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Abstract: A polyhelix is continuous space curve with continuous Frenet
frame that consists of a sequence of connected helical segments. The
main result of this paper is that given n points in space, there exist
infinitely many polyhelices passing through these points. These curves
are by construction continuous with continuous derivatives and are com-
pletely specified by 3n numbers, i.e., the initial position, the signed cur-
vature, torsion, and length of each helical segment. Polyhelices can be
parametrized by the arc length and easily expressed in terms of product
of matrices.

1 Introduction

Consider an ordered set of n points in space. We show that there is a sequence
of helical segments passing through these points, with the properties that the entire
sequence is solely described by the curvature, torsion and total arc length of each
helical segment. These so-called polyhelices [HG06b] can be computed as prod-
uct of matrices and are therefore particularly convenient for the representation of
filamentary structure in fields such as protein structure [CSB96], elementary parti-
cle trajectories [FSW02], finite element codes [Wei02] or for visualization purposes
[KR99].

2 Definitions

2.1 Geometry of helices

Before proceeding with the construction of helices, we recall some of their basic
properties. First, we consider a curve r(s) = (x, y, z), of class C3, parametrized by
its arc length s in a fixed reference frame {e1, e2, e3}. From the curve, we can define
the Frenet basis, that is a local orthonormal basis on r defined by the tangent vector
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t = r′ as the arc-length derivative of r, the normal n = t′/|t′| and the binormal
b = t × n. The changes in the orientation of this frame along s are specified by
the Frenet differential equations in terms of two local quantities the curvature κ(s)
and torsion τ(s):

r′ = t(1)
t′ = κn(2)
n′ = τb− κt(3)
b′ = −τn(4)

where ( )′ denotes differentiation with respect to the arc length s. A circular helix
or simply a helix is defined as a curve with constant curvature and torsion. To
relate the curvature and torsion to the usual radius and pitch of a helix we can
study, without loss of generality, a helix whose axis is along the z-axis

(5) r = (R cos(δs), R sin(δs), P δs) , where δ =
1√

P 2 +R2
.

The choice P > 0 (resp. P < 0) defines a right-handed helix (resp. left-handed)
as shown in Fig. 1. The height or pitch (along the z-axis) per turn of the helix is
p = 2π|P |, the radius R, and the length of the curve per turn is 2π/δ. We can now
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Figure 1 A helix characterized by a radius R, and a pitch 2πP . The local Frenet
frame is shown at one particular point. The angle θ is the angle between the tangent
vector t and the helix axis e3.

build the Frenet triad for the helix. The normal vector n is obtained by further
differentiating and normalizing the tangent vector and the binormal vector b is
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obtained by taking the cross product b = t× n.

t = (−Rδ sin δs,Rδ cos δs, Pδ) ,(6)
n = (− cos δs,− sin δs, 0) ,(7)
b = (Pδ sin δs,−Pδ cos δs,Rδ) .(8)

The curvature, κ and torsion, τ , are obtained by considering the norm of t′ and b′

and are found to be

(9) κ = Rδ2 =
R

P 2 +R2
, τ = Pδ2 =

P

P 2 +R2
,

which implies δ2 = κ2 + τ2 and

(10) R = κ/δ2 =
κ

κ2 + τ2
, P = τ/δ2 =

τ

κ2 + τ2
.

The helix angle θ is the angle between the axis and the tangent vector defined in
the interval [0, π] by

cos θ = t · e3 = Pδ = τ/δ(11)
sin θ = n · (e3 × t) = Rδ = κ/δ.(12)

Similarly, the pitch angle θ̂ is the angle between the tangent and the plane normal
to the axis, that is θ̂ = π/2− θ. The sign of the pitch angle defines the handedness
of the helix (right-handed helices have positive pitch angles).

2.2 Polyhelices

Since the curvature and torsion of a helix are constant, the Frenet equations (1-4)
can be integrated explicitly. To do so, we introduce a 12 dimensional vector whose
entries are the 9 components of the three Frenet vectors in the fixed basis as well as
the 3 coordinates of a point on the curve Y = {t1, n1, b1, t2, n2, b2, t3, n3, b3, r1, r2, r3}
and the Frenet equations can now be written

(13) Y′ = M · Y, with M =


F 0 0 0
0 F 0 0
0 0 F 0
V1 V2 V3 0

 , F =

 0 κ 0
−κ 0 τ
0 −τ 0


and where Vi is the 3×3 matrix whose single non-vanishing entry is a 1 in row i,
column 1. For greater generality, we admit here solutions with negative curvature
(the so-called “signed curvature”), this amounts to choose an inward (positive cur-
vature) or outward (negative curvature) normal vector to the curve. Also, in this
case the helix angle θ is taken between 0 and 2π. Note that the handedness of a
structure is specified by the sign of the torsion (see Eq.(10) for P ) and is therefore
independent of the sign of the curvature.

For a helix, Eq. (13) is a system of linear differential equations with constant
coefficients. Therefore, it can be integrated explicitly. A segment of a helix starting
at s = 0 is completely characterized by the initial position and orientation of the
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Frenet basis Y(0) and the triple ω = {κ, τ, L} of curvature κ, torsion τ , and length
L. In such case, the explicit solution to Eq. (13) is

(14) Y(s) = A(κ, τ ; s) ·Y(0) 0 ≤ s ≤ L,

where A(κ, τ ; s) = esM is the matrix exponential which can be written

A(κ, τ ; s) =


a0 0 0 0
0 a0 0 0
0 0 a0 0
a1 a2 a3 I3

 , a0 =

1− κ2

δ2 (1− cos δs) κ
δ sin δ s κ τ

δ2 (1− cos δ s)
−κδ sin δ s cos δ s τ

δ sin δ s
κ τ
δ2 (1− cos δ s) − τδ sin δ s 1− τ2

δ2 (1− cos δs)

 ,
and ai is the 3×3 matrix whose only non-vanishing row is the ith row and is given
by

(15)
(
δsτ2 + κ2 sin δ s

δ3
,
κ

δ2
(1− cos δ s),

κτ

δ3
(δs− sin δs)

)
,

where δ =
√
κ2 + τ2, and I3 is the 3×3 identity matrix. This construction naturally

leads to the definition of Frenet polyhelices (polyhelices for short in this paper).

Definition 2.1. A Frenet polyhelix is a solution of the Frenet differential equations
(1-4) with piecewise constant curvature and torsion.

The fact that the polyhelix is a solution of the Frenet equations implies that the
Frenet frame is continuous. The fact that curvature and torsion are piecewise con-
stant implies that each segment where they are both constant is a helical segment.
The polyhelix is said to be finite if there exists a finite number of helical segments
and the total arc length is finite. Each segment is fully characterized by the triple
ω = {κ, τ, L} and we have the following result.

Proposition 2.2. A finite Frenet polyhelix is specified (up to a rotation and trans-
lation) by the ordered list

(16) Ω = {ω(i), i = 1, . . . , N} =
{
{κ(i), τ (i), L(i)}, i = 1, . . . , N

}
.

Moreover, the jth helical segment is parametrized by the last three components of
the vector Y(j)(s):

(17) Y(j)(s) = A(κ(j), τ (j); s− Lj−1) ·
j−1∏
k=1

A(k) ·Y(0), Lj−1 ≤ s ≤ Lj ,

where Y(0) = Y(s = 0) is given by the initial Frenet frame and position, A(k) =
A(κ(k), τ (k);L(k)), L0 = 0, Lj =

∑j
k=1 L

(k) is the total arc length of the j first
segments and the product of matrices is taken in reverse order (

∏2
k=1A

(k) = A(2) ·
A(1)).

Proof. Since the polyhelix is finite there exists a finite number N of intervals
where curvature and torsion are constant. This polyhelix is completely character-
ized by the list Ω and an initial position and basis orientation Y(0) = Y(s = 0)
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through the solution of the Frenet equations. A parametric expression in arc length
for the jth segment of the curve r(s) is given by the solution of the Frenet equations
through the explicit solution (14). The Frenet frame and position at the beginning
of each segment is specified by the value of Y at the end of the previous segment.
�

3 Helix through 2 points

The strategy is to build a polyhelix through n points is first to consider two
points in space with a Frenet frame attached to the first point. The problem is
then to build a helical segment passing through the two points at its extremities
and whose Frenet frame at the first point is the given Frenet frame. Once the first
helical segment is known, we can compute the Frenet frame attached at the second
point and compute a helical segment passing through the second and third point
with the given Frenet frame at the second point. The procedure is then iterated
over the remaining points. Therefore, we first consider the problem of computing
a helical segment between two points.

Lemma 3.1. If z 6= 0, there exists a countable set of helical segments from the
origin 0 to another point P = (x, y, z) ∈ R3 with Frenet frame at the origin aligned
with the axes: t = (1, 0, 0),n = (0, 1, 0),b = (0, 0, 1). If z = 0 there exists a
single straight line (when y = 0) or a single arc of circle joining the origin to the
P = (x, y, 0) ∈ R3 with Frenet frame at the origin aligned with the axes.

Proof. We take the points 0 = (0, 0, 0) and P = (x, y, z) and vectors t = (1, 0, 0),
n = (0, 1, 0), b = (0, 0, 1) attached to the origin. First, we consider the case where
yz 6= 0. We also define the plane

Π : α1x+ α2y + α3z = 0

as the plane passing through the origin and perpendicular to the vector α =
(α1, α2, α3). Without loss of generality, we choose α3 = 1 (the case α3 = 0 corre-
sponding to yz = 0) . The projection of a helix of vector axis α passing through 0
on the plane Π is a circle Cα (See Fig.2) . The condition on the vector α is that

• C1. The helix axis is orthogonal to the normal vector:

(18) α.n = α2 = 0,

which implies that n is in the plane Π. Therefore, the remaining unknown is
α1.

• C2. The projection of the tangent vector t on Π is tangent to the circle Cα.
Let q be the center of Cα then

(19) q = Rα× t

where R is undetermined. Due to the particular choice of axes, we have

(20) q = Rn = (0, R, 0),

and we see that R is the signed radius of the circle Cα and |R| is the radius of
the helix of axis α.
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• C3. The projection p of P on Π lies on the circle Cα. The projection of P is

(21) p = P−
(

P · α
|α|

)
α

|α|

We use p to find R by requiring that |q− p| = |q.q|:

(22) R =
y2(1 + α2

1) + (x− α1z)2

2y(1 + α2
1)

.
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Figure 2 The geometry. The helix has an axis α starting at the point q. The
projection of the helix on the plane Π is the circle Cα of radius R that is found by
projecting P on Π.

The curvature and torsion of the helix can be expressed as a function of α1 by
using Eqs. (11-12),

(23) δ =
∣∣∣∣nR · ( α|α| × t)

∣∣∣∣ =
1√

R2(1 + α2
1)
,

and

(24) κ =
1

R(1 + α2
1)
, τ =

α1

R(1 + α2
1)
.

Since κ and τ are both functions of α1, we can compute a general helical segment
of length L from 0 with a given Frenet frame and require that it passes through p.
We compute

(25) Y(s) = A(κ(α1), τ(α1); s).(1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0)T ,
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to obtain the condition on the last three components of Y:

(26) Y10(L) = x, Y11(L) = y, Y12(L) = z.

This is a system of three equations for the two unknowns α1 and L that read,
respectively,

sin (δ L) =
(
(α2

1 + 1)x− α2
1L
)
δ,(27)

cos (δ L)
(
(x+ α1z)2 + y2(1 + α2

1)
)

= (x− α1z)2 − y2(1 + α2
1),(28)

sin (δ L)α1 =
(
α1L− z(α2

1 + 1)
)
δ.(29)

This still constitutes an over-determined system of equations (3 equations for the
two unknowns L and α1). However, it is easy to verify that cos(δL)2+sin(δL)2−1 =
0. Therefore, once a solution of the first and third equation is known, the value of
cos(δL)2 can be computed and the only remaining condition to be verified is the
sign of cos(δL) which leads to the condition

(30) sign [cos (δ L)] = sign
[
(x− α1z)2 − y2(1 + α2

1)
]

Therefore, if there exists a solution α1 with positive L that satisfies both (27), (29),
and (30), it automatically verifies (28). We now show that such solutions exist.
Equations (27) and (29) can be simplified to

L = x+
z

α1
,(31)

sin
(
δ (xα1 + z)

α1

)
= (x− zα1) δ,(32)

where

(33) δ = 2
√

1 + α1
2|y|

y2(1 + α2
1) + (x− α1z)2

.

The problem of finding a helical segment is reduced to finding a solution of (32)
such that L is positive and (30) is satisfied. Once this solution is found, κ and τ are
determined and L is given by (31). Note that, there exist many different solutions
for (32), corresponding to different possible helical segments. In general to define
a polyhelix and unless otherwise mentioned we look for the principal helix, that is
the solution with the smallest positive length L.

To understand the solutions of Eq. (32) it is useful to look at it as a function
of β = 1/α1, in which case, it reads

(34) sin(δx+ δzβ) = xδ − δ z
β
, δ =

2|y|β
√
β2 + 1

β2(x2 + y2)− 2xz + y2 + z2
.

In the limit of large positive β, the r.h.s. of (34) tends to 2x|y|
x2+y2 . Since

∣∣∣ 2xy
x2+y2

∣∣∣ ≤
1, ∀x, y, Eq. (34) always as an infinite number of solutions (see Fig.3). Note that
for large β, sin(δx + δzβ) tends to sin( 2|y|z

x2+y2 β). In the same limit, the l.h.s. of
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condition(30) tends to sign(x2 − y2) and we conclude that every other solution
satisfies condition (30). Therefore, there exist infinitely many admissible helical
segments. Note that the situation is similar for large negative β.

−0.5

0.0

−1.0

0

0.5

1.0

sin(δ(x+ β z))δ(x-z / β )

2xy/ (x2+y2 )

β

Figure 3 The left and right hand sides of eq.(34) as a function of β.

Second, we turn our attention to the case yz = 0 and directly solve the problem
by considering the general helical segment starting at 0 with Frenet frame aligned
with the three axes as before. The system of equation is then

(35) (x, y, z) =
(

sin (δ L)κ2 + τ2δL

δ3
,
κ (1− cos δ L)

δ2
,
κ τ (δ L− sin δ L)

δ3

)
.

First consider the case y = 0 and z 6= 0. Since κ 6= 0 (otherwise, the helix
degenerates to a straight line, which implies z = 0), we have δL = 2nπ and

(36) y =
2nπτ2

δ3
, z =

2nπκτ
δ3

.

Then the solutions are:

(37) κ = ± 2nπxz
(x2 + z2)3/2

, τ = ± 2nπx2

√
x2 + z2

,

where the signs are both either positive or negative. This concludes the proof of
the first part of the lemma.

Second, consider the case z = 0. Since both tangent and normal vectors are in
the (x, y) plane, the solution must be planar, that is either a circle or a straight
line. The helical segment is a straight line if y = z = 0, in which case κ = τ = 0
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and L = x. Assume now that y 6= 0 and the remaining problem is therefore to find
an arc of circle, that is to solve the equation

(38) x =
sinκL
κ

, y =
1− cosκL

κ
.

which leads to

(39) κ =
2y

x2 + y2

and

(40) tan(κL) =
xκ

1− yκ
.

Note that only the solution with smallest positive L is valid since the other ones rep-
resent multi-covered circles. Therefore, there is only one solution and this concludes
the proof of the second part of the lemma. �

Example 3.2. Consider P = (2, 3, 4). Then the solution of (32) which leads
to the smallest length and compatible with (30) is α(1)

1 ' 0.7487, L(1) ' 7.3425,
κ(1) ' 0.3991, and τ (1) ' 0.2988. The next compatible solution is α(2)

1 ' 0.3106
which leads to L(2) ' 14.8778, κ(1) ' 0.5746, and τ (1) ' 0.1785. These two possible
solutions and the third one (not given explicitly here) are shown in Fig.4.
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Figure 4 Three possible helical segments with given Frenet frame at the origin
(aligned with the three axes) and joining the point P = (2, 3, 4).

Example 3.3. As an example of a the first degenerate case (y = 0). Take the
point P = (2, 0, 4), we show the two first solutions (with both signs). Note that
in this case, due to the symmetry of the problem all these solutions have the same
length L and are therefore all principal helices.

Example 3.4. As an example of a the second degenerate case (z = 0), we take
the point P = (2, 3, 0). The solution is an arc of circle as shown in Fig.6.
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Figure 5 Four possible helical segments with given Frenet frame at the origin (aligned
with the three axes) and joining the point P = (2, 0, 4).
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Figure 6 The arc of circle with given Frenet frame at the origin (aligned with the
three axes) and joining the point P = (2, 3, 0).
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So far we have restricted our analysis to the case where one of the points is at
the origin and the Frenet frame is along the axes. The general case is covered by
the following proposition.

Proposition 3.5. Consider two points A and B with a Frenet matrix FA whose
columns are the vectors (tA,nA,bA) at A. Let P = (x, y, z) = FT

A · (B−A).
Then, if z 6= 0, there exists a countable set of helical segments from the origin A to
another point B with Frenet frame FA at A. If z = 0 there exists a single straight
line (when y = 0) or a single arc of circle joining A to B with Frenet frame FA at
A.

Proof. We use Lemma 3.1 by reducing the problem to the previous one. We
place the frame of reference at the point A and rotate the axes to align them with
the Frenet frame. The coordinates of the point B in this new basis are the values
P = (x, y, z) used to identify the helical segment in Lemma 3.3.1. That is, we write

(41) B−A = xtA + ynA + zbA.

If we introduce the matrix FA whose columns are the vectors tA,nA,bA, the last
relation simply reads

(42) B−A = FA ·P,

and, since FA is an orthogonal matrix, we have

(43) P = FT
A · (B−A) .

�

Once the values of κ, τ and L have been identified, the curve is defined by the
relation (14) with Y(0) defined by FA and A.

4 Polyhelices through n points

Theorem 4.1. Given a set of n ordered points in space {Qi, i = 1, . . . , n}, there
exists infinitely many polyhelices passing through these points.

Proof. The proof is done by building a polyhelix through repeated applications
of Proposition 3.5 for each successive pair of points. The algorithm proceeds as
follows

• Step 1. Start with Q1 and Q2 and the canonical Frenet frame F1 = I (aligned
with the axes).
Compute P = Q2 −Q1.

• Step 2. From P, compute the value of α1 and L solution of Eqs (32) and (31)
that satisfies condition (30).

• Step 3. Compute ω1 = (κ(α1), τ(α1), L) that defines the helical segment.
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• Step 4. From Eq.(14), compute the Frenet basis F2 at the point Q2.
Compute the new local components P = FT

2 · (Q3 −Q2) .

• Step 5. Following Step 2 and Step 3, compute ω2.

• Step 6. Iterate Step 4 to 5 to the last point.

For a given initial Frenet frane and unless z = 0 for a particular segment,
there exists a countable set of values of ω for each segment, hence infinitely many
polyhelices. If z = 0 for all segments, all points are in the (x, y) plane and there is
a unique planar polyhelix made of arcs of circles for this particular choice of initial
Frenet frame. However, the choice of initial Frenet frame is arbitrary and there
exists infinitely many polyhelices. �

Example 4.2. To illustrate the theorem, consider the following set of points
{Q1 = (0, 0, 0),Q2 = (2, 3, 4), Q3 = (6, 9, 6), Q4 = (0, 0, 8)}. We computed a
polyhelix passing through these points. The values of (α1, κ, τ, L) found for this
example can be found in Table 1.
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X3
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X2

Figure 7 A polyhelix through the points Q1 = (0, 0, 0), Q2 = (2, 3, 4), Q3 = (6, 9, 6),
Q4 = (0, 0, 8).

Helical segment α1 L κ τ

Q1 → Q2 0.7487 7.3425 0.3991 0.2988
Q2 → Q3 0.3471 15.9826 -0.2638 -0.0916
Q3 → Q4 -0.3360 16.9454 -0.1866 0.0627

Table 1 Values of the parameters for the polyhelix shown in Fig. 7

Helical segment α1 L κ τ

Q1 → Q2 0.3106 14.8777 0.5746 0.17848
Q2 → Q3 0.0963 31.916 -0.2894 -0.0279
Q3 → Q4 0.0012 93.269 -0.1745 -0.0002

Table 2 Values of the parameters for the polyhelix shown in Fig. 8
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Figure 8 A second polyhelix through the points Q1 = (0, 0, 0), Q2 = (2, 3, 4), Q3 =
(6, 9, 6), Q4 = (0, 0, 8). Note that the last helical segment is not a circle but a very flat
helix (with torsion τ = −0.0002) and there is no self-intersection

5 Conclusions

Polyhelices are remarkably simple curves that can be defined by a sequence
of the triples (curvature, torsion, length). They are, by construction of class C1

and further enjoy the property that their Frenet frames is also continuous. They
have already shown to be useful in the representation of protein structures [HG06b,
HG06a] where they are used to describe long structures with few parameters and
are therefore a convenient representation to explore the space of possible protein
shapes.

Here we showed that given a set of n points in space, there exist infinitely many
polyhelices through them. The construction is particularly simple as it only rests
on one root finding for each segment. The curve and the Frenet frame is then
parametrized in arc length by a product of matrices. An ordered set of n points
consists of 3n data points. A polyhelix through n points is also defined by 3n data
points but it defines not only the set of n points but also the curve going through
them. It is therefore a particularly efficient and useful exact representation of points
and curves.

The analysis presented here can be readily generalized by considering more
general local basis than the Frenet frame. The easiest generalization consists in
considering the director basis (made out of a tangent vector and a pair of vectors
in the normal plane to build an orthonormal basis). This provides an extra degree
of freedom (the angle between the Frenet normal vector and one of the basis vector
in the normal plane) that can be used to specify some other properties of the curve
(such as fixing its curvature, or finding the helical segment with smallest arc length).
A second important generalization consists in defining polyhelices for closed curves.
This can be done efficiently by first building a polyhelix through n points and then
adding a point between the last point and the first so that the Frenet frame (or its
generalization) is continuous at the origin. The representation of closed curves by
polyhelices could then be used to study property of ideal knots [GM99] and could
therefore be seen as a natural generalization of bi-arcs [CLMS05].
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