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Abstract

The static-dynamic analogy discovered by G. Kirchhoff shows that the statics of an elastic beam is equivalent to the
dynamics of a spinning top. This analogy, where time and angular velocity are, for example, equivalent to arclength
and curvatures, allows the use of Noether’s theorem to unravel a quantity that is invariant along elastic rods at equi-
librium. A spinning top having a Lagrangian independent of time will have its mechanical energy constant in time.
In the same manner, an elastic rod with uniform elastic properties will have the sum of its curvature energy and its
tension force uniform along the structure. The invariant property is known in simple cases, but the present approach
generalises it to more complex cases where extensibility, shear, conservative loads (e.g. gravity), and contact are
involved. Moreover, still using Noether’s theorem and bringing to light the continuous symmetries of the Lagrangian
of the variational approach, we recover all known invariants for the statics and dynamics of rods and ribbons, and we
extend the approach to vibrations. Finally, we show how the arclength invariant may be used to sometimes obtain
pivotal information on elastic rod problems or to test the accuracy of numerical codes.
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1. Introduction1

The discovery of a conserved quantity while studying a dynamical system is generally a joyful event for the re-2

searcher as it usually brings new insights into the system’s behavior. In her PhD thesis, the German mathematician3

Emmy Noether meticulously derived more than 300 invariants for biquadratic systems (Noether, 1908). These in-4

variants were explicitly calculated by hand, possibly through trial and error, and later on, E. Noether passed a harsh5

judgment on her PhD work and oriented her studies toward abstract algebra (Dick, 1981, p. 17). Nevertheless, her6

Habilitation thesis contains the classic 1918 theorem on differential invariants which provides a systematic way of7

unravelling invariants in physics and mechanics problems (Noether, 1918) and was most probably initiated in relation8

with the variational approach of Einstein’s general theory of relativity (Dick, 1981, p. 36).9

Noether’s theorem states that if the Action (of Lagrangian mechanics) stays the same when a translation, rotation,10

or some other space or time transformation is performed, then a given quantity will be invariant during the dynamics11

of the system. The best-known case is the invariance of the mechanical energy of a system if the Lagrangian of this12

system does not explicitly depend on time, and thus remains the same through a translation in time. In this paper,13

we leverage this theorem for the statics and dynamics of elastic rods to recover all their known invariants, thereby14

providing the corresponding space transformations responsible for these invariants. We additionally generalise the15

invariants to the case where a conservative force field is applied to the rod, as well as frictionless contact. Finally, we16

provide several illustrative examples where the arclength invariant is shown to be particularly handy in the study of17

the mechanics of the system.18
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State of the art19

Variational approaches of rods. In mechanical engineering, variational approaches of rods have long been motivated20

by the design of Galerkin-type numerical methods, especially finite elements. A popular method is the so-called geo-21

metrically exact beam approach (Reissner, 1973; Simo and Vu-Quoc, 1986), which derives an exact weak formulation22

for a generalised (Timoshenko) rod model including bending, stretching and shearing energies. The displacement and23

rotation fields are then discretised with the help of interpolating shape functions. One important issue of this approach24

(that is well beyond the scope of the present paper), which spurred many subsequent works in the finite elements25

community, deals with the proper interpolation of rotations for preserving objectivity, i.e., invariance of the strain26

measures under rigid motion (Crisfield and Jelenić, 1998).27

The weak formulations exploited for finite elements generally rely on the principle of virtual work, which stip-28

ulates that the variation of internal energy of the system should be balanced by the work of external forces. One29

difficulty pertaining to the virtual work principle is the definition of virtual displacements that comply with the true30

kinematics of the system. For rods in particular, a concern deals with the parametrisation of rotations and the nature of31

coupling between positional (displacement of the centreline) and rotational (rotations of the material frame) degrees of32

freedom. Various parametrisations have been proposed for rotations, including Euler angles (O’Reilly, 2015, Section33

5.3.1), quaternions (Dichmann et al., 1996), or the exponential map in the rotation group SO(3) (Simo and Vu-Quoc,34

1986). Likewise, various classes of weak formulations have been introduced with different levels of coupling between35

virtual displacements in positions and rotations. Methods range from uncoupled (Reissner, 1973) and weakly coupled36

ones in Rn × SO(3) (Sonneville et al., 2014) for general (Timoshenko) beams, to fully coupled ones for inextensible37

Kirchhoff rods where only rotational (bending and twisting) degrees of freedom are considered (Audoly and Pomeau,38

2010, Section 3.6). All these methods lead to the correct mechanical equations for the considered rod models, albeit39

at the price of properly defining the structure of the space where virtual displacements should live in.40

An alternative variational method is the principle of least action, which stipulates that the action of the system –41

that is, in statics, the integral of the Lagrangian of the system over s – should be stationary. This principle leads to the42

so-called Euler-Lagrange equations, which are differential equations that should be satisfied by the degrees of freedom43

q(s) of the system along with their derivatives q′(s). Though mathematically equivalent to the virtual work principle44

for conservative systems, this approach is quite different in spirit. Instead of formulating virtual displacements and45

computing corresponding energy variations, it is sufficient to build a Lagrangian – an energy depending on q(s) and46

q′(s)– that complies with the kinematics and mechanics of the system. In order to couple some degrees of freedom47

together, or to model contact, constraints can easily be incorporated in the Lagrangian. Then, the Euler-Lagrangian48

equations appear as a simple recipe to derive the mechanical equations of the system from the Lagrangian. Another49

key motivation to use the Lagrangian formalism is that Noether’s theorem on invariants is best understood and derived50

from symmetries of the Lagrangian itself.51

For these reasons, we shall adopt the Lagrangian point of view in this paper. To demonstrate the versatility of this52

approach, we will show that we can retrieve the same invariants for rods by considering two choices of degrees of53

freedom: on the one hand, simple (and totally uncoupled) degrees of freedom living all on Rn, which are related to54

each other through external constraints; on the other hand, translational and rotational degrees of freedom living on55

the Lie group of rotations SO(3), which are coupled together through a single external constraint. We will also show56

that adding contact constraints is straightforward within this Lagrangian approach, and allows one to extend Noether57

invariants to systems in (frictionless) contact.58

Hamilton point of view and invariants for rods. To study mathematical properties of rods and their invariants, theorists59

have often adopted an Hamiltonian point of view, that is, considered the Legendre transformation of the Lagrangian.60

Indeed, for conservative systems, the Hamiltonian naturally appears as an invariant, which actually boils down to61

the Noether invariant for a time-translational symmetry of the corresponding Lagrangian. For rods, different invari-62

ants have been found by analysing directly the Hamiltonian structure of the mechanical (strong) equations of the63

system (Maddocks and Dichmann, 1994).64

Among these invariants, the static arclength invariant H, consisting in the sum of the bending energy, twist energy,65

and the tension (axial component of the internal force), stands apart. It was first mentioned in the book by Love66

(1944, p. 384, Eqn. (7) in Sect. 262), then discussed in (Maddocks and Dichmann, 1994), and later on thoroughly67

used by Maddocks and coworkers (Dichmann et al., 1996; Kehrbaum and Maddocks, 1997) where it appears as the68
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Hamiltonian in the 3D rods statics formulation. The jump conditions of these conservation laws have been studied in69

(O’Reilly, 2007) in the light of the Weierstrass–Erdmann corner condition, see also (O’Reilly, 2017).70

It is noteworthy that these invariants were found using a trial-and-error approach, i.e. no systematic perspective71

was followed. As a matter of fact, such a systematic way exists: it relies on the Lagrangian and on Noether 1918’s72

theorem (Noether, 1918), which states that each continuous symmetry of the Lagrangian, constructed from both the73

energy and the kinematic constraints of the system, calls for an invariant quantity. The Noether approach to the74

conserved quantities has been used in the general case of bulk linear elasticity (Olver, 1984) and different fluid and75

solid mechanics problems (Singh and Hanna, 2021). For rods however, a complete Noetherian view has seldom been76

adopted. Maddocks and Dichmann (1994) briefly mentioned the possible use of Noether’s theorem to constructively77

find conservation laws, but rather used an a posteriori verification approach to the computation of the invariants,78

starting from the strong version of Kirchhoff’s rod equations. Peng et al. (2013) used Noether’s theorem but could not79

explicitly provide all known invariants because they did not introduce the continuous constraints in the Lagrangian.80

Overall, the fact that several invariants can be generalised to the case where a conservative force field is applied on81

the rod seems to have been overlooked in the literature, with the exception of self-weight, see (O’Reilly, 2015, 2017).82

Finally, contact was merely treated in the light of jump conditions (O’Reilly, 2007, 2017) where it was shown to help83

the computation of integration constants (Clauvelin et al., 2009).84

The approach developed in this paper rationalises the construction of the invariants using a Lagrangian mechanics85

approach, and shows that the invariants can be computed systematically once all continuous constraints have been86

properly introduced in the Lagrangian, together with their corresponding multipliers. The case of pointwise and87

continuous (frictionless) contact is moreover shown to fit in naturally with the present Noetherian approach.88

Paper contributions89

• A simple and pedagogical derivation of the Reissner and Kirchhoff static and dynamic equations from the least90

action principle, with pointwise constraints, contact, and external conservative force fields.91

• The application of Noether’s formulas to retrieve and generalise all known invariants in the presence of friction-92

less contact and external conservative force fields, valid for Kirchhoff, Reissner, and elastic ribbon cases.93

• The derivations of the results above using two alternatives: a simple Lagrangian formulation on Rn with multiple94

external constraints, and a more compact Lagrangian formulation on Rn × SO(3) retaining only one single95

constraint.96

• The illustration of the use of the arclength invariant H on several cases, including sliding sleeves, plectonemes,97

and constrained Euler buckling.98

• The applications of invariants to the verification of numerical simulation codes.99

2. Noether’s theorem and extension to Rn × SO(3)100

In the following, scalar quantities are printed with plain font, and vector quantities of Rn, n > 1 with bold font.101

Matrices are represented with capital letters.102

2.1. Emmy Noether’s 1918 theorem103

Let the generalised coordinates of the system q = q(s, t) be functions from R2 to Rn, and ′ ≡ ∂/∂s, and ˙ ≡ ∂/∂t104

be the space and time derivatives, respectively. For the sake of readability, in the following we may often drop the s, t105

dependencies, for instance writing q′ instead of q′(s, t).106

If the following action107

A =

∫
t

∫
s
L(q, q̇, q′) ds dt (1)
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remains identical when the following transformations are performed,

q̃ = q + ϵ θ , (2a)
s̃ = s + ϵ σ , (2b)
t̃ = t + ϵ τ (2c)

with |ϵ| ≪ 1, and in particular if L̃ = L, then the following relation108 [
τL +

(
θ − τq̇ − σq′

)
·
∂L

∂q̇

]•
+

[
σL +

(
θ − τq̇ − σq′

)
·
∂L

∂q′

]′
= 0 ∀s ,∀t. (3)

holds for dynamical solutions, i.e. for trajectories q(s, t) under which the action (1) is stationary (Noether, 1918). The
three transformations do not have to occur simultaneously, i.e. we have (Noether, 1918)

if τ = 0 and σ = 0, then q̃ = q + ϵ θ and
[
θ ·
∂L

∂q̇

]•
+

[
θ ·
∂L

∂q′

]′
= 0 ∀s ,∀t (4a)

if τ = 0 and θ = 0, then s̃ = s + ϵ σ and
[
q′ ·
∂L

∂q̇

]•
+

[
−L + q′ ·

∂L

∂q′

]′
= 0 ∀s ,∀t (4b)

if σ = 0 and θ = 0, then t̃ = t + ϵ τ and
[
−L + q̇ ·

∂L

∂q̇

]•
+

[
q̇ ·
∂L

∂q′

]′
= 0 ∀s ,∀t. (4c)

Please note that q and its derivatives q′, q̇ are vectors of dimension n, and the gradients ∂L/∂q, ∂L/∂q′, ∂L/∂q̇ are109

vectors of the same dimension n: scalar products arise between these two types of quantities.110

Static case. In the particular static case where there is no time dependence, (4b) implies the most well-known part of111

Noether’s theorem: if the Lagrangian L does not explicitly depends on s (but only does through q(s) and q′(s)), then112

H(s) = q′ ·
∂L

∂q′
− L, (5)

which corresponds to the Hamiltonian of the system, is a conserved quantity, i.e. ∀s, H′(s) = 0. In the following, this113

space invariant will thus be simply denoted by H.114

Constraints. For the sake of simplicity, we only focus on the static case here again. We consider the system to be115

subject to a bilateral constraint of the form h(q, q′) = 0, meaning that the generalised coordinates are not necessarily116

independent. The stationarity of the action under this constraint can be found by considering a constraint-free problem117

where the action is modified by transforming the Lagrangian as118

L ← L − λ(s) h(q, q′), (6)

where λ(s) is the Lagrangian multiplier associated to the constraint h(q, q′) = 0. The reader may think that introducing119

the multiplier λ(s) to the Lagrangian adds an explicit dependence of L on the space variable s, hence jeopardising the120

validity of Noether’s arclength invariant (5). However it can be shown that all the previous Noether invariants remain121

valid, including (5), due to the fact that h(q, q′) = 0 at equilibrium.122

Note that the new Lagrangian (6) does not contribute the −L part of Noether’s invariant, as h(q, q′) = 0 at123

equilibrium. However it may bring a new term of the form q′ · ∂L
∂q′ if the constraint h depends on q′. In section 4,124

we show in particular that the tension of the rod emerges in the static rod invariant, precisely due to the kinematic125

constraint relating the rod centreline to its material frame.126

2.2. Noether’s theorem on Rn × SO(3)127

In this section we limit ourselves to the static case. So far we have expressed Noether’s theorem considering that128

q is a vector of Rn, with the property that its derivative can simply be taken component-wise. This theorem naturally129

follows from the Euler-Lagrange equations on Rn (see Appendix A). However, key variables such as 3D rotations130

4



may not freely evolve in a full vector space, hence they may not be represented as three independent vectors of R3.131

Indeed, computing the derivative of a rotation matrix as derivatives of the matrix components (i.e. on R3) does not132

allow one to recover a rotation matrix after integration. Said otherwise, the resulting vector derivative is not tangent133

to the space of rotation matrices (the so-called SO(3) group). In 2D, this problem is easily solved by parametrising134

rotations with a scalar θ corresponding to the rotation angle about the horizontal axis. In such a case, rotation matrices135

do not need to be explicitly represented as variables, only the scalar variable q = θ and its derivatives θ′ and θ̇ are136

sufficient, which brings us back to the (easy) vector case. Unfortunately, such a vector reduction is not straightforward137

in 3D.138

In 3D, a first approach to tackle this problem is to consider external constraints applied onto q and inject them139

in the Lagrangian: this is what we will do in Sections 5 and 8, leveraging the property that Noether’s invariants still140

hold in case of bilateral constraints, see above. This ‘flattening’ method has the advantage of being systematic and141

simple to apply, since one can still resort to the classical Euler-Lagrange equations and Noether’s theorem on Rn.142

However it requires formulating all kinematic constraints properly (especially constraints on SO(3)), and burdens the143

user with a few tedious calculations. A second, more compact method consists in reformulating new Euler-Lagrange144

and new Noether equations, that are valid on SO(3). This is possible to do so by applying the so-called Euler-Poincaré145

reduction, which keeps track of rotation matrices R as main degrees of freedom, but considers their derivative to be a146

vector of R3, denoted by u in the world space, or ū in the local rotating space. Explicitly, if R ∈ SO(3), then R′ reads147

R′ = [u]× R = R [ū]× with u = R ū, (7)

where [x]× stands for the cross-product matrix of vector x ∈ R3, such that [x]× y = x × y , ∀y ∈ R3, see e.g. (Casati,148

2015, Appendix D) for practical computations on SO(3).149

It is noteworthy that with such a parametrisation (R, ū) of the Lagrangian, neither the classical Euler-Lagrange150

equations nor the Noether theorem are applicable directly, as a key assumption behind these equations, q′ = ∂q
∂s , is lost151

in the case of 3D rotations. This difficulty can however be overcome by imposing commutativity of derivation and152

perturbation operators, leading to so-called compatibility constraints. In the end, this method allows one to formulate153

Noether’s theorem directly on the right spaces containing the two different types of variables, i.e. Rn for translational154

quantities (such as the rod centreline), and SO(3) for rotational quantities (such as the rod material frame), without155

the need for additional constraints to maintain the variables in their native space. For rods, one last constraint that156

couples translational quantities to rotational quantities still needs to be added in the Lagrangian formulation, but in157

practice this one remains very simple. The most painful constraints, which are the ones expressing that q is a rotation158

matrix, are eliminated with the second ‘compact’ method. In the end, we come up with simple recipes that can be159

used for any problem containing translational and rotational parts, possibly coupled together.160

The Euler-Lagrange equations have been expressed on R3 × SO(3) for a while, mainly by roboticians dealing161

with rigid body systems, see e.g. (Lee et al., 2018) for a good introduction to this topic and a derivation of the Euler-162

Lagrange equations on R3 × SO(3) for dynamic rigid body systems. Romero and Gebhardt (2020) recently applied163

Rn × SO(3) Euler-Lagrange equations to derive static and dynamic equations for (extensible) Kirchhoff thin elastic164

rods.165

To the best of our knowledge, this approach has not yet been derived to the more general Reissner assumptions166

nor to derive Noether’s principle on Rn × SO(3) for thin elastic rods. In the following we summarise the main results167

we obtained for the Euler-Lagrange equations and Noether’s theorem on Rn × SO(3) in the static case. We mention168

briefly in Sections 5 and 8 how we can apply these new Noether invariants to our static rod problems to retrieve the169

same results as with the ’flattening’ method, in a more straightforward way. Details of the derivations are provided170

in Appendix A.171

Arclength invariant. We consider two types of degrees of freedom: translational ones, denoted as before as q, a vector172

of Rn; and a rotational one1, denoted as R ∈ SO(3), with R′ = R [ū]× and ū ∈ R3. We denote by L̊(q, q′,R, ū) the173

Lagrangian functional that uses ū to represent the derivative of the rotation matrix R.174

In the particular static case, we obtain the following invariant quantity if L̊ does not explicitly depends on s,175

∀s, H̊′(s) = 0 with H̊(s) = H̊ = q′ ·
∂L̊

∂q′
+ ū ·

∂L̊

∂ū
− L̊. (8)

1In case of multiple rotational degrees of freedom Ri, a similar formula applies with u being the concatenation of all vectors ūi.
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Proof is given in Appendix A. Note that the rotational part of the invariant takes the same form as the translational176

part, with ū playing the role of R’s derivative. Besides, the formula above is valid for any one-dimensional system177

featuring translational and/or rotational parts. As seen later, examples include statics of elastic rods, with ū being the178

triplet of material curvatures and twist, but also dynamic rigid bodies, with s representing time and ū corresponding to179

the angular velocity vector. In particular, in the case of a dynamic rigid body, H corresponds to the Hamiltonian of the180

system (expressed as the Legendre transform of the Lagrangian), with ∂L
∂q′ the linear momentum and ∂L

∂ū the angular181

momentum (Lee et al., 2018, Chapter 7). If H has no explicit dependence in time (e.g. case of a freely moving rigid182

body), then it is well-known that H coincides with the total mechanical energy of the system, hence it is constant over183

time.184

Configuration rotation invariant. Let ϵ θ a vector around which the rotation matrix R undergoes an infinitesimal185

rotation, i.e. we consider the transformation R̃ = R + ϵ R [θ]×. If this operation leaves the lagrangian L̊ unchanged,186

then the following relation holds,187 θ · ∂L̊
∂ū

′ = 0 ∀s. (9)

Proof is given in Appendix A. Again, note that this invariant takes the same form as the translational counter-188

part (4a), with ū playing the role of R’s derivative.189

3. Thin elastic rod problem setup190

Prerequisites. Let x a vector of R3. In the basis (d1, d2, d3), the vector reads x = x1d1 + x2d2 + x3d3 =
∑

xidi.191

We have192

x′i = (x′ + x × u) · di (10)

hence193

x′ · di = x′i − (x × u) · di. (11)

3.1. Potential energy194

We consider a shearable, extensible, bendable, twistable elastic rod. The rod has a natural shape that is not195

necessarily straight. We use an arclength parametrisation with the variable s. We start with the internal bending and196

twist energy densities,197

Wbend =
1
2

B1 (u1(s) − û1)2 +
1
2

B2 (u2(s) − û2)2 +
1
2

B3 (u3(s) − û3)2 (12)

where the ui are actual curvatures and twist of the rod, and the ûi their natural counterparts. We also consider the198

elastic energy density due to shear and stretch,199

Wshear =
1
2

A1 (v1(s) − v̂1)2 +
1
2

A2 (v2(s) − v̂2)2 +
1
2

A3 (v3(s) − v̂3)2 (13)

where the vi are actual shear and stretch of the rod, and the v̂i their natural counterparts. Generally, it is considered200

that v̂1 = 0, v̂2 = 0, and v̂3 = 1, in which case s is the arclength of the rod in the natural state, but we will at first keep201

generic v̂i values to exhibit symmetric formulas, see e.g. (29).202

We finally add the potential energy density Wext associated to the external conservative force density fext, i.e.203

fext = −∂/∂rWext(r), to obtain the total potential energy density of the rod V ,204

V = Wbend +Wshear +Wext. (14)

In the case where fext is simply the gravitational force density fext = −ρS g ez, we have Wext(r) = ρS g r(s) · ez, where205

ρ is the density of the material, S the area of the rod cross-section, and g the norm of the acceleration of gravity, see206

also (O’Reilly, 2015) where the weight was introduced in the invariant.207

6



3.2. Constraints208

We attach a Cosserat orthonormal frame R(s) = (d1(s), d2(s), d3(s)) – also called material frame – to the rod,
which brings 6 constraints

d1 · d1 − 1 = 0 d2 · d2 − 1 = 0 d3 · d3 − 1 = 0 (15a)
d1 · d2 = 0 d2 · d3 = 0 d3 · d1 = 0 (15b)

The conservation of these orthonormal relations as s is varied along the rod implies the Darboux relation

d′1(s) = u × d1 (16a)
d′2(s) = u × d2 (16b)
d′3(s) = u × d3 (16c)

where the Darboux vector has been chosen to be u = u1d1 + u2d2 + u3d3, see e.g. (Antman, 2004). The three vectorial209

relations (16) are constraints for the three scalar components u1, u2, u3 and can thereof be rewritten as210

u1 = d′2 · d3 , u2 = d′3 · d1 , u3 = d′1 · d2 (17)

The rod centreline r(s) is linked to the Cosserat frame through the relation211

r′(s) = v(s) = v1(s) d1 + v2(s) d2 + v3(s) d3. (18)

4. Thin elastic rod equations from the Lagrangian212

We seek equilibrium states for this elastic rod by minimizing its total potential energy V . We only consider the213

necessary conditions for the vanishing of the first variation of V under the continuous constraints (15), (17), and (18).214

4.1. Lagrangian215

Using the Lagrange multiplier rule, we introduce the Lagrangian on Rn,

L = V + λr ·
(
r′(s) − v1(s) d1 − v2(s) d2 − v3(s) d3

)
+ λu1

(
d′2 · d3 − u1

)
+ λu2

(
d′3 · d1 − u2

)
+ λu3

(
d′1 · d2 − u3

)
+ λ11

1
2

(1 − d1 · d1) + λ22
1
2

(1 − d2 · d2) + λ33
1
2

(1 − d3 · d3)

+ λ12 d1 · d2 + λ23 d2 · d3 + λ31 d3 · d1 (19)

where L = L[q(s), q′(s)] with q = (r, d1, d2, d3, u1, u2, u3, v1, v2, v3), see also (Elettro et al., 2017) for a similar216

approache in the context of elasto-capillarity.217

Alternatively, we can choose to parameterise the derivative of the Cosserat frame R(s), which belongs to SO(3),
using the Darboux vector u, such that R′(s) = [u]× R = R [ū]×. The vector ū is the triplet containing the material
curvatures and twist ui, i.e. we have u = R ū. In this case, our new Lagrangian L̊ = L̊[q,R, q′, ū] on Rn × SO(3)
simply reads

L̊ = V + λr ·
(
r′(s) − v1(s) d1 − v2(s) d2 − v3(s) d3

)
= V + λr ·

(
r′(s) − R(s) v(s)

)
, (20)

as the constraints for maintaining R(s) in SO(3) are now intrinsically accounted for thanks to our SO(3) parameteri-218

sation (R, ū) of the material frame. Only the constraints relating the material frame R(s) to the centreline r′(s) of the219

rod remains.220

7



4.2. Euler-Lagrange equations221

From the Lagrangian on Rn. Necessary conditions for the vanishing of the first variation of V are the classical Euler-
Lagrange equations

∂L

∂r
=

(
∂L

∂r′

)′
⇒ λ′r(s) = − fext (21a)

∂L

∂u1
= 0⇒ λu1 = B1(u1 − û1) (21b)

∂L

∂u2
= 0⇒ λu2 = B2(u2 − û2) (21c)

∂L

∂u3
= 0⇒ λu3 = B3(u3 − û3) (21d)

∂L

∂v1
= 0⇒ λr · d1 = A1(v1 − v̂1) (21e)

∂L

∂v2
= 0⇒ λr · d2 = A2(v2 − v̂2) (21f)

∂L

∂v3
= 0⇒ λr · d3 = A3(v3 − v̂3) (21g)

∂L

∂d1
=

(
∂L

∂d′1

)′
⇒ λu3 d′2 − λu2 d′3 + λ

′
u3

d2 + λrv1 + λ11d1 − λ12d2 − λ31d3 = 0 (21h)

∂L

∂d2
=

(
∂L

∂d′2

)′
⇒ λu1 d′3 − λu3 d′1 + λ

′
u1

d3 + λrv2 + λ22d2 − λ23d3 − λ12d1 = 0 (21i)

∂L

∂d3
=

(
∂L

∂d′3

)′
⇒ λu2 d′1 − λu1 d′2 + λ

′
u2

d1 + λrv3 + λ33d3 − λ31d1 − λ23d2 = 0. (21j)

We recognise in (21a) the force balance of the static Reissner equations, with the Lagrange multiplier λr playing the222

role of the internal force vector n = λr. We also identify in (21b) – (21d) the bend-twist constitutive relations, where223

the Lagrange multipliers λui are the components in the material frame of the internal moment vector m = λu1 d1 +224

λu2 d2 + λu3 d3, and finally in (21e) – (21g) the shear-extension constitutive relations which provide the components in225

the material frame of the internal force vector n = λr.226

The Euler-Lagrange equations related to d1, d2, d3 require more manipulations. By taking the scalar product of
(21i), (21j), (21h) with, respectively d3, d1, d2, we obtain the moment balance of the static Reissner equations,

m′1(s) = λ23 − v2 n3 − u2 m3 (22a)
m′2(s) = λ31 − v3 n1 − u3 m1 (22b)
m′3(s) = λ12 − v1 n2 − u1 m2 (22c)

with the notation n = n1 d1+n2 d2+n3 d3. To compute the missing multipliers λ23, λ31, λ12, we take the scalar product
of (21j), (21h), (21i) with, respectively d2, d3, d1

λ23 = λu2 u3 + n2 v3 (23a)
λ31 = λu3 u1 + n3 v1 (23b)
λ12 = λu1 u2 + n1 v2 (23c)

We inject (23) into (22) to obtain:

m′1(s) = u3m2 − u2m3 + v3n2 − v2n3 (24a)
m′2(s) = u1m3 − u3m1 + v1n3 − v3n1 (24b)
m′3(s) = u2m1 − u1m2 + v2n1 − v1n2 (24c)
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and using (11) we finally arrive at227

m′(s) = n(s) × r′(s) (25)

The force equilibrium expressed in the material frame reads

n′1(s) = u3n2 − u2n3 − fext · d1 (26a)
n′2(s) = u1n3 − u3n1 − fext · d2 (26b)
n′3(s) = u2n1 − u1n2 − fext · d3 (26c)

From the Lagrangian on Rn × SO(3). The method above has the advantage to be simple and explicit, since all228

computations are led on Rn using standard Euler-Lagrange equations. However, on may argue that computing ∂L
∂d′123

229

(21h, 21i, and 21j) may be lengthy, and overall refactoring all terms to recover rod equations is a bit tedious.230

In contrast, starting from the reduced Lagrangian L̊ given in (20) and using the Euler-Lagrange equations (A.7) on231

Rn×SO(3) alleviates most of these computations, see Appendix A. Again, we see that the internal force n emerges as232

the Lagrange multiplier associated to the constraint relating the material frame to the centreline of the rod. In contrast,233

the internal moment m no longer appears as a multiplier, but directly stems from the term ∂L̊
∂ū owing to the reduced234

parametrisation of SO(3).235

5. Noether invariants in the static case236

5.1. Arclength translation237

From the Lagrangian on Rn. As the Lagrangian does not explicitly depend on s, the following quantity is, at equilib-238

rium and under satisfied constraints, uniform along the rod, see (4b)239

H′(s) = 0 with H =
∂L

∂q′
· q′ − L. (27)

with q = (r, d1, d2, d3, u1, u2, u3, v1, v2, v3). The notation H seems natural when one considers that the relation (27)
is closely linked to the Legendre transformation of the Lagrangian L. The quantity H is invariant for an equilibrium
solution, that is, when the constraints (15), (17), and (18) are satisfied. In this case L = V and

∂L

∂q′
· q′ = n · r′ + m3 d2 · d′1 + m1 d3 · d′2 + m2 d1 · d′3 (28a)

= n · v + m · u, (28b)

which gives

H = n · v + m · u − V . (29)

From the Lagrangian on Rn × SO(3). Using our compact Lagrangian (20) and the Noether invariant (8) derived on240

Rn × SO(3) (see Appendix A), we immediately recover the same invariant H̊ = H, as ∂L̊
∂r′ stands for the internal241

force n and ∂L̊
∂ū for the internal moment m.242

Interpretation of H. Using (14), the mixed (strain-stress) formulation (29) can be rewritten in different ways,

H =
1
2

m · (u + û) +
1
2

n · (v + v̂) −Wext (30a)

H = Wbend + m · û +Wshear + n · v̂ −Wext (30b)

H =
1
2

Bi(u2
i − û2

i ) +
1
2

Ai(v2
i − v̂2

i ) −Wext, (30c)

Starting from (30b), we obtain in the classical Reissner case (v̂1 = v̂2 = 0 and v̂3 = 1, and any value for û)243

H = Wbend + m · û +Wshear + n3 −Wext =
1
2

Bi(u2
i − û2

i ) +Wshear + n3 −Wext, (31)
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Note that the emergence in the formula of the third component of the internal force n, the tension n3, simply stems244

from the (standard) choice to parametrise the natural shape of the rod with its rest arclength s, i.e. v̂1 = v̂2 = 0, and245

v̂3 = 1. In the further particular case where all the natural strains vanish (û1 = û2 = û3 = v̂1 = v̂2 = 0 and v̂3 = 1), a246

formulation with energies is obtained247

H = Wbend +Wshear + n3 −Wext. (32)

Finally, in the absence of any external force Wext = 0 and in the inextensible, unshearable case (inextensible248

Kirchhoff), where Wshear = 0, we re-obtain the Hamiltonian used in (Kehrbaum and Maddocks, 1997),249

H =
1
2

m · (u + û) + n3. (33)

Generalisation: hyperelastic rods and ribbons. It should be remarked that the invariant H is not restricted to the
quadratic energy (12) but also stands for hyperlastic rods (Maddocks and Dichmann, 1994; O’Reilly, 2017). Moreover,
1D models of elastic ribbons also fall into the realm of application of the invariant, see for example (Starostin and
van der Heijden, 2015; Borum, 2018; Neukirch and Audoly, 2021). See also (Audoly and van der Heijden, 2022) and
(Charrondière et al., 2024) for an example of how the invariant may be used in boundary layer calculations in the case
of the Wunderlich strain energy. We here give the example of an inextensible, unshearable, Sadowsky ribbon (Dias
and Audoly, 2015; Charrondière et al., 2020) with uniform natural curvature û1

W sdw
bend =

1
2

B⋆
u2

1

1 + u2
3

u2
1

2

− 2û1 u1

1 + νu2
3

u2
1

 (34a)

W sdw
shear = 0 (34b)

where ν is the Poisson ratio of the elastic material, u2 = 0, and B⋆ = B/(1 + ν2). In this case, the invariant H (29)
interestingly does not depend on the natural curvature û1

Hsdw = n · v + m · u − V = n3 + m · u −W sdw
bend −Wext = n3 +

1
2

B⋆u2
1

1 + u2
3

u2
1

2

−Wext (35a)

whereas in the case for rods with natural curvature, see (33), the dependance is present.250

5.2. Configuration translation251

In the absence of any external force field, Wext = 0, if we consider the transformation r̃ = r + a, which is a252

translation of the position by a fixed amount a, the Lagrangian (19) stays the same:253

r̃ = r + a ⇒ L(r̃, d1, d2, d3, u1, u2, u3, v1, v2, v3) = L(r, d1, d2, d3, u1, u2, u3, v1, v2, v3) (36)

In this case, θ in (4a) is in fact the vector a and the invariant is254 [
a ·
∂L

∂r′

]′
= 0 ∀a ⇒ n′ = 0 (37)

We see that the force vector is uniform along the rod if no external force field is applied to the rod, a classical result255

which is readily included in (21a).256

5.3. Configuration rotation257

In the absence of any external force field, Wext = 0, we further consider the transformation where the configuration258

(r, d1, d2, d3) is rotated by a small angle ϵ around an arbitrary, constant, vector b. The transformation reads259

r̃ = r + ϵ b × r , d̃1,2,3 = d1,2,3 + ϵ b × d1,2,3 . (38)

Note that the vectors v and u are also rotated, but their components v1,2,3 and u1,2,3 stay unchanged. Standard Taylor260

expansion shows that, at leading ordre in ϵ, this transformation leaves the Lagrangian invariant261

L(r̃, d̃1, d̃2, d̃3, u1, u2, u3, v1, v2, v3) = L(r, d1, d2, d3, u1, u2, u3, v1, v2, v3) (39)
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and consequently, the following quantity is invariantb × r ·
∂L

∂r′
+ b × d1,2,3 ·

∂L

∂d′1,2,3

′ = 0 (40a)

[b · r(s) × n+ b · m(s)]′ = 0 ∀b (40b)
[r(s) × n+ m(s)]′ = 0 (40c)

As the configuration translation, the rotation invariant is just the moment equilibrium (25).262

5.4. Configuration rotation around the fixed force axis263

In the absence of any external force field, Wext = 0, section (5.2) showed the force vector n is a fixed quantity. In264

this case, we consider the transformation in which the vectors r, d1, d2, and d3 are rotated by a small angle ϵ around265

the force axis n266

r̃ = r + ϵ n× r , d̃1,2,3 = d1,2,3 + ϵ n× d1,2,3 . (41)

Note that the vectors v and u are also rotated, but their components v1,2,3 and u1,2,3 stay unchanged. At leading ordre267

in ϵ, this transformation leaves the Lagrangian invariant268

L(r̃, d̃1, d̃2, d̃3, u1, u2, u3, v1, v2, v3) = L(r, d1, d2, d3, u1, u2, u3, v1, v2, v3) (42)

and consequently, the following quantity is invariantn× r ·
∂L

∂r′
+ n× d1,2,3 ·

∂L

∂d′1,2,3

′ = 0 (43)

[n · m(s)]′ = 0 (44)

5.5. Configuration rotation around the section normal269

In the presence or absence of an external force field, we now consider the transformation where the vectors d1,270

d2 are rotated by a small angle ϵ around the vector d3. In addition, the (1,2) components of the vectors u and v are271

transformed as well so as to leave the vectors u and v unchanged. The full transformation reads272

d̃1 = d1+ϵ d3× d1 , d̃2 = d2+ϵ d3× d2 , ũ1 = u1+ϵ u2 , ũ2 = u2−ϵ u1 , ṽ1 = v1+ϵ v2 , ṽ2 = v2−ϵ v1 , (45)

In the case where A1 = A2, B1 = B2, û1 = 0, û2 = 0, v̂1 = 0, and v̂2 = 0, at leading ordre in ϵ, this transformation273

leaves the Lagrangian invariant274

L(r̃, d̃1, d̃2, d3, ũ1, ũ2, u3, ṽ1, ṽ2, v3) = L(r, d1, d2, d3, u1, u2, u3, v1, v2, v3) (46)

and consequently, the following quantity is invariant[
d3 × d1 ·

∂L

∂d′1
+ d3 × d2 ·

∂L

∂d′2
+ u2

∂L

∂u′1
− u1

∂L

∂u′2
+ v2

∂L

∂v′1
− v1

∂L

∂v′2

]′
= 0 (47)

[m3(s)]′ = 0 (48)

Please note that this result holds in the case where û3 , 0 and v̂3 , 0.275

Remarkably, one can immediately recover all the invariant properties above by using the Noether’s configuration276

rotation formula (9) derived on SO(3). Using this compact formulation, two advantages are worth mentioning. First,277

examining the compact Lagrangian L̊ given in (20) makes it easier to localise symmetries. Second, it is remarkable278

that all Noether configuration invariants for rods should be of the form a + θ · m with a, θ ∈ R3.279
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6. Contact280

6.1. Preamble: General case of shear forces281

It is noteworthy that the arclength invariant H can be retrieved exactly by projecting the rod angular equilibrium282

equation (25) onto the Darboux vector u. Now, let f be an external force applied onto the rod. The contribution of f283

to this projection reads r′ · f , leading to the equation dH
ds (s) + r′(s) · f (s) = 0 ∀s. If one assumes that f is a shear284

force, i.e. a force normal to the tangent r′ of the rod at each point s of the centreline (the force can be zero), then this285

contribution vanishes. Hence, the Noether invariant H remains unchanged in the presence of shear forces.286

We now examine the specific case of frictionless contact forces, first in the case when they are modelled using a287

soft potential, then when they are represented with unilateral constraints.288

6.2. Contact potential and shear contact force289

We assume that the system is subject to a conservative external force density fext = −∂/∂rWext(r). We have seen290

previously that accounting for this external force amounts to adding −Wext(r) to the invariant H.291

We can write down the contribution of this potential to H′,

d
ds

(−Wext(r)) = −r′ · −∂/∂rWext(r) (49)

= r′ · fext, (50)

which automatically cancels out if fext is normal to the centreline. As a result, an external conservative field Wext292

yielding a force always normal to the centerline does not have to be included in the formula for H. Now the question293

is: can we find such potentials, i.e. yielding forces normal to r′?294

In section 7.7 we actually show that soft potentials, typically used for modelling contact, do not generate perfectly295

normal forces. As a result, such potentials need to be accounted for in the invariant H. Still, when they are rigidified,296

their corresponding force becomes orthogonal to r′. In this latter case, no additional term needs to be added to the297

invariant H. This can be directly seen by modelling contact as a hard constraint, and this is what we show below.298

6.3. Contact as a hard constraint: no contribution to H!299

g(x, y) < 0

g(x, y) > 0

g(x, y) = 0

Figure 1: Contact with an obstacle in the plane may in some cases be modelled with a gap or level set function g(x, y). The forbidden region has
g(x, y) < 0, and the rod is permitted to lie in the region g(x, y) ≥ 0. The surface of the obstacle has g(x, y) = 0, while g(x, y) > 0 in the absence of
contact with the obstacle.

An interesting result emerges in the case of contact modelled as a hard constraint: there is no need to add any300

potential to the invariant H. Modelling contact as a hard constraint means defining a contact force using a Lagrange301

multiplier which acts in a normal direction compared to the rod. We already proved that a normal force yields no302

contribution to H. Now we prove this result again, by considering a variational point of view of the problem.303

We consider a rod with centreline r(s), and an external object. We call g(s, p) the gap function between r(s)
and the obstacle. The gap function g(s, p) might depend on parameters p of the problem that we will specify a bit
later. Frictionless contact between the rod and the obstacle can be modelled by an inequality constraint of the form
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g(s, p) ≥ 0 , ∀s, which expresses the fact that the two objects can be separated (g(s, p) > 0) or can touch each other
(g(s, p) = 0), but are not allowed to interpenetrate, i.e. g(s, p) < 0 is forbidden (see figure 1). To allow this constraint
to be satisfied, a Lagrange multiplier µ(s) is introduced. Mechanically, this multiplier exactly acts as a contact force
that prevents the two objects from interpenetrating. Mathematically, the constraint is satisfied when the following
complementarity constraint holds,

0 ≤ g(s, p) ⊥ µ(s) ≥ 0,

which expresses that both the gap and the contact force should be non-negative, and that one has to vanish if the304

other one becomes positive. Intuitively, when the two objects come to contact (g(s, p) = 0), a contact force µ(s)305

gets activated. The condition above, together with the Euler-Lagrange equations actually correspond to the optimality306

conditions of our new variational problem, i.e. the stationarity of the action under the contact inequality constraint.307

If we now go back to this initial variational view, incorporating this new inequality constraint to come up to a308

constraint-free problem can be done by simply modifying the Lagrangian with the additional term Lc = −µ(s) g(s, p).309

As for the bilateral constraint examined in section 2, Noether’s formula for the arclength invariant (5) remains valid310

thanks to the complementarity condition above.311

Now, the point is to formulate the gap function g(s, p) and examine its dependencies upon of our variables of312

interest, and then derive our Noether invariants. We first examine an elementary 2D case, for the sake of simplicity.313

We consider a 2D rod subject to contact with an infinite ground of height y = a. The contact inequality constraint314

simply reads g(s) ≥ 0 with g(r) = r · ey − a, and the contribution to the Lagrangian reads Lc(r) = −µ(s)
(
r · ey − a

)
.315

Note that similarly to the bilaterial case, the new LagrangianLc does not contribute the −L part of Noether’s invariant,316

as µ g = 0 at equilibrium. As the contact constraint does not depend on r′, it does not contribute the ∂L
∂r′ · r′ part of317

Noether’s invariant either. Finally, such a contact constraint has no impact on the invariant. This result generalises to318

any gap function that depends only on r.319

7. Examples of applications320

Figure 2: A pendulum, initially in its vertical equilibrium, is launched
at tA with an initial angular speed θ̇0. At t = tB, it will reach a maxi-
mum angle θmax and start to swing back.

Figure 3: A planar Elastica is held with simple supports. The hori-
zontal compressive force at the support P is yielding an equilibrium
configuration with deflection θ0, maximum vertical displacement yM ,
and maximum curvature κM .

In this section, we illustrate several possible uses of the arclength-translation invariant (27) on the classical planar
Elastica case. We consider the equilibrium of an inextensible, unshearable, naturally flat rod bent in the (x, y) plane.
In this situation, twist uniformly vanishes and the Cosserat directors are such that d1 = − sin θ ex + cos θ ey, d2 = ez,
d3 = cos θ ex + sin θ ey, with θ is the angle marking the deflection of the Elastica with the horizontal ex axis. The static
Lagrangian (19) reduces to

L(x, y, θ, κ) =
1
2

EI κ(s)2 + nx(s) (x′ − cos θ) + ny(s) (y′ − sin θ) + m(s) (θ′ − κ) (51)

where we have directly used the notation for the force and moment multipliers, with m = m(s) ey. Please also note321

that at equilibrium, we have n′x(s) = 0 and n′y(s) = 0. The Euler-Lagrange equations corresponding to the variation322
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with κ and θ lead to323

EI θ′′(s) = nx sin θ − ny cos θ (52)

Additionnaly, the arclength-translation invariant (33) takes the simple form324

H =
1
2

EI κ2 + n3 (53)

where n3 = n·d3 = nx cos θ+ny sin θ is called the internal tension in the rod. If we call n1 = n·d1 = −nx sin θ+ny cos θ325

the internal shear force in the rod, we see that, using n′3 = κ n1, (52) write EI θ′′(s) = −n1 and can be integrated once326

to yield (53). Please also note that, using κ = θ′, (53) leads to an integration by quadrature of the solution functions327

θ(s). Additionally, (53) also shows that the tension n3 takes a maximum value along the rod at inflexion points s = si,328

where κ(si) = 0.329

In the example cases presented here, the method is simply to write the invariant at different (carefully chosen)330

locations along the rod, and use the fact that the value of the invariant is the same everywhere, to exhibit relations331

between key quantities in the problem.332

7.1. Vertical displacement333

In the classical problem of the nonlinear dynamics of a point mass attached to a pendulum, the vertical angle θ(t)334

of the pendulum obeys the equation ℓθ̈ = −g sin θ, and writing the solution θ(t) requires the use of elliptic functions.335

However, to answer the question, illustrated in figure 2, of finding the maximum deflection angle θmax as a function336

of the initial angular speed θ̇0 does not necessitate the use of elliptic functions. The key point is to use the time337

conservation of the mechanical energy Emeca =
1
2ℓθ̇

2 − g cos θ, write the value of Emeca at times t = tA and t = tB and338

find cos θmax = 1 − ℓθ̇20/(2g). The Kirchhoff static-dynamic analogy (see (Kirchhoff, 1859), or (O’Reilly, 2017) for339

a modern treatment) tells us that we can carry out the same method to study the problem shown in figure 3, where a340

simply-supported Elastica is compressed with a force P and displays a deflection θ0 at the supports. In this case, we341

have nx = −P and ny = 0. Finding the values of the maximum vertical displacement yM and maximum curvature κM342

would in principle require integrating (52) using elliptic functions, whereas writing the invariant (53) at point O and343

M directly yields344

κM =

√
2P
EI

(1 − cos θ0) , yM =

√
2EI

P
(1 − cos θ0) (54)

7.2. Frictionless contact345

Figure 4: In the case of frictionless contact, the contact force applied
from the obstacle onto the rod is perpendicular to the rod’s tangent.
The values H1 and H2, left and right of the contact point, are shown
to be equal.

Figure 5: Among the possible configurations an Elastica buckling in
a rectangular cavity may adopt, the use of the invariance of H enables
us to rule out the coexistence of some of them.

We explained in section 6 that frictionless contact, continuous or not, leaves the values of the invariant unchanged.346

Therefore, in the case where the planar Elastica is in frictionless contact with an obstacle (or in self-contact), see figure347

4, the invariant keeps the same value along the entire rod, that is H1 = H2 (see also jump conditions at obstacles in348

14



(O’Reilly, 2017)). We use this property in the problem of an Elastica buckling inside a rectangular cavity, see figure349

5. In this problem, it was shown that several configurations are encountered, namely the point-contact shape where350

the Elastica touches the wall at a localised value of the arclength, the extended-contact shape where contact happens351

for an interval of arclength values, and the hanging-fold shape where a blister is formed between two discrete contact352

points (Lubinski and Althouse, 1962; Chai, 1998; Domokos et al., 1997; Roman and Pocheau, 1999). In all these353

configurations H keeps a constant value, and if these configurations were to be found along the same rod, H would354

have to be the same everywhere.355

We question the possibility of having both an extended-contact and a hanging-fold solutions coexisting along the356

same rod, see figure 5. The frictionless character of the wall interactions implies that the horizontal component of357

the internal force stays constant along the rod, nx = −P, ∀s. In addition, the flat shape the extended-contact solution358

adopts as it is lying along the wall shows that the invariant at point A is equal to HA = −P. Thus, writing the invariant359

at point B, where the deflection angle vanishes θB = 0 but not the curvature κB < 0, yields HB =
1
2κ

2
B − P and360

demonstrates the impossibility of such a coexistence.361

7.3. Sliding sleeves362

Figure 6: A planar Elastica is buckled through a frictionless sliding
sleeve. The external forces P and P′ at the right and left extremities
do not match, due to the horizontal force coming from the sleeve at
the exit point B.

Figure 7: A closer look at the forces applied on the rod at the exit
of the frictionless sliding sleeve, adapted from (Bigoni et al., 2015).
The perpendicular (with respect to the rod’s tangent) orientation of
these forces implies the equality Hin = Hout , see sections 6 and 7.2.

In the last decade, it was shown that the buckling of an Elastica through a frictionless sliding sleeve exhibited a
(somewhat counterintuitive) force jump at the exit of the sleeve, see for example (Bigoni et al., 2015; Dal Corso et al.,
2017). We illustrate this in figure 6, where it is seen that the externally applied forces on the rod at points A and C
do not match: P , P′. It is explained in (Bigoni et al., 2015; Cazzolli and Dal Corso, 2024) that the mismatch in
horizontal forces is due to the contact force applied on the rod at the exit of the sleeve, see figure 7. The crucial point
is that the forces from the roller bearings are frictionless and hence do not change the value of the invariant H, i.e. we
have Hin = Hout, see figure 7. Thus, the relation between P and P′ is easily obtained by writing H just before point B
and at point C in figure 6

HB =
1
2

EIκ2B − P′ and HC = 0 − P (55a)

HC = HB ⇒ P′ = P +
1
2
κ2B (55b)

7.4. The Elastica arm scale363

The fact that the invariant H is conserved along the entire rod in rigid sleeve problems is handy for computing364

different properties of these systems at equilibrium. One such property is the horizontal tangent appearing when the365

Elastica arm scale (Bosi et al., 2014) is loaded at only one of its two extremities, see figure 8. Computing the value of366

H at point A yields HA = 0, and computing the value of H at point C yields HC =
1
2κ

2
C − mg sin θC . The absence of367

external torque loading at point C implies κC = 0 and thus the invariance HA = HC proves that θC = 0.368
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Figure 8: The Elastica arm scale, as introduced by Bosi et al. (2014).
A weight of mass m is hung at the right extremity while the left ex-
tremity is unloaded. Use of the invariant easily shows that the rod’s
tangent is horizontal at point C. Image courtesy of Francesco Dal
Corso.

Figure 9: An Elastica with a cross-section of varying thickness. In
this case the quantity H(s) is not conserved along the rod.

7.5. A simple case where the invariant breaks down369

In the so-called tapered case where the rod has a thickness which varies with arclength, see for example (Keller370

and Niordson, 1966), and hence a varying bending stiffness EI(s), we show that the quantity H(s) does depend on371

arclength. Consider for example the simply-supported Elastica of figure 9, for which the equilibrium equation (52) is372

replaced by373 [
EI(s) θ′(s)

]′
= −P sin θ (56)

In this case, we differentiate (53) and find374

H′(s) =
1
2

EI′(s) θ′2(s) + EI(s) θ′ θ′′ + P θ′ sin θ = −
1
2

EI′(s) θ′2(s) , 0 (57)

The fact that the quantity H(s) loses its invariant property comes from the explicit dependence of the Lagrangian (51)375

with the arclength s, which kills the invariance of the Action (1) under the transformation (2b), a crucial hypothesis376

of Noether’s theorem.377

7.6. A 3D case with twist and continuous contact378

We consider an inextensible, unshearable, naturally straight and untwisted rod with circular cross-section and
isotropic elastic properties, B1 = B2 = EI and B3 = GJ. We study a 3D case where the rod is twisted and experiences
self-contact, see figure 10. The rod is clamped at its left end and subject to an imposed rotation n and a pulling force
Text at its right end. This setup is used for example in DNA single-molecule experiments (Bustamante et al., 2003;
Strick et al., 1996) but also arises as an instability in textile yarns (Hearle, 2014). This complex configuration exhibits
both point-wise and continuous contact (Coleman and Swigon, 2000; van der Heijden et al., 2003), but in the contact
region the rod adopts an approximately double-helix shape. Due to self-contact, the helix radius is the radius R of
the circular cross-section, and we note θ the helical angle, between the rod’s tangent and the helical axis. The helix

thus has a curvature κ =
√
κ21 + κ

2
2 = (1/R) sin2 θ, and using the helical shape approximation, it is possible to show

(Thompson et al., 2002) that the contact pressure p, the twisting moment m3, and the inner tension n3 all essentially
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Figure 10: A rod is twisted and subject to an external tension Text .
If the twist is large enough, the rod coils on itself, exhibiting plec-
tonemes. A relation between the external tension and the coiling an-
gle θ is found using the invariant H.

Figure 11: Several bifurcation branches are computed numerically
for different slenderness ratios L/(2R) and the relation between Text
and θ is plotted and compared to (61), see inset.

depend on the helical angle θ

phelix =
EI
R3

sin4 θ

cos 2θ
(58a)

m3helix =
EI
R

2 sin3 θ cos θ
cos 2θ

(58b)

Thelix =
EI
R2

sin4 θ

cos 2θ
(58c)

Thus, the helical angle θ appears as the crucial variable characterizing the mechanical state of the system, and we379

would like to compute θ as a function of the applied load Text. We derive such a relation using the invariant H =380

1
2 EIκ2 + 1

2
m2

3
GJ + n3, see (33) with û = 0, computed at points A and B. We first remark that we are in the case where381

m′3(s) = 0 ∀s that is m3A = m3B = m3helix, see (58b). At point B, no bending moment is applied, κB = 0, and the382

internal tension is equal to the external force, n3B = Text. We therefore have383

HB =
1
2

m2
3helix

GJ
+ Text (59)

At point A, the curvature, twist, and tension are given by (58) and we have384

HA =
1
2

EI
sin4 θ

R2 +
1
2

m2
3helix

GJ
+

EI
R2

sin4 θ

cos 2θ
(60)

Equating HA = HB yields385

Text =
1
2

EI
R2 sin4 θ

(
1 +

2
cos 2θ

)
(61)

We performed numerical shooting simulations for different rod’s slenderness ratios L/(2R) = 100 . . . 1000, in which386

the end-to-end distance is fixed and the number of turns is varied from n = 4 up to n ≃ 10, 20, or 50. We record387

the force Text and the average value of the helical angle θ, and verify both the 1/R2 scaling of the force and the388

approximation provided by (61), see figure 11.389

7.7. The invariant in the presence of an external force field390

In this section, we study the case in which an external conservative force field is applied to the rod. Manning391

and Bulman (2005) introduced a soft-wall repulsion to deal with the wall-constrained buckling scenario presented in392
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Figure 12: (a) The buckling of a planar Elastica constrained by a horizontal upper wall is studied using the long-range interaction potential (64).
(b) Total interaction energy (69) as the ’range’ b of the potential is decreased, with the limit b → 0 corresponding to the hard-wall limit. (c) and
(d) Plot of the arclength invariant H (67) together with the non-invariant function h(s) for two different b values. We see that as b is decreased,
the difference between H and h(s) becomes smaller and that the constant H value tends toward the hard-wall limit -73.7. Fixed parameters L = 1,
EI = 1, a = 0.1, and ∆ = 0.026.

figure 12-a. This corresponds to the buckling of a planar Elastica, subject to an imposed displacement ∆, constrained393

by an upper horizontal wall lying at a vertical distance a from the clamps. In the references cited in section 7.2, the394

authors used a frictionless hard-wall contact approach where395

y(s) ≤ a ∀s (62)

As explained earlier, this contact condition is treated by introducing the KKT term −Fc[a − y(s)] in the Lagrangian396

(51), the Lagrange multiplier Fc corresponding to the contact force. In the case that the Elastica shape comprises397

a single arch and the contact with the upper wall is pointwise, the vertical component ny(s) of the internal force398

experiences a jump at s = sc399

ny(s+c ) − ny(s−c ) = Fc (63)

with symmetry imposing sc = 1/2.400

Manning and Bulman (2005) replaced the contact condition (62) by a soft-wall (a.k.a. barrier) potential401

Wext(y) =
b

a − y(s)
(64)

which is added to the total potential energy V of the rod, see (14), and therefore to the Lagrangian (51). In this model,402

the vertical component ny(s) no longer jumps at s = 1/2 but varies along the length of the rod403 (
∂L

∂y′

)′
=
∂L

∂y
⇒ n′y(s) =

∂Wext

∂y
=

b
(a − y(s))2 (65)

Intuitively, this soft-wall approach can be interpreted as if the wall and the Elastica would be electrostatically charged404

with like charges and would therefore repel each other from a distance. The central point of the soft-wall approach is405
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that, as b is made smaller, the computed equilibrium shape converges toward the shape obtained with the hard-wall406

contact condition (62) and407

ny(L) − ny(0) = b
∫ L

0

ds
(a − y(s))2 −→b→0

Fc (66)

Morevoer, the gap δ = a − y(1/2), see figure 12, also decreases to zero as b→ 0. Note that the horizontal component408

nx(s) of the internal force is invariant n′x(s) = 0 ∀s and set by the external compression force P, nx = −P.409

In this soft-wall approach, the arclength invariant reads410

H = h(s) −Wext(y) with h(s) =
1
2
θ′2(s) − P cos θ − ny(s) sin θ (67)

with H′(s) = 0 ∀s but h′(s) , 0. We fix the parameter values411

L = 1 , EI = 1 , a = 0.1 , ∆ = 0.026 (68)

and numerically compute the equilibrium using the soft-wall approach with b = 0.1 and b = 10−4 to see that the term412

−Wext(y) in (67) is necessary to achieve uniformity of H, see figure 12-c and d. Now in the case of hard-wall contact,413

we have explained in section 6 that no extra term is required, and the formula for the invariant is indeed that of h414

in (67). This can be understood by showing that the importance of Wext decreases as b → 0, as can be seen when415

comparing figures 12-c and d. To make this more quantitative, we numerically compute416

Ewall = b
∫ 1

0

ds
a − y(s)

(69)

and plot it as b is varied in figure 12-b. We see that Ewall(b) ∼ b2/3 for small b values. This scaling can be understood417

in the following way. We consider the soft-wall solution as b is decreased toward zero. In this limit, the denominators418

in the integrands of (66) and (69) are taking small values when s is near sc = 1/2, and therefore these integrals are419

dominated by the behaviour of the function y(s) near s = sc. A Taylor expansion yields420

y(s) = a − δ +
1
2
κc (s − 1/2)2 + . . . (70)

As b → 0, δ and κc converge toward the hard-wall limit, δ → 0 and κc → −1.54 for parameters values in (68).
Plugging this expansion for y(s) into the integrals (66) and (69) we find∫ L

0

ds
(a − y(s))2 =

π
√

8κc
δ−3/2 + O(δ−1) (71a)∫ L

0

ds
a − y(s)

=
π
√

2κc
δ−1/2 + O(δ0) (71b)

Considering the leading order of (66) when b → 0, for which Fc = 18.1 for parameters values in (68), we see (71a)421

implies b ∼ δ3/2 and consquently (71b) implies Ewall(b) ∼ b2/3.422

Finally, we remark that for every b value, the curve H(s) should be strictly flat. The size of the undulations seen423

in figures 12-c and d is then a measure of the quality of the numerical solution.424

8. Dynamics425

The angular velocity is noted ω(s, t) = ω1d1 + ω2d2 + ω3d3 and we have

ḋ1(s, t) = ω × d1 (72a)

ḋ2(s, t) = ω × d2 (72b)

ḋ3(s, t) = ω × d3 (72c)
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The three vectorial relations (72) are constraints for the three scalar components ω1, ω2, ω3 and can thereof be426

rewritten as427

ω1 = ḋ2 · d3 , ω2 = ḋ3 · d1 , ω3 = ḋ1 · d2 (73)

To derive dynamical equations for the elastic rod, we complement the Lagrangian (19) with the linear and angular
kinetic energies

Ld = L − K − λω1 (ḋ2 · d3 − ω1) − λω2 (ḋ3 · d1 − ω2) − λω3 (ḋ1 · d2 − ω3) (74a)

with K =
1
2
ρS ṙ2 +

1
2

I1ω
2
1 +

1
2

I2ω
2
2 +

1
2

I3ω
2
3 (74b)

where I1 and I2 are the moment of inertia of the cross-section about d1 and d2, and I3 = I1 + I2 is the polar moment of
intertia, about d3. And the action is

A(r, d1, d2, d3, u1, u2, u3, v1, v2, v3, ω1, ω2, ω3) =
∫ t2

t1

∫ L

0
Ld ds dt (75)

8.1. Euler-Lagrange equations428

We use the principle of least action to obtain the equations for the dynamics of the elastic rod. Necessary conditions
for the vanishing of the first variation of (75) are the following Euler-Lagrange equations. Equations (21b), (21c),
(21d), (21e), (21f), and (21g) stay unchanged and here also we identify the Lagrange multiplier λr with the internal
force vector n = λr. Furthermore, the derivation with regard to the ωi unravel a new constitutive relation

∂Ld

∂ω1
= 0⇒ λω1 = I1 ω1 (76)

∂Ld

∂ω2
= 0⇒ λω2 = I2 ω2 (77)

∂Ld

∂ω3
= 0⇒ λω3 = I3 ω3 (78)

where we interpret the Lagrange multipliers λωi as the components of the angular momentum π = λω1 d1 + λω2 d2 +

λω3 d3, which we will now write πi. The linear momentum equation, (21a), is now

∂Ld

∂r
=

(
∂Ld

∂r′

)′
+

•(
∂Ld

∂ṙ

)
⇒ n′(s) + fext = ρS r̈ (79)

Euler-Lagrange equations for the director basis (d1, d2, d3) are changed to

∂Ld

∂d1
=

(
∂Ld

∂d′1

)′
+

•(
∂Ld

∂ḋ1

)
⇒ λu3 d′2 − λu2 d′3 + λ

′
u3

d2 + λrv1 + λ11d1 − λ12d2 − λ31d3 + π2 ḋ3 − π3 ḋ2 − π̇3d2 = 0

(80a)

∂Ld

∂d2
=

(
∂Ld

∂d′2

)′
+

•(
∂Ld

∂ḋ2

)
⇒ λu1 d′3 − λu3 d′1 + λ

′
u1

d3 + λrv2 + λ22d2 − λ23d3 − λ12d1 + π3 ḋ1 − π1 ḋ3 − π̇1d3 = 0

(80b)

∂Ld

∂d3
=

(
∂Ld

∂d′3

)′
+

•(
∂Ld

∂ḋ3

)
⇒ λu2 d′1 − λu1 d′2 + λ

′
u2

d1 + λrv3 + λ33d3 − λ31d1 − λ23d2 + π1 ḋ2 − π2 ḋ1 − π̇2d1 = 0.

(80c)

Analogous manipulations as in the static case lead to

m′1(s) − u3m2 + u2m3 − v3n2 + v2n3 = π̇1 + ω2π3 − ω3π2 (81a)
m′2(s) − u1m3 + u3m1 − v1n3 + v3n1 = π̇2 + ω3π1 − ω1π3 (81b)
m′3(s) − u2m1 + u1m2 − v2n1 + v1n2 = π̇3 + ω1π2 − ω2π1 (81c)
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and, using (11), yields the vectorial relation429

m′(s, t) + r′(s, t) × n(s, t) = π̇(s, t) (82)

8.2. Invariants in the dynamics case430

The same symmetries as in the static case hold, except for the one of Section 5.4, basically because the force431

vector n is no longer constant.432

8.2.1. Configuration translation433

Just as in Section 5.2, in the absence of any external force field, Wext = 0, the transformation r̃ = r + a leaves the434

Lagrangian (74a) invariant. Consequently, (4a) yields435 [
a ·
∂Ld

∂ṙ

]•
+

[
a ·
∂Ld

∂r′

]′
= 0 ∀a ⇒ n′ = ρS r̈ (83)

which is just the dynamics equation (79) when Wext = 0. See also Eq. (2.12) in (Maddocks and Dichmann, 1994).436

8.2.2. Configuration rotation437

Still in the absence of any external force field, the rotation transformation (38) leaves the Lagrangian (74a) invari-
ant. Consequently, (4a) yields[

b × r ·
∂Ld

∂ṙ
+ b × d1,2,3 ·

∂Ld

∂ḋ1,2,3

]•
+

b × r ·
∂Ld

∂r′
+ b × d1,2,3 ·

∂Ld

∂d′1,2,3

′ = 0 (84a)[
−b · r × ρS ṙ − b · π

]•
+ [b · r × n+ b · m]′ = 0 ∀b (84b)

−
[
r × ρS ṙ + π

]•
+ [r × n+ m]′ = 0 (84c)

which may be obtained by combining (79) and (82) with Wext = 0. See also Eq. (2.14) in (Maddocks and Dichmann,438

1994).439

8.2.3. Configuration rotation around the section normal440

In the presence or absence of an external force field, we now consider the transformation (45) in the case where
A1 = A2, B1 = B2, û1 = 0, û2 = 0, v̂1 = 0, and v̂2 = 0. This transformation leaves the Lagrangian (74a) unchanged,
and consequently, from (4a), we have[

d3 × d1 ·
∂Ld

∂ḋ1
+ d3 × d2 ·

∂Ld

∂ḋ2
+ u2

∂Ld

∂u̇1
− u1

∂Ld

∂u̇2
+ v2
∂Ld

∂v̇1
− v1
∂Ld

∂v̇2

]•
+[

d3 × d1 ·
∂Ld

∂d′1
+ d3 × d2 ·

∂Ld

∂d′2
+ u2

∂Ld

∂u′1
− u1

∂Ld

∂u′2
+ v2
∂Ld

∂v′1
− v1
∂Ld

∂v′2

]′
= 0 (85a)

− [π3(s, t)]• + [m3(s, t)]′ = 0 (85b)

Please note that this results hold in the case where û3 , 0 and v̂3 , 0 as long as they are constant and uniform. See441

also Eq. (4.5) in (Maddocks and Dichmann, 1994).442

8.2.4. Arclength translation443

As the Lagrangian (74a) does not explicitly depend on s, the conservation law (4b) holds along a dynamic trajec-
tory. Recalling q = (r, d1, d2, d3, u1, u2, u3, v1, v2, v3), we obtain the ’density-flux’ conservation identity

−
[
π · u + ρS ṙ · r′

]•
+ [H + K]′ = 0 (86)

with H given by (29) and K given by (74b). See also Eq. (3.2) in (Maddocks and Dichmann, 1994). The relation (86)444

may be used as a validation test for numerical codes.445
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8.2.5. Time translation446

As the Lagrangian (74a) does not explicitly depend on t, the conservation law (4c) holds along a dynamic trajec-
tory. Recalling q = (r, d1, d2, d3, u1, u2, u3, v1, v2, v3), we obtain

− [K + V]• + [m · ω + n · ṙ]′ = 0 (87)

with V given by (14) and K given by (74b). See also Eq. (2.19) in (Maddocks and Dichmann, 1994). The relation447

(87), once integrated over the entire rod, shows that the total mechanical energy448 ∫ L

0
(K + V) ds (88)

is time-invariant in the case of conservative boundary conditions (ṙ(0, L) = 0 = ω(0, L)), such a clamps or if the rod449

is circularly closed on itself, or free ends m(0, L) = 0 = n(0, L).450

9. Vibrations451

Here, we show that vibration equations for elastic rods may be obtained through a variational approach and, as
a result, we display the associated invariant. We illustrate this in the case of the vibrations of the planar Elastica but
it can be straightforwardly generalised to the 3D case. For the sake of simplicity, we restrict to the naturally straight
(κ̂ = 0), inextensible (v3(s) = 1 ∀s, t), unshearable (v1(s) = v2(s) = 0 ∀s, t) case. We start with the 2D version of (74a)

L2D
d =

1
2

EI κ(s, t)2 −
1
2
ρS (ẋ2 + ẏ2) + λ1(s, t) (x′ − cos θ) + λ2(s, t) (y′ − sin θ) + λ3(s, t) (θ′ − κ) (89)

where the first term is the internal bending energy, the second is the translational kinetic energy (for simplicity, we do
not consider here rotational inertia, I1,2,3 = 0), and the last three terms correspond to the kinematics constraints

x′ = cos θ , y′ = sin θ , θ′ = κ (90)

Anticipating the interpretation of the Lagrange multiplier λ1,2,3, we introduce the horizontal and vertical components
of the internal force vector λ1 = nx(s, t), λ2 = ny(s, t), and the internal moment λ3 = m(s, t). The equations for the
dynamics of the planar Elastica are then obtained by applying the least action principle to

A2D[q(s, t)] =
∫ t2

t1

∫ L

0
L2D

d ds dt (91)

with q(s, t) = (x(s, t), y(s, t), θ(s, t), κ(s, t)), see section Appendix B.452

To study the small-amplitude vibrations around a pre-computed equilibrium qe, we introduce the ansatz453

q(s, t) = qe(s) + ϵ q̄(s) cosωt , nx,y(s, t) = nxe,ye(s) + ϵ n̄x,y(s) cosωt , m(s, t) = me(s) + ϵ m̄(s) cosωt (92)

into (91) and keep terms up to order ϵ2. We obtain454

A2D[q̄(s)] = A2D
e + ϵA

2D
1 [q̄(s)] + ϵ2A2D

2 [q̄(s)] + . . . (93)

The Action A2D
e is here a ’constant’, given quantity, and is therefore not subject to optimisation. The Action A2D

1
contains a cosωt term which makes it vanish when the time integration is either taken over a period, t2 = t1 + 2π/ω,
or over a long time interval. We are then left with the ActionA2D

2 which reads

A2D
2 =

∫ t2

t1
cos2 ωt

∫ L

0
L2D

vib ds dt (94a)

L2D
vib[q̄(s)] =

1
2

EI κ̄2 −
1
2
ρSω2(x̄2 + ȳ2) +

1
2
θ̄2(nxe cos θe + nye sin θe)

+ n̄x(x̄′ + θ̄ sin θe) + n̄y(ȳ′ − θ̄ cos θe) + m̄(θ̄′ − κ̄) (94b)
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and Euler-Lagrange equations applied to L2D
vib yield the classical vibration equations (B.4). We emphasize that the

equilibrium solution θe(s) is a given function when working with the Lagrangian L2D
vib and that a Noether arclength

invariant will only exist in the case that the equilibrium shape of the beam is straight, θ′e(s) = 0 ∀s. In such a case the
invariant reads

H2D
vib =

∂L2D
vib

∂q̄′
· q̄′ − L2D

vib (95a)

=
1
2

EI θ̄′2 − θ̄
(
n̄x sin θe − n̄y cos θe

)
+

1
2
ρSω2

(
x̄2 + ȳ2

)
−

1
2
θ̄2

(
nxe cos θe + nye sin θe

)
(95b)

In the case of a horizontal equilibrium (θe(s) = 0 ∀s) of an Elastica under a compressive force nxe = −P, nye = 0, the455

vibration equations simplify to the classical form456

EI ȳ′′′′ + P ȳ′′ − ρSω2 ȳ = 0 (96)

and the invariant reads457

H2D
vib =

1
2

EI ȳ′′2 +
1
2
ρSω2 ȳ2 −

1
2

P ȳ2 − EI ȳ′ ȳ′′′ (97)

a quantity that we have not managed to find in the existing literature.458

10. Discussion and Conclusion459

We have provided a comprehensive variational approach for elastic rods and ribbons where the continuous kine-460

matic constraints play an important role, as this is only when they are explicitly included in the Lagrangian of the461

problem that Euler-Lagrange equations are straightforwardly derived. Moreover we showed that such a Lagrangian462

can be used to unravel conserved quantities or relations in the statics or dynamics of elastic rods and ribbons. Addition-463

ally, we have put forward an alternative Lagrangian approach where rotation constraints are automatically fulfilled,464

leading to more compact Euler-Lagrange equations and straightforward Noether invariants. Using Noether’s 1918465

theorem, we have recovered all known static and dynamic invariants and generalised the conditions under which they466

exist. More precisely, the arclength invariant, usually referred to as the Hamiltonian invariant, stands up to the adjunc-467

tion of conservative external loading (e.g. gravity, electrostatics) and frictionless contact, but also holds in the case468

of Wunderlich, Sadowsky, and Ribext ribbon models. Furthermore, we illustrated the use of the arclength invariant469

in different 2D and 3D setups where it proves remarkably efficient in providing key quantities or relations in difficult470

problems. In one such problem, the sliding sleeve, the invariant provides an easy explanation of the somewhat mys-471

terious force applied to the rod at the entry/exit of the sleeve. Finally, we have introduced a variational approach to472

vibrations of elastic rods and computed a first integral to the vibration mode equation of a straight cantilever.473

Future work could include, among others, (i) the search for a more general invariant in the case of vibrations (that474

is, not restricted to the case of vibrations around a straight equilibrium), (ii) the case of contact in the presence of475

friction, where the invariant is sometimes increasing exponentially with s instead of being constant, (iii) the search476

of other space and/or time transformations that keep the Action unchanged (see for example Eq. (12) in (Kienzler477

and Herrmann, 1986)) thereby providing new invariants, (iv) the search for a clever use of the two dynamics invari-478

ants (86),(87) either for validation of codes for the dynamics of rods or to study their dynamical behavior.479
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Appendix A. SO(3) computations484

Appendix A.1. Reminder: Euler-Lagrange and Noether’s theorem on Rn
485

Let q ∈ Rn the n independent generalised coordinates of a mechanical system, and q′ = ∂q
∂s ∈ R

n the correspond-486

ing generalised velocities. With L(q, q′) the Lagrangian functional depending on these generalised coordinates and487

velocities, the (classical) Euler-Lagrange equation read488

d
ds
∂L

∂q′
−
∂L

∂q
= 0. (A.1)

The Euler-Lagrange equation (A.1) results from the stationarity of the action489

A(q, q′) =
∫ L

0
L(q, q′)ds, (A.2)

upon trajectories q, q′. It can be proved using integration by parts, which especially yields the following conditions490

on the boundary terms,491 [
∂L

∂q′
· δq

]L

0
= 0, (A.3)

i.e.492

∂L

∂q′
(0) = 0 or δq(0) = 0 (A.4)

∂L

∂q′
(L) = 0 or δq(L) = 0, (A.5)

which, for a mechanical system, can be interpreted as the vanishing of either the infinitesimal displacement δq or the493

applied force ∂L
∂q′ at a boundary point.494

Appendix A.2. Euler-Lagrange on Rn × SO(3)495

It is noteworthy that equations (A.1) are only valid for generalised coordinates satisfying ∂
∂s q = q′, and the496

compatibility equation ∂
∂sδq = δq

′. This formula is thus applicable to translational degrees of freedom (such as497

positions), but not for rotational degrees of freedom, such as rotation matrices R ∈ SO(3), unless adding constraints to498

the Lagrangian formulation to maintain R in SO(3), see Section 4 of this paper. Without any constraint, if one chooses499

q = R, then the compatibility condition is not valid: one cannot swap derivation and perturbation on SO(3). To do so,500

a supplementary compatibility condition has to be satisfied.501

In contrast, if one uses the Euler-Poincaré parametrisation of rotations, i.e. L̊(R, ū) with R′ = R[ū]×, new Euler-502

Lagrange equations can be derived from the least action principle, by imposing the compatibility condition503

δū = η′ + ū × η, (A.6)

where η is defined through the relationship δR = R[η]×.504

Property Appendix A.1. Let q ∈ Rn and R ∈ SO(3), such that R′ = R[ū]×. We decompose R as R = [d1, d2, d3],505

where d j is the jth column of the matrix R. We denote by e j the jth canonical vector of R3. We consider the Lagrangian506

L̊(q, q′,R, ū). The Euler-Lagrange equations on Rn × SO(3) read507

d
ds
∂L

∂q′
+

d
ds
∂L

∂ū
+ [ū]×

∂L

∂ū
−
∂L

∂q
−

3∑
j=1

[e j]×RT ∂L

∂d j
= 0. (A.7)
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Proof:. Using properties of rotation matrices, we have d′j = [R ū]×d j = R[ū]×RT d j, and likewise, δd j = R[η]×RTd j.508

The action of the system reads S =
∫ L

0 L̊(q, q′, d j, ū). We search for a stationary point of S , that is trajectories509

q(s),R(s) of the system such that δS = 0.510

We have511

δS = S (q + δq, q′ + δq′, d j + δd j, ū + δū) − S (q, q′, d j, ū) (A.8)

=

∫ L

0

∂L̊

∂q
· δq +

∂L̊

∂q′
· δq′︸                         ︷︷                         ︸

δS T

+

∫ L

0

∂L̊

∂d j
· δd j +

∂L̊

∂ū
· δū︸                         ︷︷                         ︸

δS R

. (A.9)

The first term S T is classical: by using the permutation δ(q′) = (δq)′ and integration by part with the boundary
conditions (A.4) and (A.5), one obtains

δS T =

∫ L

0

(
d
ds
∂L

∂q′
+

d
ds
∂L

∂ū

)
· δq,

which, for any perturbation δq, yields the classical Euler-Lagrange equations (A.1).512

Now we compute the second term δS R =

∫ L

0

∂L̊

∂d j
· δd j︸          ︷︷          ︸

δS d j

+

∫ L

0

∂L̊

∂ū
· δū︸         ︷︷         ︸

δS ū

. On the one hand, using the compatibility513

equation (A.6), we have514

δS ū =

∫ L

0

∂L̊

∂ū
· η′ +

∂L̊

∂ū
·
(
[ū]× η

)
=

∫ L

0

∂L̊

∂ū
· η′ −

[ū]×
∂L̊

∂ū

 · η using properties of the mixed product

= −

∫ L

0

 d
ds
∂L̊

∂ū
+ [ū]×

∂L̊

∂ū

 · η using integration by part and boundary conditions

∂L̊
∂ū
· η

L

0
= 0, (A.10)

i.e.515

∂L̊

∂ū
(0) = 0 or η(0) = 0 (A.11)

∂L̊

∂ū
(L) = 0 or η(L) = 0, (A.12)

meaning that either the infinitesimal rotation η or the applied angular momentum ∂L
∂ū cancels out at a boundary point.516

On the other hand, we have517

δS d j =

∫ L

0

∂L̊

∂d j
· δd j

=

∫ L

0

∂L̊

∂d j
·
(
[η]×RTd j

)
=

∫ L

0

∂L̊

∂d j
·
(
[η]×e j

)
where e j is the jth vector of the canonical base on R3

=

∫ L

0

[e j]×RT ∂L̊

∂d j

 · η using properties of the mixed product.
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We finally obtain

δS ū =

∫ L

0

− d
ds
∂L̊

∂ū
− [ū]×

∂L̊

∂ū
+

3∑
j=1

[e j]×RT ∂L̊

∂d j

 · η,
which, for any perturbation η, yields the Euler-Lagrange equations on SO(3), in the local basis R,

d
ds
∂L̊

∂ū
+ [ū]×

∂L̊

∂ū
−

3∑
j=1

[e j]×RT ∂L̊

∂d j
= 0,

or alternatively, in the world basis,
d
ds

R ∂L̊
∂ū

 − 3∑
j=1

[d j]×
∂L̊

∂d j
= 0.

Summing up the Rn contribution together with this SO(3) contribution, one ends up with the general Euler-Lagrange518

equations (A.7) on Rn × SO(3). □519

Appendix A.3. Noether’s theorem on Rn × SO(3)520

Property Appendix A.2. The Noether arclength invariant on Rn×SO(3), corresponding to a translational symmetry521

of L̊ along s, reads522

∀s, H̊′(s) = 0 with H̊(s) = H̊ = q′
∂L̊

∂q′
+ ū
∂L̊

∂ū
− L̊. (A.13)

Property Appendix A.3. The Noether configuration rotation invariant on Rn × SO(3), corresponding to a rotation523

symmetry of L̊ around d3, reads524 θ · ∂L̊
∂ū

′ = 0 ∀s. (A.14)

The proofs of these two properties are similar and follow from the Euler-Lagrange equations on Rn × SO(3)525

derived above. They contain two key steps: first, computing the total derivative of the Lagrangian L̊; then replacing526

gradients of the form ∂L̊
∂q and ∂L̊

∂d j
by their expressions extracted from the Euler-Lagrange equations.527

Appendix B. Planar Elastica statics, dynamics, and vibrations528

The equations for the dynamics of the planar Elastica can be obtained as the Euler-Lagrange equations of the529

action (91) together with the constraints (90). We write530

∂L2D
d

∂q
=

∂L2D
d

∂q′

′ + ∂L2D
d

∂q̇

• (B.1)

with q = (x, y, θ, κ) and obtain531

x′(s, t) = cos θ , y′(s, t) = sin θ , EIθ′(s, t) = m , m′(s, t) = nx sin θ − ny cos θ , n′x(s, t) = ρS ẍ , n′y(s, t) = ρS ÿ (B.2)

The equations for the statics of the planar Elastica are then obtained by setting ẋ = ẍ = 0 and ẏ = ÿ = 0 in (B.2)532

x′e(s) = cos θe , y′e(s) = sin θe , EIθ′e(s) = me , m′e(s) = nxe sin θe − nye cos θe , n′xe(s) = 0 , n′ye(s) = 0 (B.3)

And finally, the equations for the vibrations of the planar Elastica are obtained by considering the ansatz (92), which
corresponds to small-amplitude vibrations around the nonlinear equilibrium qe(s). This ansatz is injected into (B.2)
while bearing in mind that (B.3) is fulfilled and that we only keep O(ϵ) terms. We obtain

x̄′ = −θ̄ sin θe , ȳ′ = θ̄ cos θe , EIθ̄′ = m̄ , m̄′ = n̄x sin θe − n̄y cos θe + θ̄
(
nxe cos θe + nye sin θe

)
(B.4a)

n̄′x = −ρSω
2 x̄ , n̄′y = −ρSω

2 ȳ (B.4b)
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