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Abstract. These notes give a short introduction to the methods
for the study of stability of elastic structures. We consider only the
finite-dimensional case, where the state of the system is represented
by a discrete set of variables. The core of the exposition focuses on
the illustration of energetic methods where equilibrium and stabil-
ity are found by studying the point of stationarity and minima of a
scalar function of the state variables. After three introductory sec-
tions presenting the links between stability and energy minimization
(Section 2), potential energy (Section 3) and discretization meth-
ods (Section 4), we detail the mathematical methods required to
minimize a function of n variables (Section 5-8). We include the
theory and recipes to deal with equality and inequality constraints,
providing several examples of applications to simple structures. We
then show how to classify regular and singular points (bifurcations)
in force-displacement diagrams (Section 9) and give a fully worked
example with several degrees of freedom (Section 10). Section 11
presents, through an example, the dynamical theory of stability in-
cluding Floquet theory for systems with periodic solutions. Finally,
Section 12 shows how energetic methods can be applied to the study
of material instabilities, by considering the case of springs with ir-
reversible damage.
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Figure 1. Dynamics of a simple pendulum. Associated potential energy
V (θ) and phase plane (θ, θ̇).

1 Introduction

We study the equilibrium and stability of nonlinear systems. Nonlinearity
has two main consequences: (i) closed-form solutions are the exception and
numerical methods have to be used; and (ii) unicity is lost, that is several
solutions may exist for the same load. While the ubiquity of computers
reduces the importance of the first consequence, the second raises questions
such as: Which solution is to be considered? Which ones are stable?

Apart from Section 11, where dynamical stability is introduced and
damping is present, we restrict to the conservative case, where for example
there is no friction. Hence internal and external forces derivate from poten-

tial energies, for example 1/2
∫ L
0
κ2ds (curvature strain energy in a beam),

mgz (gravitational energy), −F ·OA (work of external load). We therefore
do not consider follower or gyroscopic loads (see for example Ziegler (1977)
or Bigoni (2012)).

2 Energy minimization and dynamical systems

We follow the principle stating that in conservative systems a stable equi-
librium corresponds to a local minimum of the potential energy. In this
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section we relate this energy-based stability criterion to the study of stabil-
ity through the dynamics of the system.

We consider a simple pendulum, a punctual mass M fixed at the end of
a massless rigid bar of length L, see Figure 1. The dynamics of the system
obeys

d2θ

dt2
= −

√
g

L
sin θ (1)

where g is the acceleration of gravity. Using the dimensionless time τ :=
t
√
L/g, Eq. (1) writes θ̈ + sin θ = 0, where ˙( ) := d/dτ . This equation is

integrated once to yield

1

2
θ̇2 + 1− cos θ = E (2)

where the integration constant E is the total mechanical energy of the
system, the sum of the kinetic energy T = 1

2 θ̇
2 and the potential energy

V = 1− cos θ, that is E = T +V . In figure 1 the stable (respectively unsta-
ble) equilibrium position A (resp. B) clearly appears as the local minimum
(resp. maximum) of the potential energy V . Trajectories corresponding to
the dynamics of the system for all possible initial conditions are drawn in
the phase space (θ, θ̇). There, equilibrium are points and the stable equi-
librium A has closed trajectories in its neighborhood: perturbation of the
equilibrium A leads to small vibrations around the position θA = 0. The
unstable equilibrium B has escaping trajectories in its neighborhood: some
perturbations lead to evolution of the system far from B.

3 Potential energy for an elastic beam

In order to illustrate the theory, we focus on a simple elastic system : an
elastic beam bent in the (x, y) plane, see Figure 2. The potential energy is
then given by the functional (Audoly and Pomeau, 2010)

V [θ] =
1

2
EI

∫ L

0

θ′(s)
2
ds+ P

∫ L

0

cos θ(s) ds (3)

the first term being the internal strain energy and the second term the
work done by the external applied load P . For the two cases in Figure 2,
in the minimization process we have to take boundary (4) and/or integral
conditions (5) into account:

θ(0) = 0 (4)

y(L) = 0 that is

∫ L

0

sin θ(s) ds = 0 (5)

4



Figure 2. Elastic beams buckling in the plane. (Left) Clamped-free bound-
ary conditions. (Right) Pinned-pinned boundary conditions.
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Figure 3. (Left) Solution θ(s) for the configuration in Figure 2-Left.
(Right) A system of rigid bars linked by spiral springs.

4 Three ways to discretize a continuous system

4.1 Finite differences

Using si = ih, with i ∈ (0, n + 1), and sn+1 = L, we apply a finite
differences scheme for the derivative of θ(s), θ′(s) ' (θi+1 − θi)/h. We
then apply the rectangle rule for integration and the energy functional (3)
becomes:

V ' Vfd =
1

2
EI

n−1∑
i=0

(
θi+1 − θi

h

)2

h+ P

n∑
i=0

cos θih (6)

We introduce dimensionless variables:

v =
1

n+ 1

Vfd L

EI
=

1

2

n−1∑
i=0

(θi+1 − θi)2 +
p

(n+ 1)2

n∑
i=0

cos θi (7)

where p = PL2

EI .
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Figure 4. (Right) Piecewise linear approximation of the solution θ(s) shown
in Figure 3-Left. (Left) A triangle base function, and the partitioning of
the interval (0, L) into n+ 1 subintervals (or elements).

This is equivalent to the energy of a system of n+ 1 rigid bars linked by
spiral springs (see Figure 3):

Vbars =
1

2
k

n−1∑
i=0

(θi+1 − θi)2 + Ph

n∑
i=0

cos θi (8)

where the spiral spring stiffness is k and the rigid bars have length h. The
equivalence Vbars = Vfd is obtained using EI = k h and L = (n+ 1)h.

4.2 Finite elements

In the former section, the solution θ(s) was approximated by a discontin-
uous piecewise constant function. Here we look for a continuous piecewise
linear approximation. We therefore introduce triangle functions that take
the value 1 at their center and have a compact support, see Figure 4. The
interval (0, L) is split into n + 1 elements of size h. The ith element corre-
sponds to s ∈ (si, si+1), with si = i h. The triangle functions ϕi(s) span
over elements i− 1 and i, with ϕi(si) = 1. Consequently, in the ith element
the two basis functions that are non zero are:

ϕi(s) =
si+1 − s

h
(9a)

ϕi+1(s) =
s− si
h

(9b)
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And in this element the approximation to the function θ(s) is given by

θfe(s) = ci ϕi(s) + ci+1 ϕi+1(s) (10)

where the boundary condition θ′(L) = 0 imposes cn+1 = cn. Putting this
ansatz in the functional (3) we obtain

v =
1

n+ 1

V L

EI

=
1

2

n−1∑
i=0

(ci+1 − ci)2 +
p

(n+ 1)2

n−1∑
i=0

sin ci+1 − sin ci
ci+1 − ci

+
p

(n+ 1)2
cos cn

(11)

At the discretization gets finer, the second term tends toward cos ci and

v
h→0−→ 1

2

n−1∑
i=0

(ci+1 − ci)2 +
p

(n+ 1)2

n∑
i=0

cos ci (12)

which is the same result as (7) with θi = ci.

4.3 Spectral decomposition

A third way to discretize the system in Figure 2-Left is to use the first
n buckling modes as a functional basis and decompose the solution in this
basis, see Figure 5. Here we use n = 2, the buckling modes are

θ1(s) = sin
π

2
s (13a)

θ2(s) = sin
3π

2
s (13b)

The approximate solution is then written as

θ(s) = α sin
π

2
s+ β sin

3π

2
s (14)

We inject this ansatz into the functional (3) and obtain:

v(α, β) =
1

2

∫ 1

0

(
α
π

2
cos

π

2
s+ β

3π

2
cos

3π

2
s

)2

ds

+ P

∫ 1

0

cos

[
α sin

π

2
s+ β sin

3π

2
s

]
ds (15)
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Figure 5. Spectral discretization based on the first two buckling modes.

Figure 6. A saddle point (S), a minimum (A), and a maximum (B)

The first integral is easily evaluated but not the second one. Gauss-Legendre
integration is then used, with 2 points. We obtain

v(α, β) =
π2

16
(α2 + 9β2) +

P

2
[cos (0.95α− 0.54β) + cos (0.33α− 0.84β)]

(16)

5 Minimum, maximum, extremum

Once the discretization is achieved, we are left with a function V (x), where
V ∈ R and x ∈ Rn, and we look for the point(s) for which V is locally
minimum. Examples are:
• V (x1, x2) = x21 + x22 has a global minimum at (x1, x2) = (0, 0).
• V (x1, x2) = x21 − x22 has no global or local minimum. The point

(x1, x2) = (0, 0) is a saddle point.
• V (x) = x2 − x4 has a local minimum at x = 0.
Stated in this way the problem of the equilibrium and stability of an

elastic structure becomes a problem of nonlinear optimization. We therefore
use methods of nonlinear programming, see for example Luenberger and Ye
(2008).

8



5.1 Values of a function in one direction

We are given a function V (x), where V ∈ R and x ∈ Rn. We are
interested to know if the point x0 is a local minimum. Instead of looking
at the values of V all around x0, we restrict to the values taken by V in the
direction d. That is we study the one-variable function

V (x0)(d) := V (x0 + εd) = V (ε) for ε ∈ R (17)

Example: For the function V (x1, x2) = x21 − x22, the point (x1, x2) = (0, 0)
is a saddle point:

• If we study V (x0)(d) with x0 = (0, 0) and d = (1, 0). We have
V (x0)(d) = V (ε) = ε2. In this direction we have a local minimum.

• If we study V (x0)(d) with x0 = (0, 0) and d = (0, 1). We have
V (x0)(d) = V (ε) = −ε2. In this direction we have a local maximum.

5.2 Derivative of a function in one direction

We now want to study the derivative with regard to ε of V (ε), that is
V ′(ε). This is the directional derivative of V (x) in the direction d, at the
point x0:

V ′(x0)(d) :=
d

dε
V (x0 + εd)

∣∣∣∣
ε=0

(18)

Example : for the function V (x1, x2) = x21 − x22,

• we compute the directional derivative at the point (x1, x2) = (0, 0) in
the direction d = (1, 0). We have V (ε) = V (x0 + εd) = ε2, V ′(ε) = 2ε,
and finally V ′(x0)(d) = V ′(ε)|ε=0 = 0.

• we compute the directional derivative at the point (x1, x2) = (1, 0) in
the direction d = (1, 2). We have V (ε) = V (x0 + εd) = −3ε2 + 2ε+ 1,
and V ′(x0)(d) = V ′(ε)|ε=0 = 2.

5.3 Directional derivative and gradient

We consider V (x0 + εd) with x0 = (x01, x
0
2) and d = (d1, d2). The Taylor

expansion around x0 for small ε writes:

V (x01 + εd1, x
0
2 + εd2) = V (x01, x

0
2) + ε

∂V

∂x1

∣∣∣∣
x=x0

d1 + ε
∂V

∂x2

∣∣∣∣
x=x0

d2 +O(ε2)

= V (x01, x
0
2) + ε∇V |x0

· d +O(ε2) (19)

where ∇ := ∂
∂x .
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5.4 Taylor expansion up to order two

The Taylor expansion up to second order is:

V (x01 + εd1, x
0
2 + εd2) = V (x01, x

0
2) + ε∇V |x0

· d +
1

2
ε2d21

∂2V

∂x21

∣∣∣∣
x=x0

+ε2d1 d2
∂2V

∂x1∂x2

∣∣∣∣
x=x0

+
1

2
ε2d22

∂2V

∂x22

∣∣∣∣
x=x0

(20)

The second order term can be written as:

1

2
ε2 d ·H0 · d (21)

where H = H(x) is the Hessian matrix, Hij = ∂2V
∂xi∂xj

, and H0 means H

when evaluated on x = x0.

6 Minimization without constraints

6.1 First derivative

We are given a function V (x), where V ∈ R and x ∈ Rn and we require
the point x0 to be a local minimum. That is we want

V (x) ≥ V (x0) ∀x near x0 (22)

Hence we write x = x0 + εd and consider small ε and all possible directions
d (but not d = 0). Using (19), the condition (22) yields

ε
∂V

∂x

∣∣∣∣
x0

· d ≥ 0 ∀ε and ∀d (23)

As positive and negative ε can be considered this implies ∂V
∂x

∣∣
x0
· d = 0 ∀d,

and finally
∂V

∂x

∣∣∣∣
x0

= 0 (24)

This is a necessary condition in order to have a minimum at x0. If V is a
potential energy of a system, then these n equations for the n unknowns
(x1, x2, . . . , xn) are the equilibrium equations.

6.2 Second derivative

Having solved the (nonlinear) equilibrium equations (24) and found one
or more solutions xA, xB , . . . , we want to test whether these solutions are
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stable, that is whether they correspond to local minimum of the energy.
As for these solutions the first derivative vanishes, we need to look at the
second derivative term in (20). The requirement (22) for a minimum now
yields:

d ·H0 · d ≥ 0 ∀d (25)

A sufficient condition is

d ·H0 · d > 0 ∀d (26)

In the case where there is a d for which d ·H0 · d = 0, we cannot conclude
and would have to compute higher orders. In the case there is one (or more)
d for which d ·H0 · d < 0, then the point x0 is not a minimum.

Example: Minimize the function V (x1, x2) = x21 − x22 + x42 in R2.

6.3 Recipe

As the matrix H0 is symmetric, we can write it in its eigenspace. It is
then diagonal with real entries, its eigenvalues λi with i ∈ (1, n). In this
representation, the condition (26) writes:

d21 λ1 + d22 λ2 + . . .+ d2n λn > 0 ∀di (27)

which means that we must have λi > 0 ∀i, that is all eigenvalues must be
strictly positive.

Here is the procedure to follow when we have the potential energy V (x)
of a system to minimize:
• compute the equilibria, that is the solution(s) of ∂V

∂x = 0
then, for each equilibrium solution:

• compute the matrix Hij = ∂2V
∂xi∂xj

, and evaluate it on the equilibrium

solution, then compute its eigenvalues λi
• if λi > 0 ∀i then the equilibrium is stable
• if there is one (or more) i such that λi < 0, then the equilibrium is

unstable
• if the λi are all positive, but there is one (or more) i such that λi = 0,

we cannot at this stage conclude on the stability.

6.4 Discrete vs. Continuous

If on the one hand we consider the continuous energy (3) and write
Euler-Lagrange equations for it, we obtain

EI θ′′(s) + P sin θ(s) = 0 (28)

11



θ
0

y

x
θ
1

θ
2

P

θ
3

k

h
O

θ
0

y

x

θ
1

θ
2

P
θ
3

k
h

O

Figure 7. System of 4 bars linked by spiral springs. (Left) Ends are hori-
zontal. (Right) Ends are horizontal and aligned

If now on the other hand we consider the discretized energy (6) and write
the first derivative condition (24) we obtain

−EI θi+1 − 2θi + θi−1
h

− Ph sin θi = 0 (29)

and we see that (29) is the finite differences version of (28), showing that the
discretization and minimization procedures are commutative operations:

V [θ(s)]
Euler-Lagragne−−−−−−−−−→ EIθ′′ + P sin θ = 0yfinite diff.

yfinite diff.

V (θi)
First derivative−−−−−−−−−→ EI θi+1−2θi+θi−1

h2 + P sin θi = 0

6.5 Example: The clamped beam

We here compute the buckling load of the two degrees of freedom system
of Figure 7-Left. The energy of the system is

V =
1

2
k (θ1 − θ0)

2
+

1

2
k (θ2 − θ1)

2
+

1

2
k (θ3 − θ2)

2

+ Ph (cos θ0 + cos θ1 + cos θ2 + cos θ3) (30)

and the boundary conditions reads: θ0 = 0 = θ3. The variables are then
(θ1, θ2). We introduce dimensionless variables v = V/k and p = 16Ph/k in
order to follow notations of equation (7). Equilibrium equations are

∂v

∂θ1
= 2θ1 − θ2 −

p

16
sin θ1 = 0 (31a)

∂v

∂θ2
= −θ1 + 2θ2 −

p

16
sin θ2 = 0 (31b)
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One trivial solution is θ1 = 0 = θ2. We study its stability. The Hessian
matrix is

H0 =

(
2− p/16 −1
−1 2− p/16

)
(32)

and has λ1 = 1 − p/16 and λ2 = 3 − p/16 as eigenvalues. We conclude
the trivial solution is stable for p < 16 and unstable for p > 16. Buckling
therefore happens at p = 16.

7 Minimization with equality constraints

Given a function V (x), where V ∈ R and x ∈ Rn, we look for the point(s)
for which V is locally minimum, but only for the point(s) that satisfy one
(or more) constraints g(x) = 0.

Example: Minimize V (x1, x2) = x21 +x22 in the subset where g(x1, x2) =
x1 − 1 = 0.

7.1 First derivative

We are given a function V (x) that is to be minimized in the subset where
g(x) = 0. We require the point x0 to be a local minimum by stating that
for small ε

V (x = x0 + εd) ≥ V (x0) ∀x such that g(x0 + εd) = 0 (33)

This means that not all d directions will be tested. Only the directions d
fulfilling

g(x0 + εd) = g(x0) + ε∇g|x0
· d +O(ε2) = 0 (34)

will be tested. As in the unconstrained case, positive and negative ε can be
considered. Therefore we need to have

∇V |x0
· d = 0 ∀d such that ∇g|x0

· d = 0 (35)

This implies that ∇V and ∇g are colinear, that is there is a real number λ
such that

∇V |x0
= λ∇g|x0

(36)

The function g is given and ∇g defines a direction in space. The vectors d
perpendicular to the gradient of g are in the tangent (hyper-)plane of the
surface g = 0 at point x0, see Figure 8. The equilibrium equations are the
n equations (36) plus g(x) = 0, and the unknowns are the n components of
x plus the real number λ.
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A way to memorize Eq. (36) is through the introduction of the augmented
energy W = V − λ g and solve for ∇W = 0. In such a view λ is called a
Lagrange multiplier.

Example: We minimize V (x1, x2) = x21+x22 under the constraint g(x1, x2) =

(x1 − 1)
2
+(x2 − 2)

2−1 = 0. The first order condition ∇V = λ∇g has two
solutions. The first one is point A such that xA1 = 1−1/

√
5, xA2 = 2−2/

√
5,

λA = 1 −
√

5, and the second one is point B such that xB1 = 1 + 1/
√

5,
xB2 = 2 + 2/

√
5, λB = 1 +

√
5.

7.2 Second derivative

For the second derivative, we need to consider a perturbation to the equi-
librium solution x0 such that x stays on the surface g = 0. Contrary to what
was done in the unconstrained case we need to develop the perturbation to
second order:

x = x0 + εd +
1

2
ε2 e +O(ε3) (37)

where |ε| � 1 and where g(x) = O(ε3). Now d and e cannot be freely
chosen, as they are related by the condition

g(x)− g(x0) = 0 = ε∇g|x0 · d+
1

2
ε2∇g|x0 · e+

1

2
ε2d ·G0 · d+O(ε3) (38)

where G = G(x) is the matrix with second derivative of g: Gij = ∂2g
∂xi∂xj

,

and G0 means G when evaluated on x = x0. The Taylor expansion of V
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to second order now writes:

V (x)− V (x0) = ε∇V |x0 · d +
1

2
ε2∇V |x0 · e +

1

2
ε2d ·H0 · d +O(ε3) (39)

Note that in the unconstrained case, the term involving e vanishes because
we had ∇V |x0

= 0, but this is no longer the case here. Using (36), (38),
and (39), the condition (33) writes:

V (x)−V (x0) =
1

2
ε2d · (H0−λG0) ·d ≥ 0 ∀d such that ∇g ·d = 0 (40)

We note Ĥ := H − λG the augmented Hessian matrix. As in the uncon-
strained case, a sufficient condition is obtained by requiring the matrix to
be positive definite in the tangent plane of the surface g = 0 at point x0

(that is the ≥ sign is replaced by a > sign in (40)).

Example: We study the potential energy V (x1, x2) = x21 + x22 under the

constraint g(x1, x2) = (x1 − 1)
2

+ (x2 − 2)
2 − 1 = 0. Equilibrium are point

A, such that xA1 = 1 − 1/
√

5, xA2 = 2 − 2/
√

5, λA = 1 −
√

5, and B, such
that xB1 = 1+1/

√
5, xB2 = 2+2/

√
5, λB = 1+

√
5. The augmented Hessian

matrix is

ĤA = HA − λAGA =

(
+2
√

5 0

0 +2
√

5

)
(41a)

ĤB = HB − λBGB =

(
−2
√

5 0

0 −2
√

5

)
(41b)

We first note that this matrix is positive definite for point A and nega-
tive definite for point B. We now study them in the tangent plane of
the surface g = 0 at points A and B. At point A, ∇V = −2/

√
5 (1, 2).

The perpendicular directions d write α (−2, 1) with α ∈ R. Consequently

d · ĤA · d = α2 10
√

5 > 0. Point A is a local minimum, a stable equilib-
rium. At point B, the perpendicular directions d also write α (−2, 1) and

d · ĤB ·d = −α2 10
√

5 > 0. Point B is not a local minimum, it corresponds
to an unstable equilibrium.

We note that the restriction ∇g · d = 0 did not change anything to the
result: in this example stability could have been correctly inferred from (41).

Example: We study the potential energy V (x1, x2) = x21 − x22 under the

constraint g(x1, x2) = x2 + 1 = 0. The equilibrium point is A with xA1 = 0,
xA2 = −1, λA = 2. The augmented hessian matrix is:

ĤA = HA − λAGA =

(
2 0
0 −2

)
(42)
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This matrix is not positive definite, as there is one negative eigenvalue.
Nevertheless positive definitiveness has to be tested under the restriction
∇g · d = 0. The perpendicular directions d write α (1, 0) with α ∈ R.

Consequently d · ĤA · d = 2α2 > 0. Point A is then a local minimum, a
stable equilibrium.

We note that the restriction ∇g · d = 0 was important to consider, as
without it we would have (incorrectly) concluded that A was an unstable
equilibrium.

7.3 The projected Hessian matrix

In the case there are m equality constraints gj(x) = 0, with j ∈ (1,m),

we show how to verify that the augmented Hessian matrix Ĥ = H −∑
j λjGj is positive definite in the tangent plane.
•We compute the gradients ∇gj and place them as the lines of a matrix

T :

T =


− ∇g1 −
− ∇g2 −

−
... −

− ∇gm −

 (43)

• We compute the kernel of T . Generically this yields a set of (n −m)
orthonormal vectors {k1, k2, . . . , kn−m} which span the tangent plane. We
place these vectors in the lines of the matrix K:

K =


− k1 −
− k2 −

−
... −

− kn−m −

 (44)

All possible vectors d such that ∇gj · d = 0 ∀j are generated with the help
of the basis {k1,k2, . . . ,kn−m}, that is we consider d = α1 k1+α2 k2+ . . .+
αn−m kn−m, ∀αj . Writing d? = (α1, α2, . . . , αn−m), vectors d are given by
d = KT · d?.
• Consequently we want

d? ·K ĤKT · d? > 0 ∀d? (45)

We introduce Ĥ? := K ĤKT , the projected augmented Hessian matrix.
This a square (n −m) × (n −m) symmetric matrix. Having only strictly
positive eigenvalues implies stability. One (or more) negative eigenvalue
yields instability. And in the case where all eigenvalues are positive but one
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(or more) is zero, stability is undecided (computations at higher orders are
needed).

Example: We study the potential energy V (x1, x2, x3) = x1+x22+x2x3+

2x23 under the constraint g(x1, x2, x3) = x21+x22+x23−1 = 0. One equilibrium
point is A with xA1 = 1, xA2 = 0, xA3 = 0, λA = 1/2. The augmented Hessian
matrix is

ĤA = HA − λAGA =

 −1 0 0
0 1 1
0 1 3

 (46)

Eigenvalues are −1, 2 −
√

2, and 2 +
√

2. The matrix TA = (1, 0, 0) and
finally

KA =

(
0 1 0
0 0 1

)
and Ĥ?

A =

(
1 1
1 3

)
(47)

The projected augmented Hessian matrix Ĥ?
A has eigenvalues 2 −

√
2 and

2 +
√

2, and consequently point A is a stable equilibrium.

Example: We minimize V (x1, x2, x3) = x21 − x2 + x23 under the two
constraints g1(x1, x2, x3) = x1 + 2x2 + x3 − 1 = 0 and g2(x1, x2, x3) =
2x1− x2− 3x3− 4 = 0. The equilibrium point is A with xA1 = 2/5, xA2 = 1,
xA3 = −7/5, λA1 = −16/25, and λA2 = 18/25. The Hessian matrix is:

ĤA = HA − λAGA =

 2 0 0
0 −2 0
0 0 2

 (48)

The matrix TA = (1, 0, 0) and finally

TA =

(
1 2 1
2 −1 −3

)
and KA =

(
1 −1 1

)
and Ĥ?

A = 2 (49)

Consequently point A is a local minimum.

7.4 Example: The aligned clamped beam

We here compute the buckling load of the two degrees of freedom system
of Figure 7-Right. The potential energy of the system is

V =
1

2
k (θ1 − θ0)

2
+

1

2
k (θ2 − θ1)

2
+

1

2
k (θ3 − θ2)

2

+ Ph (cos θ0 + cos θ1 + cos θ2 + cos θ3) (50)
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We introduce dimensionless variables v = V/k and p = 16Ph/k in order
to follow notations of Equation (7). A first boundary condition implies
that θ0 = 0 = θ3. The variables are then (θ1, θ2). The second boundary
condition implies a constraint g(θ1, θ2) = sin θ1 + sin θ2 = 0. Equilibrium
equations are

2θ1 − θ2 −
p

16
sin θ1 = λ cos θ1 (51a)

−θ1 + 2θ2 −
p

16
sin θ2 = λ cos θ2 (51b)

sin θ1 + sin θ2 = 0 (51c)

One trivial solution is θ1 = 0 = θ2 = λ. We study its stability. The
augmented Hessian matrix is

Ĥ0 =

(
2− p/16 −1
−1 2− p/16

)
(52)

The matrices T = (1, 1) and K = (−1, 1) yield the projected Hessian matrix

Ĥ?
0 = 6−p/8. The trivial solution is then stable for p < 48. This threshold

p = 48 has to be compared with the threshold p = 16 found in Section 6.5:
different boundary conditions yield different buckling loads.

8 Minimization with inequality constraints

Given a function V (x), where V ∈ R and x ∈ Rn, we look for the point(s)
for which V is locally minimum, but only for the point(s) that satisfy one
(or more) constraints f(x) ≥ 0, see two examples in Figure 9.

Example: Minimize V (x) = 1
4x

4 − 1
3x

3 − 2x2 + 4x in the subset where
f(x) = x ≥ 0.

8.1 First derivative

We are given a function V (x) that is to be minimized in the subset where
f(x) ≥ 0. We require the point x0 to be a local minimum by stating that
for small ε

V (x = x0 + εd) ≥ V (x0) ∀x such that f(x0 + εd) ≥ 0 (53)

This means that not all d directions will be tested. Only the directions d
fulfilling

f(x0 + εd) = f(x0) + ε∇f |x0 · d +O(ε2) ≥ 0 (54)

will be tested. There are two cases: (i) the point x0 is such that f(x0) > 0
(inactive constraint), or (ii) the point x0 is such that f(x0) = 0 (active
constraint).
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Figure 9. (Left) The function V (x) = x3 with the constraint x ≥ 0. (Right)
The function V (x) = 1

4x
4− 1

3x
3−2x2+4x with the constraint x ≥ 0. Points

B and D are local minima, point C is a local maximum, and point A is a
forbidden minimum.

Inactive constraint (f(x0) > 0): In this case (54) is fulfiled for every
direction d. Consequently the first order necessary condition is the same as
in the unconstrained case: ∇V |x0 = 0, this is the case for points C and D
in Figure 9-Right.

Active constraint (f(x0) = 0): Contrary to what was done in the case
with equality constraints, the sign of ε and therefore the direction of εd
cannot be arbitrary. Indeed, here (54) implies that ∇f |x0

· εd has to be
positive. The first order condition is then

∇V |x0
· εd ≥ 0 ∀d such that ∇f |x0

· εd ≥ 0 (55)

which implies that ∇V and ∇f are collinear and in the same direction,
that is there is a real number µ such that

∇V |x0 = µ∇f |x0 with µ ≥ 0 (56)

A way to write the first order condition in both the active and inactive
cases is through the so-called Kuhn-Tucker conditions

∇V |x0 = µ∇f |x0 (57a)

µ ≥ 0 (57b)

µ f(x0) = 0 (57c)

8.2 Second derivative

We consider the active and inactive constraint cases separately.
Inactive constraint (f(x0) > 0): as in the first order, every direction d

is to be considered and hence we obtain the same sufficient condition as in
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the unconstrained case: d ·H0 · d > 0 ∀d. This condition is fulfilled by
point D in Figure 9-Right.

For the active constraint case, we consider two sub-cases, (i) when the
Lagrange multiplier µ > 0 (strongly active constraint), and (ii) when the
Lagrange multiplier µ = 0 (weakly active constraint).

Strongly active constraint (f(x0) = 0 and µ > 0): in this case the per-
turbations along the gradient of f (i.e. such that ∇f ·d 6= 0) are such that,
to first order, V (x) − V (x0) = ∇V · εd > 0. Consequently we need only
worry about the perturbations that let x stay on the surface f = 0. As
in the case with equality constraints, we develop the perturbation x, f(x),
and V (x) to second order, see (37)-(39). We obtain the necessary condition

V (x)− V (x0) =
1

2
ε2d · (H0−µF0) ·d ≥ 0 ∀d such that ∇f ·d = 0 (58)

where F = F (x) is the matrix with second derivative of f : Fij = ∂2f
∂xi∂xj

,

and F0 means F when evaluated on x = x0. A sufficient condition is
obtained by requiring the matrix H0 − µF0 to be positive definite in the
tangent plane of the surface f = 0 at point x0 (that is the ≥ sign is replaced
by a > sign in (58)).

Weakly active constraint (f(x0) = 0 and µ = 0): in this case the first
order of V (x)− V (x0) vanishes. As a sufficient condition we then ask that
the second order d ·H0 · d > 0 for all directions d, including the direction
along ∇f . This sufficient condition is not at all optimal, as can be seen
in the example V (x) = x3 with constraint x ≥ 0 where the point x = 0 is
clearly a local minimum even if the above sufficient condition is not fulfilled,
see Figure 9-Left.

8.3 Summary

When studying the potential energy V (x) subject to m inequality con-
straints fj(x) ≥ 0 with j ∈ (1,m), we first solve the set of nonlinear equa-
tions:

µ1 f1(x) = 0 (59a)

µ2 f2(x) = 0 (59b)

... = 0

µm fm(x) = 0 (59c)

∇V (x)−
∑
j

µj∇fj(x) = 0 (59d)
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Figure 10. (Left) Two rigid bars linked by a spiral spring, with a punctual
mass M at the extremity of the second bar. The system lies on a rigid
support and is subject to an external compressive load P . (Right) Solution
curves θ = θ(p) of equation (62).

This yields a set of candidate local minima x0 = xA, xB , . . . We review
each candidate and eliminate those for which there is one (or more) j such
that fj(x0) < 0. Among the remaining candidates we eliminate those for
which there is one (or more) j such that µj(x0) < 0. For each remaining

candidate, we build the projected Hessian matrix Ĥ? := K ĤKT with
Ĥ = H−

∑
j µjFj . The matrix K is computed, as in Section 7.3, from the

kernel of the matrix T whose lines are the gradients ∇fj for all j such that

µj > 0. We then compute the eigenvalues of Ĥ?. If there is only strictly
positive eigenvalues, the point x0 is a local minimum. But in the case where
there is one (or more) zero or strictly negative eigenvalue, we cannot decide
whether x0 is a local minimum or not. This shortcoming is due to the fact
that when weakly active constraints are present, our sufficient condition
is too demanding. As a matter of fact, if no weakly active constraint is
present (that is µj > 0 for all j such that fj(x0) = 0) then stability is only
undecided when zero eigenvalues are encountered, that is strictly negative
eigenvalues yield instability.

8.4 Example: Buckling of heavy beam on rigid support

We study the equilibrium and stability of the system of Figure 10-Left,
comprising two rigid bars of length h, linked by a spiral spring of stiffness
k. The first bar is strongly anchored at the origin. At the extremity of the
second bar lies a punctual mass M , and all the other components of the
system are considered massless. An external horizontal force P is applied
on the mass. The system is resting on a rigid, impenetrable support. To
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the internal strain energy 1
2kθ

2 of the spiral spring we add the gravitational
energy of the massM g h sin θ and the work of the external load Ph(1+cos θ)
to obtain the total potential energy V of the system. After division by k
and subtraction of the constant 2Ph/k, we obtain

v(θ) =
1

2
θ2 + p (cos θ − 1) +m sin θ (60)

where v = V/k − 2Ph/k, p = Ph/k, and m = M g h/k. We study v(θ)
under the constraint y(M) ≥ 0, that is f(θ) = sin θ ≥ 0. We fix m = 1/4
and look for stable and unstable equilibrium solutions and their evolution
as p is varied. We restrict to p ∈ (0, 4) and θ ∈ (−π, π).

First order (equilibrium) equations are

v′(θ)− µ f ′(θ) = 0 (61a)

µ f(θ) = 0 (61b)

In the case where µ = 0, (61a) is solved as

p =
θ +m cos θ

sin θ
(62)

and yields two distinct curves, see Figure 10-Right. The lower curve entirely
lies in the region f(θ) < 0 and is therefore discarded.

In the case where f(θ) = sin θ = 0, we find that either (i) θ = 0 with
m = µ, or (ii) θ = π with µ = m− π = 1/4− π < 0. This second solution
with µ < 0 is discarded.

We now turn to the stability test for the equilibrium we have just found.
In the case where µ = 0, the constraint is passive (f(θ) > 0) and conse-

quently we need only test the second derivative v′′(θ) = 1−p cos θ−m sin θ
for each point on the upper curve of Figure 10-Right. We find that sta-
bility changes at the fold point, see Section 9, and that the upper part
(respectively the lower part) of the curve is stable (resp. unstable).

In the case where f(θ) = 0, the equilibrium solution θ = 0 has a strictly
positive Lagrange multiplier µ = m > 0 which is enough for stability in this
one degree-of-freedom system.

The complete bifurcation curve, with stability information, is draw in
Figure 11-Left. We remark that the trivial path θ = 0 is stable for any load
p and that it is not connected to the path of buckled states. We also remark
that if the mass m is increased to m > π a stable path θ = π appears for
all p. Finally we see in Figure 11-Right that in this one degree-of-freedom
problem equilibrium and their stability can readily be assessed by looking
at the graph of v(θ) for different values of p.

22



1 2 3 4
p

0

Π

- Π
2

Π
2

Θ

-1 0 ΠΠ
4

Π
2

3 Π
4

Θ
0

2

4

6

v

-1 0 ΠΠ
4

Π
2

3 Π
4

Θ

0

1

2

3
v
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(Right) Same graph, yet for p = 2 where one additional unstable and one
additional stable equilibria are present.

P

θ

A

V
θ 
= 0

θ
0

P
0

P'(0)

θ'(0)

t

1

θ

Ph / k

θ

P

k

h

0 1

π

- π

Figure 12. (Left) At point A = (P0, θ0), we look for the tangent approxi-
mation to the bifurcation curve Vθ(θ, P ) = 0. (Right) One degree of freedom
system and its bifurcation diagram.

9 Bifurcation diagrams

For simplicity reasons, in this section we treat the case of a one degree of
freedom system, V = V (θ, P ) where θ is the variable and P the applied
load. Equilibrium are given by Vθ := ∂V/∂θ = 0, and we want to plot
the set of curve(s) implicitly defined by Vθ(θ, P ) = 0 in the plane (P, θ), see
Figure 12. This set of curves is called the bifurcation diagram of the system.
Treatments of the case with multiple degrees of freedom can be found for
example in Iooss and Joseph (1989) or Nguyen (2000).
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Example: The system of Figure 12-Right has energy V (θ, P ) = 1
2kθ

2 +
Ph cos θ, its bifurcation diagram exhibits a pitchfork bifurcation point at
(Ph/k, θ) = (1, 0).

We start at a known point on the bifurcation curve, A = (P0, θ0), and
we use a parameter t to move about A. We approximate the parametric
curve (P (t), θ(t)) locally with the Taylor expansion

P (t) = P0 + t P ′(0) +O(t2) (63a)

θ(t) = θ0 + t θ′(0) +O(t2) (63b)

The goal is to find P ′(0) and θ′(0) in order to construct a tangent approxima-
tion to the curve at point A. By definition, point A satisfies Vθ(θ0, P0) = 0.
The points in its neighborhood (63) along the bifurcation curve are also
equilibrium points, hence they satisfy Vθ(θ(t), P (t)) = 0. We then have

Vθ(θ(t), P (t)) = 0 = Vθ(θ0, P0) + t P ′(0)
∂Vθ
∂P

∣∣∣∣
t=0

+ t θ′(0)
∂Vθ
∂θ

∣∣∣∣
t=0

+O(t2)

(64)

We simply write VθP := ∂Vθ
∂P

∣∣
t=0

and Vθθ := ∂Vθ
∂θ

∣∣
t=0

and we note that the
later is the Hessian at point A. At first order we have

P ′(0)VθP + θ′(0)Vθθ = 0 (65)

As we are given both the potential energy V and point A, we know the
second derivatives VθP and Vθθ. Relation (65) is therefore an equation for
the two unknowns P ′(0) and θ′(0). There are four cases, as illustrated in
Figure 13:
• if VθP 6= 0 and Vθθ 6= 0 point A is a regular point of the bifurcation

curve, which has local slope dθ
dP = −VθP /Vθθ.

• if VθP = 0 and Vθθ 6= 0 point A is also a regular point. The bifurcation
curve has an horizontal tangent at point A: dθ

dP = 0.
• if VθP 6= 0 and Vθθ = 0 point A is a singular point. From (65), we

see that P ′(0) = 0 which mean that the curve θ = θ(P ) has a vertical
tangent at point A. Such a point is called a limit point. Considering
the bifurcation curve in the neighborhood of A, we see that the Hessian
Vθθ generically changes sign at a limit point: instabilities arise at limit
points.

• if VθP = 0 and Vθθ = 0 point A is a singular point. The first order
expansion (64) entirely vanishes at such a point. Consequently we
push (63) and (64) to second order and find

Vθθθ θ
′(0)

2
+ 2VθθP P

′(0) θ′(0) + VθPP P
′(0)

2
= 0 (66)
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Figure 13. The four possible types of point along a bifurcation curve.

Generically this leads to two solutions for the tangent to the bifur-
cation curve, meaning that point A is a bifurcation point where two
curves cross. From here there are two sub-cases:

+ if Vθθθ = 0, then a first tangent is P ′(0) = 0 (vertical tan-
gent), and the second one is given by, provided VθθP 6= 0, dθ

dP =
−(1/2)VθPP /VθθP .

+ if Vθθθ 6= 0 then P ′(0) 6= 0 and we can set µ := θ′(0) = 0/P ′(0) =
0 and solve Vθθθ µ

2 + 2VθθP µ+ VθPP = 0. The two roots µ1 and
µ2 have to be real, and provided they are distinct, we have the
two tangents.

Here also the Hessian is going to change sign at the bifurcation point,
instabilities arise at bifurcation points as well.

In conclusion we see that instabilities generically arise at singular points,
limit or bifurcation points.
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10 Buckling and post-bucking of a discrete beam on
an elastic foundation

To illustrate the content of the previous sections, we treat the following
example of a system of three rigid bars, see Figure 14. The bars have length
h and therefore the system has a total contour length L = 3h. The three
bars are linked together with two spiral springs of stiffness k, the first bar
is held by a pivot fixed at the origin, and the third bar is held by a pivot
that can slide along the horizontal axis. Moreover the second bar is tied
to the ground with three linear springs of stiffness k′, ν k′, and k′. These
linear springs have zero rest length, and their foot are freely sliding along
the horizontal axis. This model has been used by Stein (1959) to illustrate
the rich behavior of stiffened elastic plates. Such a system has

Vint =
1

2
k(θ2 − θ1)2 +

1

2
k(θ3 − θ2)2 +

1

2
k′h2 sin2 θ1

+
1

2
νk′h2(sin θ1 +

1

2
sin θ2)2 +

1

2
k′h2 sin2 θ3 (67)

as internal energy. We choose ν = 2. The work of the external load P is

Vext = Ph (cos θ1 + cos θ2 + cos θ3) (68)

Boundary conditions impose a first constraint

g1(θ1, θ2, θ3) = sin θ1 + sin θ2 + sin θ3 = 0 (69)

In the case of force-controlled loading the total potential energy is V =
Vint + Vext, while in the case of displacement-controlled loading it is simply
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V = Vint. In the latter though, a second constraint is present

g2(θ1, θ2, θ3) = h [cos θ1 + cos θ2 + cos θ3]− (L−∆) = 0 (70)

where ∆ is the end-shortening, see Figure 14. We introduce dimension-
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Figure 15. Bifurcation diagram for the system of Figure 14 in the force-
controlled case. For both columns, we show two projections of the parameter
space, namely (δ, p) for the upper diagram and (δ, y(L/2)) for the lower
diagram. Left column: without foundation, κ = 0. Right column: with
foundation, κ = 3/2. Points A, B, C are pitchfork bifurcation points, and
D is a fold point.

less quantities v = V/k, κ = k′ h2/k, δ = ∆/(3h), and p = Ph/k. The
augmented energy is then

v =
1

2
(θ2 − θ1)2 +

1

2
(θ3 − θ2)2 +

1

2
κ sin2 θ1 +

1

2
κ(sin θ1 +

1

2
sin θ2)2

+
1

2
κ(sin θ3 +

1

2
sin θ2)2 +

1

2
κ sin2 θ3

+ p [cos θ1 + cos θ2 + cos θ3 − 3(1− δ)]− λ(sin θ1 + sin θ2 + sin θ3)
(71)
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where, using (69), we have split the term corresponding to the extension of
the center linear spring in two terms, rendering the energy symmetric with
regards to the change θ1 ↔ θ3. We note λ the Lagrange multiplier associ-
ated to the constraint g1. In the case of force-controlled loading, p is the
external force, while in the case of displacement-controlled loading it is the
Lagrange multiplier associated to the constraint g2. We then see that the
equilibrium equations ∂v/∂θi = 0, and consequently the equilibrium solu-
tions, are the same for the two types of loading. Yet, computing the Hessian
matrix, we see that stability depends on the loading type as the projected
Hessian matrix is smaller in the case of the displacement-controlled loading:
there are 3 variables (θ1, θ2, θ3) and 1 constraint in the force-controlled case,
generating a 2 × 2 projected Hessian matrix, while there are 2 constraints
in the displacement-controlled case, generating a 1 × 1 projected Hessian
matrix.

Writing the equilibrium equations ∂v/∂θi = 0, one sees that the straight
configuration (θ1, θ2, θ3) = (0, 0, 0) is solution ∀p. To test the stability of
this trivial solution, we compute the Hessian matrix

Ĥ0 =

 1 + 2κ− p −1 + κ/2 0
−1 + κ/2 2− p+ κ/2 −1 + κ/2

0 −1 + κ/2 1 + 2κ− p

 (72)

We now restrict to the force-controlled case, and first focus on the case
with no foundation, κ = 0. The augmented Hessian matrix has the three
eigenvalues λ1 = −p, λ2 = 1 − p, and λ3 = 3 − p, but to conclude on the
stability the projected Hessian matrix has to be computed. The gradient
of the constraint g1 is evaluated at (θ1, θ2, θ3) = (0, 0, 0) and written in the
matrix T = (1, 1, 1). The null-space of T is spanned by k1 = (−1, 0, 1)/

√
2

and k2 = (−1, 2,−1)/
√

6, leading to the matrix

K =

(
−1/
√

2 0 1/
√

2

−1/
√

6 2/
√

6 −1/
√

6

)
and Ĥ?

0 (κ = 0) =

(
1− p 0

0 3− p

)
(73)

with Ĥ? := K Ĥ KT . The straight solution becomes unstable as p reaches
p = 1 where the system buckles into a symmetrical θ1 = θ3 shape, while at
p = 3 a second (anti-symmetrical, θ1 = −θ3) buckling mode appears.

In the case κ > 0, the matrices T and K are the same, and the projected
Hessian matrix is

Ĥ?
0 (κ) =

(
1− p+ 2κ 0

0 3− p+ κ/3

)
(74)

We have here also two buckling modes p1 = 1 + 2κ and p2 = 3 + κ/3,
one symmetrical and the other anti-symmetrical. Depending on the κ value
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(that is on the strength of the foundation) either the symmetrical or the
anti-symmetrical one buckles first. Full bifurcation diagrams are shown in
Figure 15 where we see that a non-symmetrical solution also exists. The
branch containing these non-symmetrical solutions emanates from the sec-
ondary bifurcation point, labelled C. In the present force-controlled load-
ing type, the branch comprises only unstable solutions, but in the case of
displacement-controlled loading, the branch is stable after the fold point D.

11 Dynamical stability

Here, we generalize the previous concepts to discretized nonlinear elastic
systems where dynamical effects are taken into account, that is we deal
with dynamical systems, see for example Guckenheimer and Holmes (1983)
or Strogatz (1994). We broaden our numerical tools and address not only
equilibrium states, that are fixed in time, but periodic states, that repeat
in equal interval of time. Due to the complexity added by the presence
of inertial terms, we will limit ourselves to mechanical systems without
constraints.

We consider a one-degree-of-freedom system comprising two rigid bars
of length L, as illustrated in Figure 16. The first bar is fixed on an infinitely
rigid and massive base that eventually moves in a harmonic fashion following

ya(t) = A cos(Ωt) (75)

where A is the amplitude of the vertical oscillation and Ω is the frequency
of the harmonic motion. The second bar is allowed to rotate at point B
thanks to a viscoelastic hinge characterized by a rotating stiffness k and a
viscous rotational damping c. The bars themselves are considered massless,
and a concentrated mass M lies at the end of the second bar. The motion
of the structure is parameterized by the angle θ (t) between the two bars.
Such a system is a very simplified model for a heavy post fixed on an os-
cillating ground. The presence of harmonic excitations forces us to analyze
the dynamics of the system.

11.1 Nonlinear equations of motion

We establish the equations of motion of the system of Figure 16. We first
write down the kinetic energy of the system. The position of the material
point M on the bar is expressed as a function of θ (t) at every time t in the
Cartesian frame (O, x, y):

OM (t) =

{
xa − L sin θ(t)
ya(t) + L+ L cos θ(t)

}
(76)
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A

B

Figure 16. An initially vertical articulated system of two rigid bars, each
of length L, supporting a concentrated mass M . The articulation is char-
acterized by a rotational stiffness, k, and a viscous rotational damping, c.
The structure is fixed at its base. The base vibrates in a harmonic fashion
with an amplitude A and a frequency Ω. At each time t, the position of
the moving bar in the 2D plane is parameterized by the angle θ(t) of the
second bar with the vertical y-axis.

where xa is fixed and ya(t) is given by (75). The velocity of the material
point of mass M is therefore

v (t) = ˙OM(t) =

{
−L θ̇ cos θ

−AΩ sin(Ωt)− L θ̇ sin θ

}
(77)

The kinetic energy then reads

T =
1

2
Mv2(t) =

1

2
M
[
L2θ̇2 +A2Ω2 sin2(Ωt) + 2ALΩθ̇ sin(Ωt) sin θ

]
(78)

Virtual power of the external torques The virtual power of the re-
action torque due to the stiffness of the circular spring simply writes

Pek = −kθ δθ̇ (79)

where δθ̇ is the virtual angular velocity carrying the velocity θ̇. The virtual
power of the reaction torque due to the viscous damper reads

Pec = −cθ̇ δθ̇ (80)

The virtual power of the external torque due to the weight of the concen-
trated mass, P = −Mgey, is calculated considering the power moment of

P at point B in the virtual angular velocity δθ̇

PeM = (BM × P ) · δθ̇ ez = MgLδθ̇ sin θ (81)
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Note that the spring reaction torque and the torque of external force are
conservative torques that derive from the potential energy

V =
1

2
kθ2 +MgL cos θ. (82)

Lagrange formalism From the kinetic energy of the system, Eq. (78), we
calculate the virtual power of the quantity of acceleration through Lagrange
formula:

Aq =

[
d

dt

(
∂T
∂q̇i

)
− ∂T
∂qi

]
δq̇i (83)

where the qi are the generalized coordinates. The principle of virtual power,
Aq = Pek +Pec +PeM , yields the equation of motion of our discrete system

∂

∂t

(
∂T

∂q̇i

)
− ∂T

∂qi
+
∂V

∂qi
= Qi (84)

where Qi is obtained from the virtual power of the non conservative external
forces such that Pec = Qiδq̇i. We apply Eq. (84) to our system and obtain
the nonlinear equation of motion for q1(t) = θ(t)

θ̈ +
c

ML2
θ̇ +

k

ML2
θ +

(
AΩ2

L
cos(Ωt)− g

L

)
sin θ = 0 (85)

We introduce the dimensionless variables τ = (Ω/2)t and multiply (85) by
4/Ω2 to rewrite it in dimensionless form

θ̈ +
2

βQ
θ̇ +

4

β2
θ +

(
2ε cos(2τ)− 4

β2
p

)
sin θ = 0 (86)

where ˙( ) denotes differentiation with respect to τ , Q =
√
kML2

c is the quality
factor, β = Ω/Ω0 is the ratio between the excitation and a pseudo natural
frequency Ω0 =

√
k/(ML2), ε = 2A/L is the dimensionless amplitude of

the harmonic motion of the base, and p = MgL/k is a crucial dimensionless
loading parameter for the static problem modeling the ratio between weight
and stiffness of the system.

For convenience, we write this second order nonlinear ordinary differen-
tial equation as a two dimensional dynamical system ẋ = f(x, τ):{

θ̇ = φ

φ̇ = − 2
βQφ−

4
β2 θ −

(
2ε cos(2τ)− 4

β2 p
)

sin θ
(87)

where x(τ) = {θ(τ), φ(τ)}T is the 2-dimensional state vector and f(x, τ) is
a nonlinear 2-dimensional vector field.
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11.2 Particular case of a standstill base (ε = 0)

In this section we consider the case where the base in not in motion,
that is we set ε = 0. We further fix β = 1 with no loss of generality. The
equations of motion take the form ẋ = f1(x, τ), that is{

θ̇ = φ

φ̇ = − 2
Qφ− 4θ + 4p sin θ

(88)
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Figure 17. Branches of equilibrium solutions and linear stability analysis.
(Left) Bifurcation diagram from the equilibria of system (88): equilibrium
angle θ0 as function of the dimensionless loading parameter p. Inset: Evo-
lution in the Argand plane of the eigenvalues of the associated linearized
dynamical equations around the trivial equilibrium point. (Right) Evolu-
tion of growth rate σ and frequency ω of the fundamental solutions y(τ) of
Eq. (90) as a function of p.

Bifurcation diagram and stability of equilibrium Equilibrium solu-
tions are defined as solutions to Eq. (88) with φ̇ = 0 = θ̇. We therefore have
x(τ) = x0 = {θ0, 0}T and the equilibrium angle θ0 solution of

θ0 − p sin θ0 = 0. (89)

For p ∈ (0, 2), the nonlinear solution to (89) comprises two branches, see
Figure 17-Left. The trivial branch is simply θ0 = 0, i.e. x0 = {0, 0}T = 0.
To assess the stability of this trivial equilibrium, we study the behavior
of Eq. (88) for small θ(τ) and φ(τ), that is we set θ(τ) = θ0 + θ∗(τ) and
φ(τ) = φ∗(τ) where θ∗(τ) and φ∗(τ) are small, and θ0 = 0. Injecting this
in Eq. (88) and linearizing to first order, we obtain the so-called linearized
equations of motion in the state space

ẏ(τ) = J1 y(τ) (90)
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with y(τ) =

{
θ∗(τ)
φ∗(τ)

}
and J1 =

∂f1

∂x

∣∣∣∣
0

=

[
0 1

(4λ− 4) − 2
Q

]
where J1(x0, λ) is the Jacobi matrix of the nonlinear vector field f1(x, τ),
given in Eq. (88), evaluated at the trivial equilibrium point x0 = 0. The
linear stability of this point is assessed by analyzing the perturbation vector
y(τ) when assuming a perturbation of the form

y(τ) = r esτ with r = r

{
1
s

}
(91)

where the exponents s = σ + iω can be complex numbers with σ, the
growth rate or Lyapunov exponent and ω, the dimensionless frequency of
the pseudo-harmonic eigenmode r. Injecting y (τ) in Eq. (90), we obtain
the eigenvalue problem

[J1 − s1] r = 0 (92)

where 1 is the 2× 2 identity matrix. Since the dimension of this eigenvalue
problem in the state space is N = 2, i.e. twice the number of degree of
freedom, Eq.(92) yields 2 eigenmodes rn and 2 eigenvalues sn. The evolu-
tion of the real, <(s), and imaginary, =(s), parts of the eigenvalues sn of
the linearized problem Eq. (90) as function of the loading parameter p is
drawn in Figure 17-Right. The linear stability of the considered equilibrium

Figure 18. Stability of an equilibrium in the Argand plane. (Left) Static
instability or instability by divergence can happen by simple crossing or
locking of eigenvalues on the real axis. (Right) Dynamic instability or flutter
instability can happen by crossing or locking of eigenvalues away from the
real axis.

θ0 is assessed by analyzing the eigenvalues sn, i.e. the spectrum of the har-
monic eigenmodes yn (τ) given by Eq. (91). According to Lyapunov theory,
here are the following fundamental results when dealing with autonomous
dynamical systems such as the one described in Eq. (88):

• If <(sn) < 0 for all n, the equilibrium is asymptotically stable.
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• If <(sn) ≤ 0 for all n and there is at least one index k such that
<(sk) = 0, one cannot conclude with a linearized stability analysis.
Higher order considerations are needed.

• If amongst all the eigenvalues there exists one index k such that
<(sk) > 0, the equilibrium is unstable but two different scenarios
have to be considered:

– If =(sk) = 0, the perturbed motion dramatically grows along
the direction of the kth mode rk in an exponential way. This
loss of stability is called an instability by divergence or a static
instability (buckling presented in the previous sections is such
an instability). In the Argand plane, there are two scenarios
for such an instability (see Figure 18-Left): i) one purely real
eigenvalue crosses the imaginary axis, or ii) the imaginary parts
of two conjugate eigenvalues annihilate to form one purely real
eigenvalue crossing the imaginary axis.

– If =(sk) 6= 0, the perturbed motion is an harmonic oscillation
that exponentially grows in the direction of the kth mode rk.
This loss of stability is refereed to as a flutter instability or more
generally as a dynamic instability. The representation in the
Argand plane of such instabilities is illustrated in Figure 18-Right
where two scenarios have to be considered: i) the crossing of the
imaginary axis by two conjugate eigenvalues, or ii) the locking
of two physical eigenvalues that causes the real part of one of
them to cross the imaginary axis. The dynamic instability is an
indicator of a Hopf bifurcation. In this kind of bifurcation, not
only the dynamical system qualitatively bifurcates in the state
space but also in the time domain, i.e. the equilibrium bifurcates
to a periodic state (limit cycle).

In Figure 17-Right, we represent the evolution of the real and imaginary part
of the two eigenvalues s1 and s2 of the eigenvalue problem Eq. (92) as func-
tion of the loading parameter p when Q = 20 (subcritical damping). These
curves inform us about the linear stability of the trivial equilibrium branch
θ0 = 0. As expected, above the critical load, p > 1, the thermodynamic
branch becomes statically unstable and the straight equilibrium configura-
tion θ0 = 0 is no longer a physical configuration for our articulated system.
The inset of Figure 17-Left is the representation of the evolution of eigen-
values si in the Argand plane. As illustrated in Figure 18-Left, the system
looses stability by the meeting of two purely imaginary and conjugate eigen-
values, which is a particular case of instability by divergence. Above the
critical load, p > 1, the articulated bar buckles and possible equilibrium so-
lutions with θ0 6= 0 exist. To compute those stable bifurcated branches, one
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Figure 19. Temporal evolutions θ(τ) as a function of dimensionless time
τ/T0 for initial conditions x(0) = {5◦, 0}T and Q = 20. (Left) For p = 0.75.
(Right) For p = 1.025.

needs to solve the nonlinear algebraic equation given in Eq. (89). Here, we
simply perform a Taylor expansion of the sine function and Eq.(89) becomes

θ0 − p
(
θ0 −

θ30
6

+
θ50
120
− ...

)
= 0. (93)

Truncating the series (93) up to the fifth order, we obtain a fourth order
polynomial equation with analytical solutions depending on the loading pa-
rameter p:

θ± =

√√√√10±

√
20(6− p)

p
(94)

The solution θ− is a local minimum of the potential energy and is repre-
sented in the bifurcation diagram of Figure 17-Left (we represent also the
solution −θ−, the bifurcation being symmetric). We also compare the ap-
proximated solution θ− with the one obtained by solving Eq. (89) with a
classic Newton-Raphson algorithm. As the curves are barely distinguish-
able, we conclude that a fifth order approximation on the sine function
is sufficient to correctly capture the mechanical behavior, up to a loading
parameter p = 2. Note that the solution θ+ is associated with a higher
potential energy and corresponds to an unstable equilibrium configuration
where the articulated rigid bar is rotated by more than a turn. As this
solution disappears when the order of the series (93) is changed, we do not
consider this ‘spurious’ solution here, see Domokos and Holmes (1993).

Direct dynamic analysis We recover the qualitative static behavior pre-
viously discussed by directly solving the nonlinear system of ordinary dif-
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ferential equations given in Eq. (88) for various initial conditions x(0) =
{θ(0), φ(0)}T . In Figure 19, we represent the evolution of θ(τ) as a function
of dimensionless time τ/T0, with T0 = 2π/

√
4(1− p cos θ0) the period of

the small amplitude oscillations around the stable equilibrium θ0(p). We
set the quality factor to Q = 20, use the initial condition x(0) = {5◦, 0}T ,
and plot the evolution of θ(τ) for p = 0.75 in Figure 19-Left and p = 1.025
in Figure 19-Right. For p = 0.75, a loading parameter below the critical
value p = 1, the initially perturbed articulated rigid bar undergoes damped
oscillations until it eventually converges to the stable equilibrium position
θ0 = 0. When choosing p = 1.025 > 1, the motion diverges from its initial
position before performing exponentially decreasing oscillations around the
equilibrium θ ' θ−, see Eq. (94). Another representation of the dynam-
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Figure 20. Dynamical response of Figure 19 in the phase plane (θ(τ), φ(τ)).
(Left) Trajectory for p = 0.75 and x(0) = {5◦, 0}T . (Right) Trajectories for
p = 1.025 and x(0) = {5◦, 0}T or x(0) = {−5◦, 0}T .

ical behavior of our articulated system is to draw the phase portrait. In
Figure 20-Left and 20-Right, we represent respectively the dynamical re-
sponse of Figure 19-Left and 19-Right in the phase plane (θ(τ), φ(τ)). We
see that the trajectory spirals down to x(τ) = {0, 0}T when p < 1, and to
{θ ' θ−, 0}T or {θ ' −θ−, 0}T for p > 1 (whether the trajectory converges
to the left or right side of the θ-axis is determined by the initial conditions).

In the absence of dissipation, Q→ +∞ in Eq. (88), the system becomes
conservative. The total mechanical E energy is the sum of kinetic, T , and
potential energy, V , reads

E(θ, φ) = T (φ) + V (θ) =
1

2
φ2 +

1

2
4θ2 + 4p cos θ (95)

As Ė = 0, the trajectory of a solution in the phase plane of this conservative
system is the level curve E(θ, φ) = E0 with E0 determined by the initial
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condition {θ(0), φ(0)}T . From Eq. (95), we write

φ = ±
√

2 (E0 − V (θ)) (96)

and we plot in Figure 20, in green, the trajectories given by (96) for x(0) =
{5◦, 0}T . These trajectories correspond to the motion the articulated bar
would have if it was undamped.

11.3 General case of a moving base (ε > 0)

In the general case of a base moving with a harmonic motion ya (t) =
A cos(Ωt), the dynamic response of the articulated rigid bar, θ(τ), is deter-
mined by Eq. (87). This equation of motion is more complicated than in
the previous section since Eq. (87) is a nonlinear ordinary differential equa-
tion with a periodic coefficient: the term 2ε cos(2τ) with a period T = π.
This type of equation often arises in structural dynamics, notably every
time we are interested in characterizing the small oscillations of a structure
which is itself in a periodic state, see Bolotin (1964). Here, we are looking
for the transverse oscillations of an articulated system resting on a moving
foundation. This type of system is called a parametric oscillator, i.e. an
oscillator (case of the previous subsection) whose geometrical or mechanical
parameters periodically oscillate in time. In our case, it is the quantity of
acceleration, Aq, given in Eq. (83), that is changing with time.
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Figure 21. Temporal evolutions for θ(τ), solution of Eq. (87), for initial
conditions x(0) = {5◦, 0}T , Q = 20 and β = 1. (Left) Dynamical response
for p = 1.025 (that is δ = −0.1) and various ε = [0.1, 0.4, 0.5]. (Center)
Dynamical response for p = 0.5 (that is δ = 2) and ε = 0.1. (Right)
Dynamical response for p = 0.75 (that is δ = 1) and ε = 0.1.

Direct dynamic analysis To emphasize the complexity of this paramet-
ric oscillator, we perform direct computations of Eq. (87) with the operator
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ode45 of the Matlab software for initial conditions, x(0) = {5◦, 0}T , a qual-
ity factor Q = 20, and a frequency ratio fixed to β = Ω/Ω0 = 1. The
temporal evolution θ(τ) as a function of dimensionless time τ/π, with π
the dimensionless period of the moving foundation, is given in Figure 21 for
different values of the loading parameter p and amplitude of the forcing ε.

In Figure 21-Left, we show results for p = 1.025, just above the critical
buckling threshold p = 1. We have seen in the previous section, Figure 19-
Right and Figure 20-Right, that for ε = 0 the dynamical response θ(τ)
diverges from the unstable trivial equilibrium θ0 = 0 and settle on the bi-
furcated equilibrium θ0 ' θ− = 22◦ in an exponentially damped oscillatory
fashion. For small ε = 0.1, we see on Figure 21-Left that the dynamical
response of our parametric oscillator also diverges from the unstable config-
uration θ0 = 0, but now the solution θ(τ) settle to stationary oscillations of
period π near the value θ0 ' θ− = 22◦. This stable limit cycle appears be-
cause the moving base is acting as an external harmonic excitation of period
π. When increasing ε, the dynamical response still diverges from θ0 = 0
to converge to a π-periodic limit cycle with larger amplitude, but the mean
value of the oscillations becomes closer to θ = 0 as ε increases. Surprisingly,
above ε ' 0.5, i.e. an amplitude of forcing of the base A = L/4, the dy-
namic response is qualitatively different. The motion of the base stabilizes
the equilibrium point θ0 = 0 and the parametric oscillations asymptotically
converge to the straight vertical position.

In Figure 21-Center and 21-Right, we show results for p values below the
critical buckling threshold. The amplitude of the forcing is set to ε = 0.1.
For p = 0.5 the dynamic response, shown in Figure 21-Center, is qualita-
tively similar to the case with no forcing (see Figure 19-Left): The initially
perturbed system undergoes damped oscillations until it eventually expo-
nentially converges to the stable equilibrium position θ0 = 0. For p = 0.75,
Figure 21-Right, the temporal evolution θ(τ) is qualitatively different from
Figure 19-Left and Figure 20-Left: The initially perturbed solution rapidly
converges to a limit cycle with oscillations centered around the equilibrium
configuration θ0 = 0, even if we are below the critical buckling threshold.
Note that the dynamical response has a period 2π which is twice slower
than the motion of the base (we have almost exactly 30 oscillations in 60
periods of the moving base). This phenomenon of self-sustaining oscilla-
tions is the well-known parametric instability. For example, a well known
parametric instability is a child pumping a swing by periodically standing
and squatting to increase the amplitude of the swing’s oscillations.

Linear stability analysis In the case of periodic forcing when the base
oscillates up and down, the equilibrium solution x0 = 0 nevertheless exists
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and corresponds to the system being straight and oscillating vertically with
the base. We now perform a linear stability analysis of this vertical equilib-
rium solution to get a better understanding of the physics of the periodic
trivial state. We consider the non-autonomous 2-dimensional dynamical sys-
tems, Eq. (87), ẋ(τ) = f

(
x (τ) , τ, p

)
where f is a nonlinear 2-dimensional

vector field that intrinsically depends on the time τ . The stability of the
oscillating vertical equilibrium configuration is studied by considering the
dynamics of x(τ) = x0 + y(τ) where y(τ) is a small disturbance to the
equilibrium x0. Injecting x(τ) into (87), assuming that f is at least twice
continuously differentiable, expanding the result in a Taylor series about
x0, and retaining only linear terms in the disturbance, we obtain

ẏ(τ) = J(τ)y(τ) (97)

with J(τ) =
∂f

∂x

∣∣∣∣
0

=

[
0 1

− (δ + 2ε cos 2τ) − 2
βQ

]
and where δ = 4(1− p)/β2 is the ratio between the natural frequency ω0 of
the articulated bar with the concentrated mass M and the frequency of the
moving base, Ω. We have ω0 =

√
k/(ML2)− g/L and hence δ = 4ω2

0/Ω
2.

As in the previous section J (τ) is the 2× 2 Jacobi matrix of f , evaluated
at x(τ) = x0 = 0. The linear system Eq.(97) is a generalization of the
autonomous system Eq.(90) with ε 6= 0. The particular form Eq. (97) is
called the Mathieu equation. It is more common to express it in the physical
space, as a linearization of Eq. (86) about the solution θ(τ) = 0. It then
reads

θ̈(τ) +
2

βQ
θ̇(τ) + [δ + 2ε cos 2τ ] θ(τ) = 0 (98)

Here the two parameters of interest are on one hand δ, the ratio between
the natural frequency of the system and the frequency of the moving base,
and on the other hand ε, the dimensionless amplitude of the forcing from
the base. Note that for practical purposes δ is tuned either through the
compressive loading parameter p, or through the frequency of the moving
base Ω.

The linear stability study of the vertical configuration in periodic state
consists in computing the solutions of Eq. (97) and determining whether
the disturbance y(τ) fades away or is amplified with time τ . The difficulty
though, as compared to the previous section, is that the system Eq. (97)
is a linear system with periodic coefficients since J(τ) is π-periodic in time
due to the presence of the forcing term 2ε cos 2τ . The theoretical tools
introduced in the previous subsection are therefore no longer applicable.
To compute the solutions y(τ) of linear equations such as the Mathieu
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equation, we follow the theory introduced by Gaston Floquet at the end
of the 19th century which deals with ordinary differential equations with
periodic coefficients.

...
...

...
...

...
...

Figure 22. Stability of a periodic state, or limit cycle, in the Argand plane
through Floquet multipliers (top row) or Floquet exponents (bottom row).
(Left) Steady bifurcation: one purely real Floquet multiplier crosses the unit
circle from the right in the time domain or Floquet exponents locked on a
multiple of ω in the frequency domain. (Center) Flip or period-doubling
bifurcation: one purely real Floquet multiplier crosses the unit circle from
the left or Floquet exponents locked on a multiple of ω/2. (Right) Secondary
Hopf, or Neimark-Sacker bifurcation: two conjugate Floquet multipliers
cross the unit circle at away from the real axis or Floquet exponents cross
the imaginary axis at values different from a multiple of ω/2.

Floquet theory (time domain) The following developments are intro-
duced for the particular 2-dimensional system (87), but they are classical
and could be generalized to N -dimensional systems without conceptual diffi-
culties. Since the system (97) is linear with respect to the unknowns y(τ), it
has n = 2 linearly independent solutions yn(τ), so that the general solution
y(τ) of (97) can be written as

y (τ) =

2∑
n=1

cnyn (t) (99)

where cn are 2 constants that depend upon the initial conditions and yn(τ)
are called fundamental solutions. We gather these into a 2 × 2 matrix,
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Y (τ) = [y1(τ) y2(τ)]. As both yn(τ) verify (97), the fundamental matrix
Y (τ) also verifies

Ẏ (τ) = J(τ)Y (τ) (100)

and, as J(τ) is T -periodic, we have

ẏn(τ + T ) = J(τ + T )yn(τ + T ) = J(τ)yn(τ + T ) (101)

so that the yn(τ+T ) also verify (97). Consequently the solutions yn(τ+T )
can be expressed as linear combinations of the 2 independent fundamen-
tal solutions yn(τ). It thus exists a 2 × 2 constant matrix Φ, called the
monodromy matrix, such that:

Y (τ + T ) = Y (τ)Φ. (102)

This matrix maps a particular set of fundamental solution Y (τ) at time τ
into their values at time τ + T (this map is called a Poincaré map). We
therefore use it to study the stability of the straight equilibrium configu-
ration x0 = 0. We compute its eigenvalues ρn and eigenvectors. For an
eigenvector of Φ we have, from Eq.(102),

yn(τ + T ) = yn(τ)ρn (103)

The ρn are therefore called Floquet multipliers which, interestingly, do not
depend upon the choice of the fundamental matrix. As a consequence, it
is convenient to use the initial conditions Y (0) = 1, where 1 is identity
matrix. The monodromy matrix then simply reads Φ = Y (T ), see (102). It
is determined by solving the linear system with periodic coefficients (100)
over one period τ ∈ (0, T ) with Y (0) = 1. Morevover, Floquet theory tells
us that we can express the fundamental solutions yn (t) in the so-called
Floquet normal form

yn(τ) = rn (τ) esnτ (104)

where rn (τ + T ) = rn (τ) is a 2-dimensional complex vector of period T
and sn is a complex number called the Floquet exponent (the Floquet form
is a generalization of the eigenmodes of vibration defined in (91) for the
autonomous system (90)). Then, it follows from Eq.(104) and from the
T -periodicity of rn that

yn(τ + T ) = rn (τ + T ) esn(τ+T ) = yn (τ) esnT (105)

We therefore see that the Floquet exponents sn are linked to the Floquet
multipliers ρn by:

ρn = esnT ⇔ sn =
1

T
ln ρn +

2πm

T
i, m = 0,±1,±2, . . . . (106)
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where T = π in our case and i is the unit imaginary number. Whereas the
Floquet multipliers are uniquely defined, the above equation shows that the
sn are unique to within an additive integer multiple of mω = 2mπ/T where
the fundamental frequency ω reads ω = 2π/T . This last result can also be
viewed by replacing sn by sn + 2imπ/T in Eq.(106).

Considering Eqs. (103) or (104), the values of either the moduli |ρn| of
Floquet multipliers or the Floquet exponents sn are used to determine the
stability of the oscillating straight system characterized by x0. The follow-
ing statements are very similar to Lyapunov’s theory previously described
except that, in the present case of Floquet theory, the nature of the insta-
bility and bifurcations we encounter are different since the perturbed state
is periodic and no more constant in time:

• If <(sn) < 0 (or |ρn| < 1) for all n, all fundamental solutions yn(τ)
converge toward zero as τ increases, so is any perturbation y(τ). The
periodic state x0 is said to be asymptotically stable;

• If it exists a subscript k such that <(sk) > 0 (or |ρk| > 1), the corre-
sponding fundamental solutions increases exponentially, so are some
perturbations y(t). The periodic state is in this case unstable and
three different scenarios have to be considered:

– If =(sk) = mω for m = 0,±1,±2, . . . (=(ρk) = 0 and <(ρk) > 0),
the perturbed motion will be a T -periodic oscillation that will
exponentially grow in the direction of the kth mode rk(τ) (see
Figure 22-Left for the representation in the Argand plane). This
loss of stability leads to a steady bifurcation since the perturbed
state bifurcates away from the periodic state x0 in the state
space, but retains its period T .

– If =(sk) = ω/2 + mω for m = 0,±1,±2, . . . (=(ρk) 6= 0 and
<(ρk) < 0), the perturbed motion will be a 2T -periodic oscilla-
tion that will exponentially grow in the direction of the kth mode
rk(τ) (see Figure 22-Center for the representation in the Argand
plane). This loss of stability leads to a flip or period-doubling bi-
furcation: the perturbed state bifurcates both in the state space
along rk(τ) and in the time domain (from a T to 2T -periodic
state). Note that by expressing the periodic state in multiple of
ω/2 instead of ω, the flip bifurcation would be transformed in a
steady bifurcation. Therefore, flip and steady bifurcation are of
same nature.

– If =(sk) 6= ω/2 + mω/2 for m = 0,±1,±2, . . . (=(ρk) 6= 0),
the perturbed motion is a periodic or quasi-periodic oscillation
that exponentially grows in the direction of the kth mode rk (see
Figure 22-Right for the representation in the Argand plane). At
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least one of the ratio between the frequencies of the perturbation
and the fundamental frequency of the perturbed state is not an
integer. As a consequence, this instability leads to a secondary
Hopf or Nemark-Sacker bifurcation which introduces one or two
new frequencies in the bifurcated stationary state. In that case,
not only the limit cycle bifurcates in the state space but also in
the time domain.
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Figure 23. Mathieu’s tongues or stability charts of the vertical solution of
the system of Figure 16, in the (δ, ε) plane. Unstable regions are in black.
Regions bounded by green and red lines respectively lead to 2T and T -
periodic steady-state oscillations. (Left) Undamped system with Q = 1010,
and (Right) Damped system with Q = 20.

Numerical applications In this section, we apply Floquet theory to
determine the stability of the vertical solution of the system of Figure 16,
seen as a periodic state. We compute the Floquet multipliers and exponents
of the linearized Eqs.(97)-(98) in the (δ, ε) space. Figure 23-Left and 23-
Right show the stability maps of this state in the (δ, ε) plane for Q = 1010

(undamped system) and Q = 20 respectively. Dark regions are such that
the modulus of at least one computed Floquet multiplier is superior to
unity. These regions of instability are called Mathieu’s tongues. Their
limits have been drawn with colored lines. Green lines surround regions of
instability where 2T -periodic oscillations develop, while red lines surround
regions of instability where T -periodic oscillations develop. Figure 24 gives
more details about the shape of Floquet multipliers and exponents for ε = 1
and Q = 20 and confirms the alternation between regions of existence of T
and 2T -periodic solutions. In thin dashed line, we also plot the evolution of
the natural frequency of the vertical solution when the base is not moving,
i.e the eigenvalues of the constant part of the Jacobian, i.e. J in Eq. (97)
with ε = 0.
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Figure 24. Evolution of Floquet’s parameters as a function of dimensionless
frequency δ = 4ω2

0/Ω
2 for Q = 20 and ε = 1. (Left) Evolution of the

modulus of Floquet multipliers. Insets: Evolution of Floquet multipliers in
the Argand plane. (Right) Evolution of Floquet exponents. Top: Growth
rate. Bottom: Spectrum of the Floquet normal form. Dashed line is the
natural frequency of the vertical solution on a standstill base.

Both Figure 23 and Figure 24 give sufficient informations to qualita-
tively explain the dynamical behavior computed and illustrated in Fig-
ure 21. When δ < 0 (i.e. p > 1), the vertically oscillating straight con-
figuration is mostly dynamically unstable with the system bifurcating to-
ward a T -periodic solution: in this region, the spectrum of the Floquet
exponents shown in Figure 24-Right are locked in the form =(sk) = mω
for m = 0,±1,±2, . . .. Due to the nonlinear term in Eq.(87), the motion
consequently settles of a steady-state that is therefore T -periodic. This is
what we observe in Figure 21-Left for ε = [0.1, 0.4] and p = 1.025 which
corresponds to δ = −0.1. However, there is an interesting narrow region
for δ < 0 illustrated in Figure 23, where the vertical solution is a stable
periodic state. This counter-intuitive phenomenon can be observed for the
couple of parameters (δ, ε) = (−0.1, 0.5) for which the dynamical response
is given in Figure 21-Left.

When δ > 0, the system in vertical periodic state is a true paramet-
ric oscillator. The transverse oscillations of the moving bar are modulated
by the harmonic intrinsic motion. As a consequence, there are alternating
windows for the parameter δ = 4ω2

0/Ω
2 for which the vertical solution is

unstable, even if it is stable in the case of a immobile base (ε = 0). This
qualitative behavior is illustrated by the nonlinear dynamic responses in Fig-
ure 21-Center and 21-Right where (δ, ε) = (2, 0.1) and (1, 0.1) respectively.
The first set of parameters leads to a stable straight configuration when
the second corresponds to an unstable one. The regions of instability are
often called forbidden regions since in those regions, the natural straight
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configuration θ(τ) = 0 is not seen experimentaly. The forbidden regions
originate (when ε → 0) from particular values δ → j2 with j = 0, 1, 2, . . .,
i.e. Ω = (2/j)ω0. This is specific of parametric instabilities: for particular
ratios between the frequency of the forcing and the natural frequency of the
unforced system, an eventual amplification of any slight perturbation may
happen and give rise to a steady-state oscillation. However, we see from
Figure 24-Right that parametric instabilities are not due to resonances, as
it is often believed, but rather to an intrinsic frequency lock-in of the spec-
trum of the Floquet normal forms. From a phenomenological point of view,
lock-in is a linear phenomenon where the fundamental frequency =(sn) de-
viates from the expected natural frequency of the unforced system, given
by the dashed line in Figure 24-Right, while being close to secondary har-
monics =(sn) + jω. Since quasi-periodic Floquet forms may have multiple
harmonics, multiple lock-in may happen for values of δ close to j2 with
j = 0, 1, 2, . . .. Moreover, as the size of the spectrum of the Floquet nor-
mal forms decreases with δ (to finally tend to the classic eigenmodes of a
structure in equilibrium as δ → +∞), lock-in phenomenon happens mostly
for small δ, when Ω and ω0 are of similar scale, and tends to disappear as δ
increases. The first region of instability encountered as δ is increased from
zero is called the principal region of instability, when the other ones are ref-
ereed to as secondary regions of instability. Finally, we note that damping
reduces the range of lock-in and therefore the width of forbidden regions for
a given set of (δ, ε).

12 Material instabilities

Energetic methods can be applied in some non-conservative cases. We con-
sider here systems of springs with damage. Damage is an irreversible and
dissipative phenomenon. Yet, it is possible to formulate the evolution of
damage as an energy minimisation problem under a unilateral constraint
representing the irreversibility.

12.1 One spring with damage

We consider a linear spring submitted to a tensile force F . The internal
deformation energy of this spring is

Vint =
1

2
k (x− x0)

2
(107)

where k is the stiffness and x the position of the right extremity of the
spring. This position is x0 when no tension (F = 0) is applied. In order to
model damage happening in the material of the spring, we postulate that
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Figure 25. (Left) A damageable spring under tension. During the loading
procedure the spring may experience damage and have its stiffness k mod-
ified. (Right) The spring stiffness k as function of the damage variable α,
see Equation (108).

during a loading experiment the spring stiffness k may decrease

k(α) = k0
1− α
1 + 3α

(108)

where the internal variable α accounts for the damage status of the material.
The material starts with α = 0 and α increases as damage occurs. Damage is
considered an irreversible phenomenon and therefore modeled by imposing
that the damage variable cannot decrease, α̇ = dα/dt ≥ 0, with time t.
When α reaches α = 1 the material is ruined. The damage function is
such that k(0) = k0 and k(1) = 0. Different damage functions k(α) have
been considered in the literature, we chose (108) for simplicity reasons. As
damage occurs, some energy is dissipated in the system and it is convenient
to consider

V (x, α) = Vint + Vdissip (109)

as the total energy of the system and treat it as conservative. Here we
choose Vdissip = W α. The dissipation energy W is related to the energy
needed to break the spring: as α reaches α = 1 the system no longer opposes
any reaction to stretching and can be considered broken. We compute the
response of the system in a controlled displacement setup, that is we study
(109) under the constraint

g(x) = (x− x0)−∆ (110)

where ∆ is the imposed displacement. Introducing the augmented energy
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Figure 26. Graphs of the function (113) for (Left) ε = 0, (Center) ε = 0.6,
(Right) ε = 1, where v′(0) = 0.

V = V (x, α)− λg(x) and solving for ∂V/∂x = 0 yields

λ = k(α) (x− x0) = F (111)

where we identify the Lagrange multiplier λ to the applied tension F . Never-
theless, we use the linearity of the constraint (110) to eliminate the variable
x and work with a (unconstrained) one-variable energy

V (α) =
1

2
k0

1− α
1 + 3α

∆2 +W α (112)

We use x0 as unit length and k0 x0 as unit force to introduce the dimen-
sionless quantities ε = ∆/x0 = (x− x0)/x0, w = W/(k0 x

2
0), f = F/(k0 x0),

and v = V/(k0 x
2
0). Setting w = 2, we obtain

v(α) =
1

2

1− α
1 + 3α

ε2 + 2α (113)

We first consider the loading situation where the extension ε is increased
quasi-statically from zero, ε(t) = t. At each time t we look for the minimum
of the energy v(α), under the irreversibility constraint α̇ ≥ 0. We therefore
study the graph of v(α) for different values of the imposed parameter ε, see
Fig. 26. As long as ε < 1 the slope at the origin is strictly positive, and the
minimum is reached at α = α? = 0. The damage variable does not evolve,
the spring experiences no damage. From (111) we compute the force and
obtain that, in this first phase, the force f increases linearly with ε, f = ε.

As ε > 1 a second phase starts and the minimum is now reached for
α = α? > 0, as seen in the graphs of Figure 27. We solve for v′(α) = 0 and
find α?(t) = (ε − 1)/3 > 1. The second phase ends at ε = t = 4 where the
spring is entirely ruined, α? = 1. In this second phase the force f decreases
with ε:

f = 1− α? =
4− ε

3
(114)

47



0.0 0.2 0.4 0.6 0.8 1.0
Α

0.5
1.0
1.5
2.0
2.5
3.0

v

0.0 0.2 0.4 0.6 0.8 1.0
Α0.0

0.5
1.0
1.5
2.0
2.5
3.0

v

0.0 0.2 0.4 0.6 0.8 1.0
Α

0.5
1.0
1.5
2.0
2.5
3.0

v

Figure 27. Graphs of the function (113) for (Left) ε = 1.5, (Center) ε = 2.6,
(Right) ε = 4, where v′(1) = 0.

In summary in the first phase α̇ = 0 and v′(α?) > 0, while in the second
phase α̇ > 0 and v′(α?) = 0. These two phases correspond to the curves P1

and P2 in the force-extension diagram, see Figure 28.
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Figure 28. Force-extension diagram for system (113). For paths P1 and
P2, the loading is such that ε(t) = t. For path P3, the loading is such that
ε(t) = 4− t, with t > 2.

We consider the point A in Figure 28 where t = 2 and α? = 1/3, and we
reverse the loading: we now impose ε(t) = 4 − t. The imposed extension ε
now decreases from ε = 2. Consequently we look for the minimum of v(α)
with the condition that α? cannot decrease under 1/3. We find that the
constraint α? ≥ 1/3 is always active: the minimum is reached at α? = 1/3,
see Figure 29. The force-extension curve P3 is plotted in Figure 28.

12.2 Two springs with damage

We now turn to the case where two springs are connected in series, see
Figure 30. Following the notations of the previous section, we write the
energy of the system as

V (∆1,∆2, α1, α2) =
1

2
k(α1)∆2

1 +
1

2
k(α2)∆2

2 + Vdissip (115)
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Figure 29. Graph of v(α) during the unloading phase P3 where ε = 4− t,
with t ∈ (2, 4). According to the past evolution of the system, the minimum
of v is searched for α ≥ 1
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Figure 30. Two damageable springs in series. A displacement ∆ is imposed
through to application of a tension F . During the loading procedure each
spring may experience damage and have its stiffness k modified.

where ∆1 (respectively ∆2) is the elongation of spring 1 (resp. spring 2). An
internal damage variable is associated to each spring and Vdissip = Wα1 +
Wα2. We study the behavior of the system under controlled displacement,
that is under the constraint ∆ = ∆1 + ∆2. As in the one-spring case,
pre-minimisation with regard to ∆1 and ∆2 yields:

F = k(α1)∆1 = k(α2)∆2 = k/(α1, α2)∆ (116)

with k/ =
[
k−1(α1) + k−1(α2)

]−1
. We use (116) to eliminate ∆1 and ∆2

and work with an unconstrained energy V (α1, α2) = 1
2k/(α1, α2)∆2+Wα1+

Wα2 that we non-dimensionalize as in previous section to finally obtain

v(α1, α2) =
ε2/2

1+3α1

1−α1
+ 1+3α2

1−α2

+ 2α1 + 2α2 (117)
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We study v(α1, α2) as the parameter ε(t) = t is increased quasi-statically,
under the constraints α̇1 ≥ 0 and α̇2 ≥ 0. We consider discrete time step
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Figure 31. Plane (α1, α2) with solutions to (118) with ε = 1.5. The curves
∂V
∂αi

= 0 part the plane into regions where the sign of ∂V
∂αi

is shown, red for
i = 1, blue for i = 2. (Left) Same with ε = 2.3

ti, i = 0, 1, 2, . . .. If at time step ti, the damage variables α1 and α2 have
reached values α−1 and α−2 respectively, we minimize (117) under the in-
equality constraints f1 = α1 − α−1 ≥ 0 and f2 = α2 − α−2 ≥ 0 that is we
solve for the Kuhn-Tucker first order necessary conditions (see Section 8)

∂V

∂α1
= µ1 , µ1 f1 = 0 (118a)

∂V

∂α2
= µ2 , µ2 f2 = 0 (118b)

where µ1 (respectively µ2) is the Lagrange multiplier associated to the con-
straint f1 ≥ 0 (resp. f2 ≥ 0). Eq (118) is a system of 4 equations with 4
unknowns (α1, α2, µ1, µ2). Among the solutions we eliminate those having

µ1 < 0 , µ2 < 0 , f1 < 0 , or f2 < 0 (119)

The stability of each of the remaining solution is then assessed separately.
• For ε < 2, the solutions to (118) are (i) the origin (α1, α2) = 0, or (ii)

solutions outside the domain 0 ≤ α1,2 ≤ 1. We represent in Figure 31-Left
two such solutions A− and B−. Yet we see that point A− has ∂V

∂α1
= µ1 = 0

but ∂V
∂α2

= µ2 < 0, and that point B− has ∂V
∂α2

= µ2 = 0 but ∂V
∂α1

= µ1 < 0.
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Figure 32. Different paths for the loading of the 2 springs system of Fig-
ure (30).

Consequently, in addition to being outside the domain 0 ≤ α1,2 ≤ 1, points
A− and B− are eliminated by the test (119). The origin has µ1 > 0 and
µ2 > 0 and is therefore a local minimum (there is no projected matrix here
to test). For this solution the force is f = 1/2 ε, see path P0 in Figure 32.

• As ε is crossing the threshold ε = 2, α1 and α2 have not yet evolved
from 0 and we have α−1 = 0 and α−2 = 0. The solution to (118) are then
(i) α1 = α2 = ε−2

6 (point A in Figure 31-Right), (ii) α1 = 0 and α2 =
ε−2
2 (point B in Figure 31-Right), and (iii) α2 = 0 and α1 = ε−2

2 (point
C in Figure 31-Right). Stability of point A, where both constraints f1
and f2 are inactive (i.e.f1 > 0 and f2 > 0), is assessed with the Hessian

Hij = ∂2V
∂αi∂αj

which is found to have one positive 24
ε and one negative 24

ε−8
eigenvalues. Point A is therefore an unstable equilibrium1. The force is
f = 8−ε

6 . Stability of point B, where the constraint f1 is strongly active
(f1 = 0 and µ1(B) = −6+4ε− ε2/2 > 0 for 2 < ε < 6) is assessed by testing

the projected Hessian or equivalently the second derivative ∂2v
∂α2

2
= 8

ε > 0.

Point B is therefore a stable equilibrium point. The force is f = 4−ε
2 . The

same conclusion is reached for point C, which is the symmetrical α1 ↔ α2

companion to point B. In conclusion we see that the system either moves
toward point B or C and therefore evolves to an unsymmetrical (α1 6=
α2) state. For subsequent time-steps the system follows the path Pasym in

1We note that we have tested the Hessian for all perturbations on α1 and α2. Different

approaches, with a stricter interpretation of the irreversibility conditions, only consider

perturbations that let the α values increase. In this latter case point A would be

considered stable (Nguyen, 2000).
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Figure (33).

Figure 32. The symmetrical path emerging from point A is labelled Psym

in Figure 32.

• For ε large than 2, if the system could have evolved along the symmet-
rical branch Psym, up to say α1 = α2 = α− we would again find 3 solution
to (118): (i) a symmetrical unstable solution with α1 = α2 = ε−2

6 (point
A′ in Figure 32), (ii) an unsymmetrical stable solution with α1 = α− and

α2 = 2−ε+α−(ε+2)
6α−−2 where the force is f = (ε−4)(1−α−)

6α−−2 (point B′ in Fig-

ure 32), and (iii) point C ′ the symmetrical α1 ↔ α2 companion to point
B′. These last two point are on path P ′asym.

We conclude that in a loading experiment where ε(t) = t, the system
follows path P0 up to ε = 2 and then path Pasym up to ε = 4. At ε = 4 one
of the spring is entirely ruined while the other is undamaged.
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