-
tion (1), while the second term accounts for friction
forces, with a sign that depends on whether the knot
is being tightened (+) or loosened (−). The experimen-
tal response curve for a trefoil knot made with a coated
Nitinol rod of diameter .89mm is shown in Fig. 5, and
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FIG. 5: Traction-displacement curve for a Nitinol wire with
a trefoil knot. The knot is first tightened (upper curve) and
then loosened (lower curve) until it becomes locked by fric-
tion, for a value ǫ = ǫ0. The curves are the theoretical pre-
diction (8), with the Coulomb friction coefficient adjusted to
µ = .07 from equation (9). There is no other adjustable pa-
rameter in the plot. The agreement between theory and ex-
periments is good as soon as ǫ <

∼ 0.1.

compared to the predictions of equation (8). It was ob-
tained by attaching one end to a force probe, while the
other end was first pulled, and then relaxed, at a veloc-
ity of order 1mm/s. We were careful to keep the tails
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long enough (typically 50 cm long) to avoid any end ef-
fect coming from the clamped ends of the rod. The pa-
rameter R, required to plot the curves as a function of
ǫ =

√

h/R, is determined from the shortening ∆L of the
rod with respect to its unknotted configuration, divided
by 2π. Stick-slip takes place, as revealed by the spikes in
the experimental curves, but it was minimized by laying
the knot horizontally on a large block of material with low
friction (Teflon). Negative values of the traction T are
not accessible in this experiment as the tails buckle: we
stopped the experiments when the tension reaches T = 0.
Then, the knot is locked by friction. From equation (8)
the corresponding values of R0 and ǫ0 =

√

h/R0 satisfy
ǫ0 = 2µσ and so

µ =
1

2σ
ǫ0 = 1.02

√

h/R0, (9)

using the numerical value of σ relevant for a trefoil knot.
With the help of this formula, one can measure the self-
friction coefficient µ from a simple experiment, by tight-
ening the knotted rod, releasing its ends, letting the loop
grow spontaneously and measuring the final radius R0.
Using this method with the data shown in Fig. 5, we find
µ = 0.07. This is consistent with a direct (but inaccu-
rate) measurement of the longitudinal force between two
pieces of the rod sliding along each other (taking care
to minimize stick-slip as much as possible), which gives
µ ≈ .1.

We have obtained an analytical solution for the equi-
librium configurations of open elastic knots, which is ex-
act in the limit of loose knots, that is for small ǫ. The
theory shows good quantitative agreement with exper-
iments performed on elastic rods, concerning both the
geometry of the solution and the traction curves. A nat-
ural extension of the work presented here is the study of
the behavior of tight knots, that is when ǫ is no longer
small, ǫ = O(1). This question has been addressed from
a purely geometrical perspective through the problem of
ideal knots [17, 18]. In such geometrical models, tight
open knots typically exhibit a maximum of curvature in
the region where the tails enter the entangled region [11].
Simulations based on the elastic model are in contradic-
tion with this result. In Fig. 6, we show preliminary re-
sults concerning the solutions of equations (2) and (3) for

a tight elastic knot with ǫ =
√

h
∆L/(2π) = .52, and com-

pare with the geometrical model of Ref. [11] for which
ǫ = .56. The large, oscillatory curvature obtained in [11]
at the exit of the knot seems to point to the fact that the
geometrical problem is ill-posed in the matching region
between the perfectly straight tails and the knot; these
oscillations are regularized by elasticity. In the geomet-
ric case, the point of maximum curvature is at the exit of
the knot (s/h ≃ ±10); in the elastic case, this maximum
lies well inside the knot (points a and c in the figure, for
s/h ≃ ±6). This leaves open the question of where a
tight know will actually break. By pushing further the
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FIG. 6: Curvature of a tight elastic trefoil knot (ǫ = 0.52,
bold curve), and comparison with the geometrical calculation
of a tight trefoil knot in Ref. [11] (dotted).

present mechanical analysis, one can derive the distribu-
tions of strains in the material and attempt to answer
this question.
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