La chiralité des protéines fibreuses : une affaire d'élasticité

Sébastien Neukirch (CNRS & Université Paris 6)

en collaboration avec:

Andrew Hausrath
Biochemistry
Univ. of Arizona

Alain Goriely
Applied Math
Bio5 Institute
Univ. of Arizona

Protéines globulaires / protéines fibreuses

D. A. Parry & J. M. Squire, J. Struct. Biol. (1998)

1991 : crystal structure of coiled-coil protein (GCN4)

<u>Site-directed mutagenesis</u>:

replace specific residues => effect on the structure

(two-stranded coiled-coil -> three-stranded coiled-coil)

Design

« This was a veritable revelation.

The simpler fibrous proteins had thus become a *superb vehicle* by which the precise factors specifying protein structure could be recognized. »

=> Similar approach for globular proteins ? (not yet)

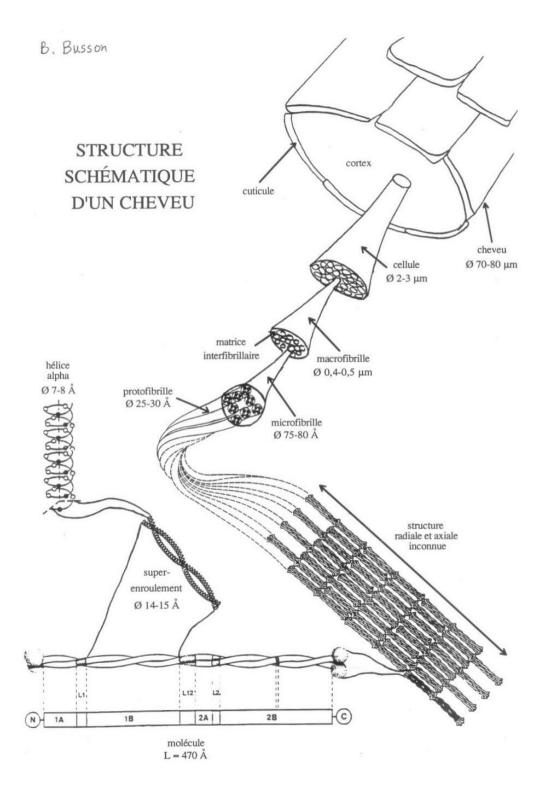
Exemples de protéines fibreuses :

kératines (ongles, cheveux, peau, ...) collagènes (os, tendons, ...)

Kératine

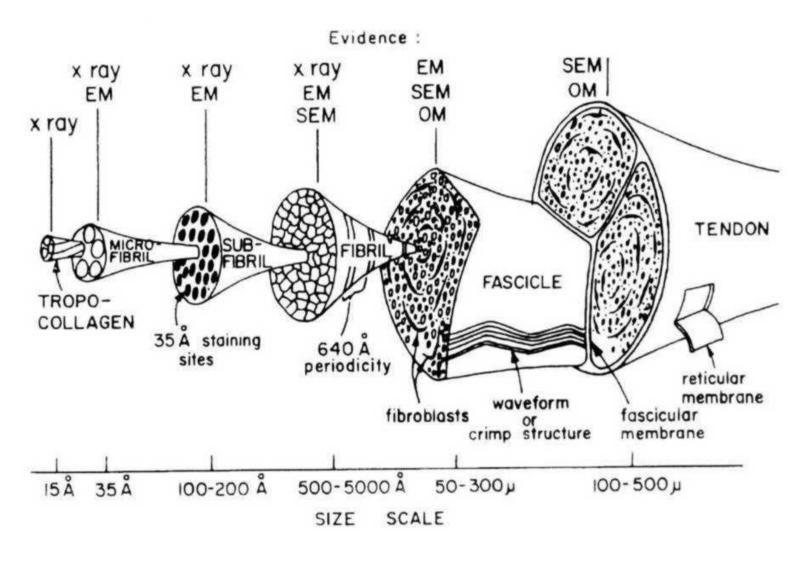
structure hiérarchique

<u>Diffraction X</u>: Jean Doucet Fatma Briki Bertrand Busson (LPS - Orsay)



Collagène

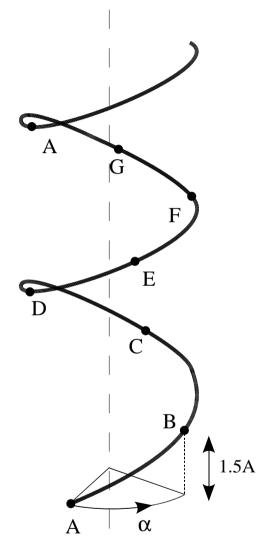
grande résistance à la rupture : 4000 kg tendon d'Achille cheval (Yamada 1970)

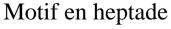


Peter Fratzl (Universität Wien, Österreich)

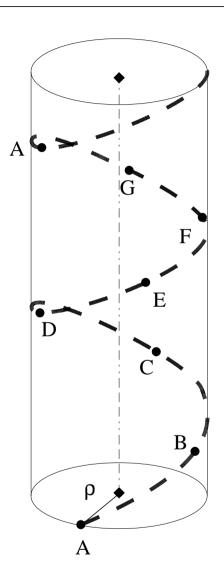


Hélice alpha => tige élastique

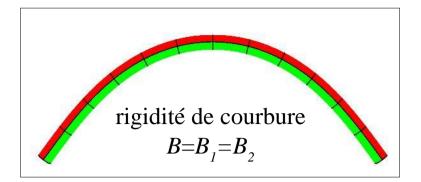




$$\alpha = 100^{\circ}$$



 $\rho = 2.2A$



rigidité de torsion *C*

ponts hydrogènes

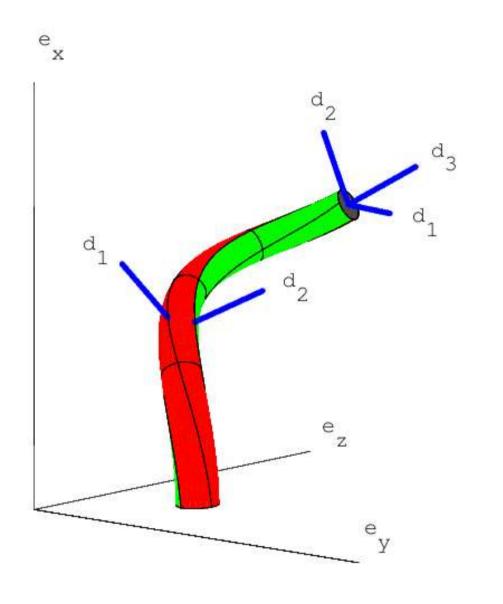
- + planéité liaisons peptidiques
- = inextensible

dynamique moléculaire :

 $B \simeq 100 \ nm \ kT$ $C \simeq ?$

S. Choe & S. Sun, J. Chem. Phys. 2005

Repère matériel : directeurs de Cosserat



$$\{\vec{e}_x, \vec{e}_y, \vec{e}_z\}$$
 repère fixe

- $\vec{r}(s)$ ligne centrale de la tige
- $\tilde{t}(s)$ tangente

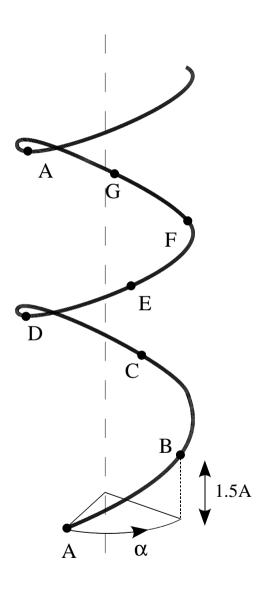
$$\{\vec{d}_1(s), \vec{d}_2(s), \vec{d}_3(s)\}$$

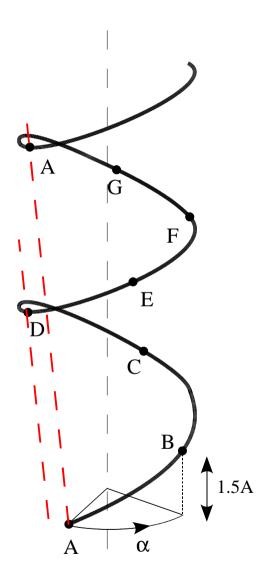
repère mobile (directeurs de Cosserat)

$$\vec{d}_3(s) \equiv \vec{t}(s)$$

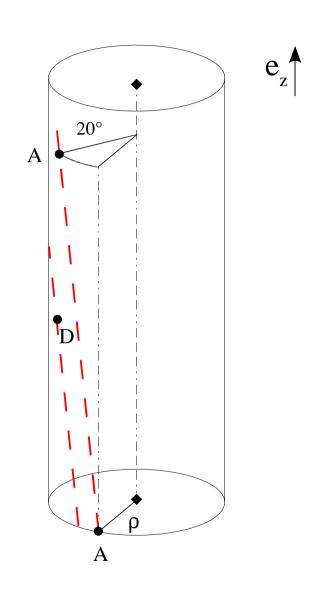
Attention!
$$\overrightarrow{d}_1(s) \neq \overrightarrow{n}(s)$$

 $\overrightarrow{d}_2(s) \neq \overrightarrow{b}(s)$

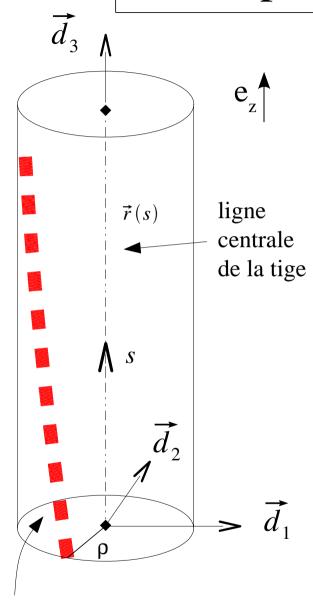




A et D hydrophobes



décalage 20° pour hauteur 7 h = 10.5 A



Bande hydrophobe:

$$\overrightarrow{d_{HP}} = \cos(\hat{\tau} s) \overrightarrow{d_1}(s) + \sin(\hat{\tau} s) \overrightarrow{d_2}(s)$$

décalage 20° pour hauteur 7 h = 10.5 A

$$\hat{\tau} = -0.033 \, rad/A$$

Important:

dans l'état déformé d_{HP} est fixe % à d_1 et d_2

i.e.
$$\hat{\tau}$$
 est fixe

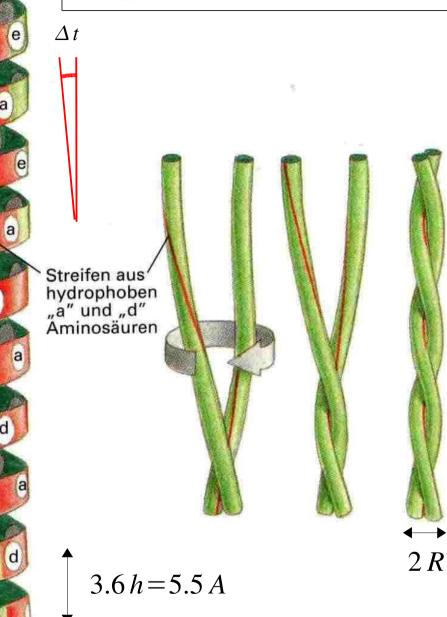
bande hydrophobe

- Rayons X : tâche méridien 5.15A (et pas 5.5A)
 Enfouissage des résidus hydrophobes.
 - => Crick (1953) : structure à deux brins enroulés

Fraser & McRae (1973) : pas de la super-hélice en fonction du twist de la bande hydrophobe

$$P = \frac{2 \pi}{\Delta t} \sqrt{H^2 - R^2 (\Delta t)^2}$$

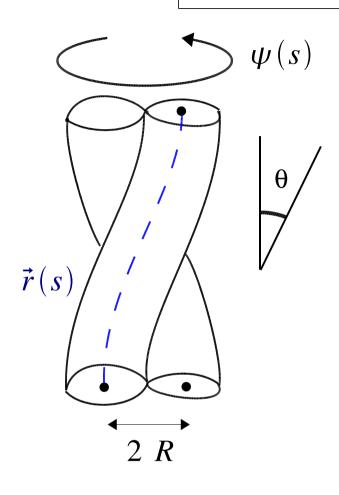
Prédiction (vérifiée) de A. Lupas (1996) : motif à 11 résidus => chiralité droite



Alberts et al. (1998)

 $H = h \cos \theta$

Super-enroulement : ligne centrale



$$\vec{r}(s)$$
 décrit une hélice de pas $P = \frac{2\pi R}{\tan \theta}$

$$\vec{r}(s) = \begin{vmatrix} +R & \sin \psi(s) \\ -R & \cos \psi(s) \\ s & \cos \theta \end{vmatrix} \quad \text{avec} \quad \psi(s) = s \quad \frac{\sin \theta}{R}$$

$$R$$
 rayon super-hélical $(R \neq \rho)$

$$R$$
 rayon super-hélical $(R \neq \rho)$
$$\theta \quad \text{angle hélical } (\theta < 0 : \text{chiralité gauche})$$
 $\psi(s)$ angle équatorial

$$\psi(s)$$
 angle équatorial

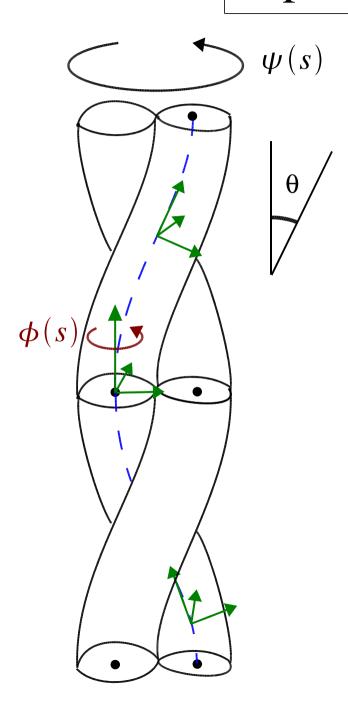
Repère de Frenet

$$\vec{t}(s) = \begin{vmatrix} \sin \theta & \cos \psi(s) \\ \sin \theta & \sin \psi(s) \\ \cos \theta \end{vmatrix}$$

$$\vec{n}(s) = \begin{vmatrix} -\sin\psi(s) \\ +\cos\psi(s) \\ 0 \end{vmatrix}$$

$$\vec{t}(s) = \begin{vmatrix} \sin \theta & \cos \psi(s) \\ \sin \theta & \sin \psi(s) \\ \cos \theta \end{vmatrix} \qquad \vec{n}(s) = \begin{vmatrix} -\sin \psi(s) \\ +\cos \psi(s) \\ 0 \end{vmatrix} \qquad \vec{b}(s) = \begin{vmatrix} -\cos \theta & \cos \psi(s) \\ -\cos \theta & \sin \psi(s) \\ \sin \theta \end{vmatrix}$$

Super-enroulement: directeurs



rotation d'angle $\phi(s)$ autour de la tangente t(s)

$$\vec{d}_1(s) = \sin \phi \quad \vec{n}(s) - \cos \phi \quad \vec{b}(s)$$

$$\vec{d}_2(s) = \cos \phi \quad \vec{n}(s) + \sin \phi \quad \vec{b}(s)$$

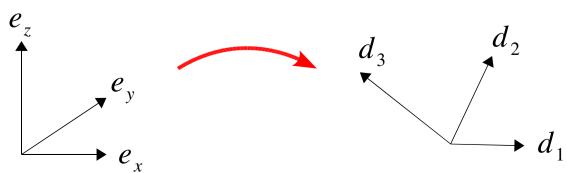
$$\left(\vec{d}_3(s) = \vec{t}(s)\right)$$

 $\phi = \phi(s)$ twist interne

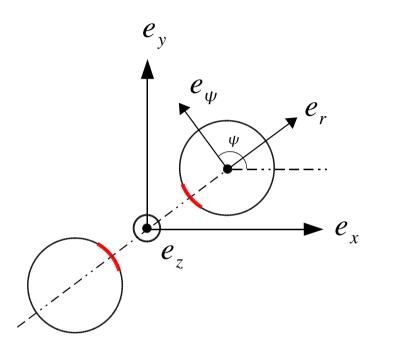
il s'ajoute à la torsion géométrique de Frenet car le matériau tourne autour de la ligne centrale

3 angles d'Euler $\{\theta, \psi, \phi\}$

rotation de $\{\vec{d}_1, \vec{d}_2, \vec{d}_3\}$ par rapport à $\{\vec{e}_x, \vec{e}_y, \vec{e}_z\}$



Contrainte hydrophobe



Enfouissage 1 résidu hydrophobe ~ 5 kT (Tanford 1962) Courber sur 7/2 résidus ~ 0.16 kT (R=5A, θ = 0.2 rad)

<u>Hypothèse</u>: contrainte géométrique: $d_{HP} = -e_r$

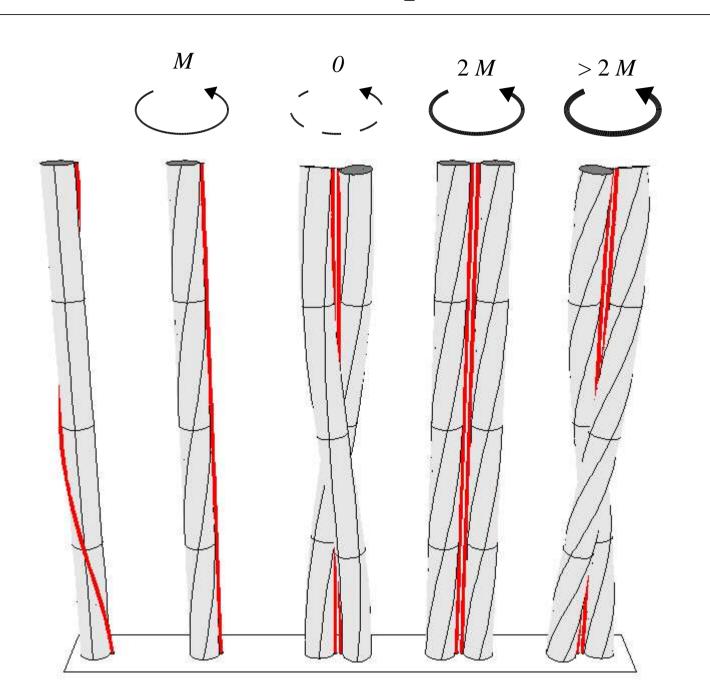
$$\overrightarrow{d_{HP}} = \cos(\hat{\tau} s) \overrightarrow{d_1}(s) + \sin(\hat{\tau} s) \overrightarrow{d_2}(s) = -\overrightarrow{e_r}$$

$$\begin{vmatrix} \vec{d}_1(s) = \sin \phi & \vec{n}(s) - \cos \phi & \vec{b}(s) \\ \vec{d}_2(s) = \cos \phi & \vec{n}(s) + \sin \phi & \vec{b}(s) \end{vmatrix}$$

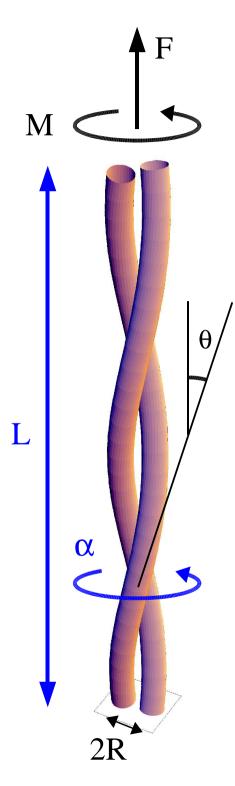
$$\cos(\hat{\tau}s + \phi) = 0 \Rightarrow \phi(s) = \frac{\pi}{2} - \hat{\tau}s$$

Remarque : contrainte géométrique (hydrophobe) ne dit rien sur θ (chiralité)

Une famille continue de super-enroulements possibles



bande hydrophobe enfouie



Énergie de déformation élastique

$$L = \sigma \cos \theta$$

$$V = 2 \frac{1}{2} \int_0^{\sigma} B \kappa^2 + C \tau^2 ds - F L - M \alpha \qquad \alpha = \frac{\sigma}{R} \sin \theta$$

$$\alpha = \frac{\sigma}{R} \sin \theta$$

σ: longueur curviligne totale d'un brin

Hypothèses : hélice conservée sous contrainte θ constant de s extensibilité non prise en compte

courbure
$$\kappa = \frac{\sin \theta \sin \theta}{R}$$

twist total
$$\tau = \dot{\phi} + \tau_F$$

avec
$$\begin{cases} \dot{\phi} = -\hat{\tau} & \text{(contrainte hydrophobe)} \\ \tau_F = \frac{\sin\theta\cos\theta}{R} & \text{(torsion géométrique de Frenet de la ligne centrale)} \end{cases}$$

Équilibre du super-enroulement

$$V = V[\theta] \Rightarrow \frac{dV}{d\theta} = 0$$

$$4 B \sin^{3} \theta \cos \theta + 2 R C \cos(2\theta) \left(-\hat{\tau} + \frac{\sin \theta \cos \theta}{R} \right) + R^{2} F \sin \theta - R M \cos \theta = 0$$

$$\sin F = 0 = M: - \frac{2 B \sin^3 \theta \cos \theta}{R C \cos(2\theta)} = -\hat{\tau} + \frac{\sin \theta \cos \theta}{R} \qquad (= \tau: \text{twist total})$$

pour $\theta << 1$: $\theta \simeq \hat{\tau} R$ (Fraser & McRae (1973))

Équilibre mécanique

chiralité du super-enroulement

= chiralité de la bande hydrophobe

diffraction rayon X, données de Harbury et al, *Nature* (1994) GCN4 leucine-zipper

		model		
GNC4	res/turn	rise/res		$\hat{ au}$ (rad/A)
dimer	3.62	1.51 A		-0.039
trimer	3.60	1.53 A		-0.033
tetramer	3.59	1.52 A		-0.030

twist de la bande hydrophobe

diffraction rayon X, données de Harbury et al, *Nature* (1994) GCN4 leucine-zipper

	X-ray data			model		
GNC4	res/turn	rise/res	super-helix R	$\hat{\tau}$ (rad/A)	2θ	
dimer	3.62	1.51 A	4.9 A	-0.039	-22°	
trimer	3.60	1.53 A	6.7 A	-0.033	-26°	
tetramer	3.59	1.52 A	7.6 A	-0.030	-27°	

$$\theta \simeq \frac{1}{2} \arcsin(2 \hat{\tau} R)$$

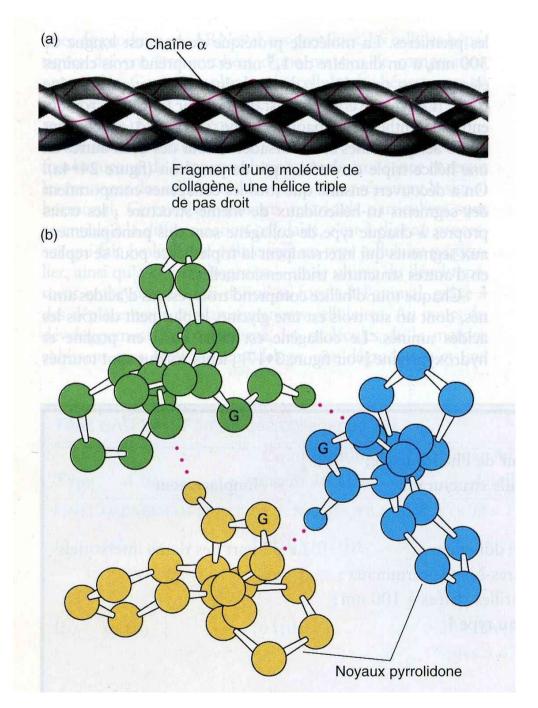
diffraction rayon X, données de Harbury et al, *Nature* (1994) GCN4 leucine-zipper

		model				
GNC4	res/turn	rise/res	super-helix R	super-helix 2θ	$\hat{\tau}$ (rad/A)	2θ
dimer	3.62	1.51 A	4.9 A	-23.4°	-0.039	-22°
trimer	3.60	1.53 A	6.7 A	-26.8°	-0.033	-25°
tetramer	3.59	1.52 A	7.6 A	-26.0°	-0.030	-26°

bonne correspondance

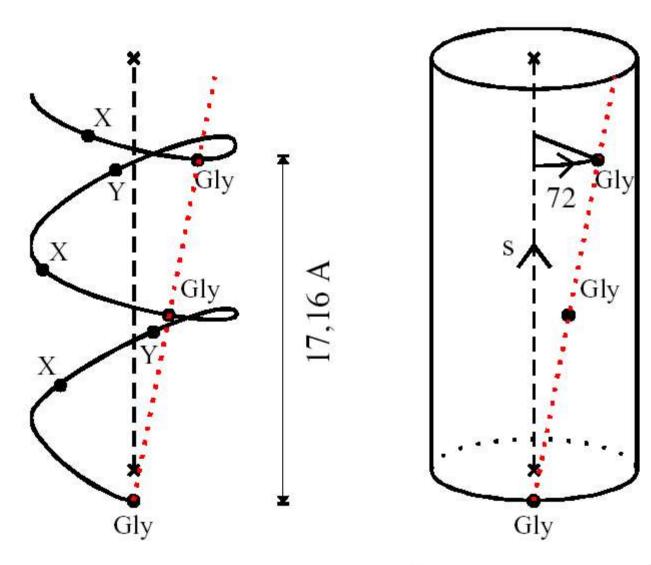
Triple hélice du collagène

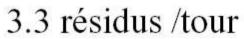
- →Protéine fibreuse (os, tendon).
- →25% de la masse protéinique du corps humain.
- →Filaments extra-cellulaires (au contraire de l'actine, kératine).
- → Hiérarchie : organisation de fibres.
- →Tropocollagène: triple hélice.
- →Chaque brin compte 1050 résidus.
- →Chaque brin est lui même une hélice : polymère (Gly-X-Y)_n



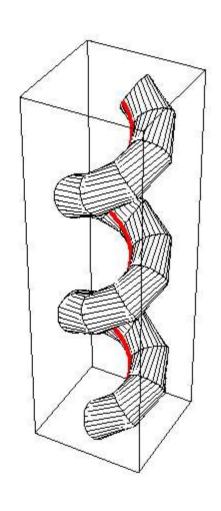
Lodish et al. (1997)

Collagène : les résidus de Glycine





 $\hat{\tau} = 0.0732 \, rad \, / \, \dot{A}$



 $\phi' = -\hat{\tau}$

diffraction rayon X, données de Bella et al (1994)

	X-ray data	model
collagen	res/turn rise/res super-helix R	$\hat{\tau}$ (rad/A) 2θ
trimer	3.3 2.86 A 2.8 A	+0.073 +24°

$$\theta \simeq \frac{1}{2} \arcsin(2 \hat{\tau} R)$$

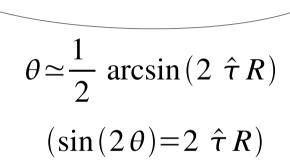
diffraction rayon X, données de Bella et al (1994)

		model				
collagen trimer	res/turn 3.3	rise/res 2.86 A	super-helix <i>R</i> 2.8 A	super-helix 2θ +23°	$\hat{\tau}$ (rad/A) +0.073	2θ +24°

$$\theta \simeq \frac{1}{2} \arcsin(2 \hat{\tau} R)$$

diffraction rayon X, données de Bella et al (1994)

		model				
collagen trimer	res/turn 3.3	rise/res 2.86 A	super-helix <i>R</i> 2.8 A	super-helix 2θ +23°	$\hat{\tau}$ (rad/A) +0.073	2θ +24°



Équation d'équilibre :
$$- \frac{2 B \sin^3 \theta \cos \theta}{R C \cos(2\theta)} = -\hat{\tau} + \frac{\sin \theta \cos \theta}{R}$$

$$\frac{C}{B}$$
=2.3

élasticité: C/B<1

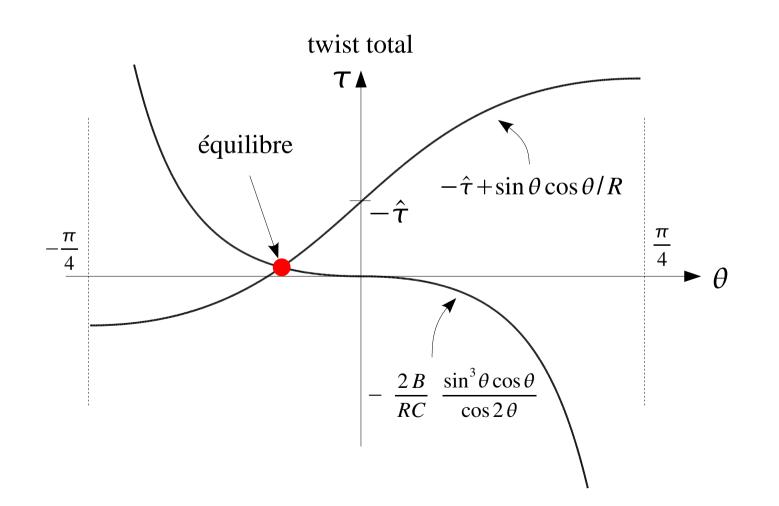
hélice (GXY), plus facile à courber qu'à tordre

ADN: 1 < C/B < 1.5

Résolution graphique de l'équation d'équilibre

super-enroulement isolé : F = 0 & M = 0

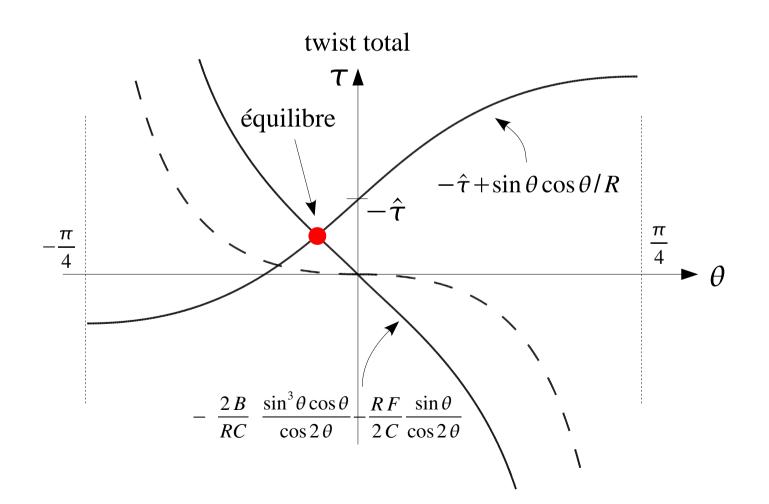
$$-\frac{2 B \sin^3 \theta \cos \theta}{R C \cos 2 \theta} = -\hat{\tau} + \frac{\sin \theta \cos \theta}{R} \qquad (= \tau : \text{twist total})$$



Résolution graphique de l'équation d'équilibre

super-enroulement sous tension : F > 0 & M = 0

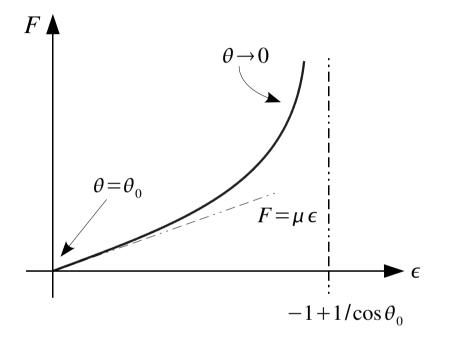
$$-\frac{2 B \sin^{3} \theta \cos \theta}{R C \cos 2 \theta} - \frac{RF}{2 C} \frac{\sin \theta}{\cos 2 \theta} = -\hat{\tau} + \frac{\sin \theta \cos \theta}{R} \ (= \tau: \text{twist total})$$



$\theta_0 = 0.3$ $\theta = 0.1$

Réponse en extension

$$F = \frac{2}{R^2} \frac{\cos 2\theta}{\sin \theta} \left[\frac{C}{2} \left(\sin 2\theta_0 - \sin 2\theta \right) + B \left(\tan 2\theta_0 \sin^2 \theta_0 - \tan 2\theta \sin^2 \theta \right) \right]$$



$$\mu = \frac{\partial F}{\partial \epsilon} \bigg|_{\theta_0} = \frac{2C}{R^2 \theta_0^2}$$

$$\epsilon = \frac{\cos \theta}{\cos \theta_0} - 1$$

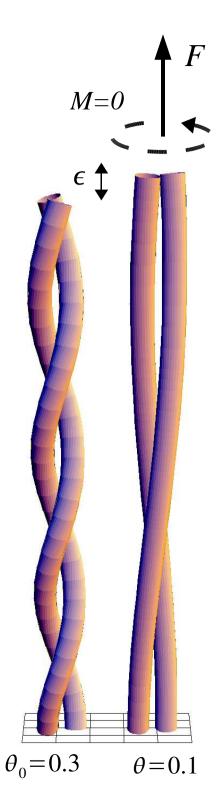
$$\left(\theta_0 = 10^{\circ} \& R = 5 A\right) \rightarrow \mu = 80 \ nN \ (!)$$
 $\epsilon = 1\% \rightarrow F = 800 \ pN \ (!)$

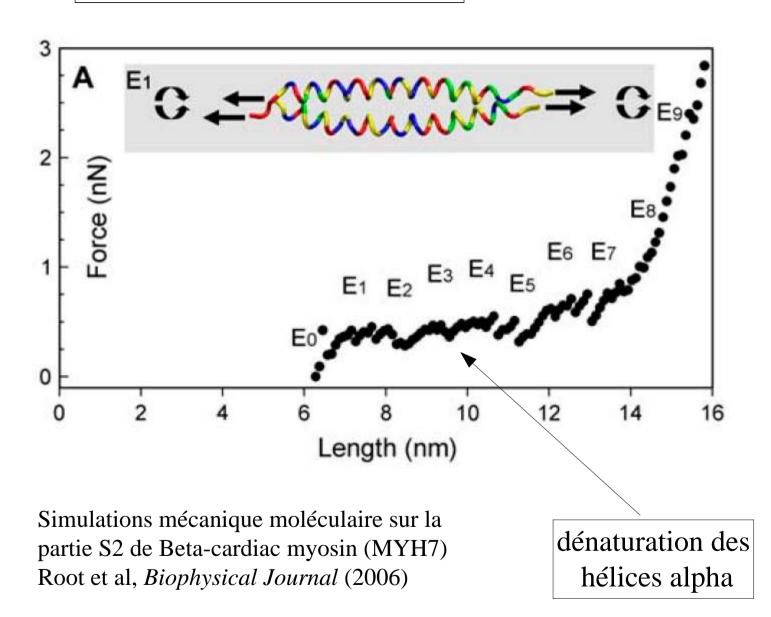
$$\epsilon = 1\% \rightarrow F = 800 \ pN \ (!)$$

liaisons hydrogène cassent bien avant

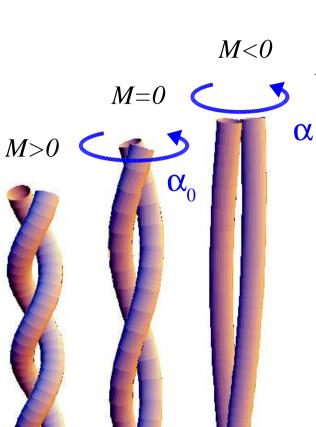
Remarque: structure extensible même si éléments inextensibles couplage extension - rotation

Réponse en extension





Réponse en rotation

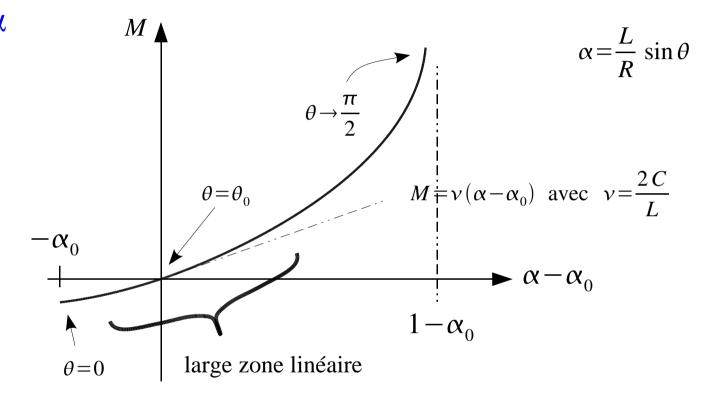


 $\theta_0 = 0.3$

 $\theta = 0.1$

 $\theta = 0.5$

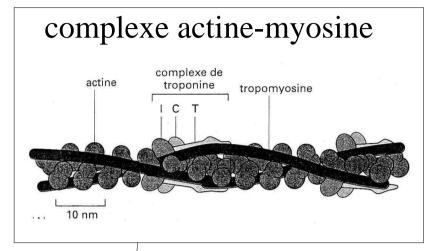
$$M = -\frac{2}{R} \frac{\cos 2\theta}{\cos \theta} \left[\frac{C}{2} \left(\sin 2 \theta_0 - \sin 2 \theta \right) + B \left(\tan 2 \theta_0 \sin^2 \theta_0 - \tan 2 \theta \sin^2 \theta \right) \right]$$

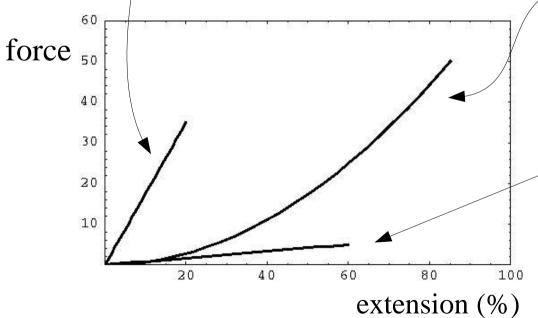


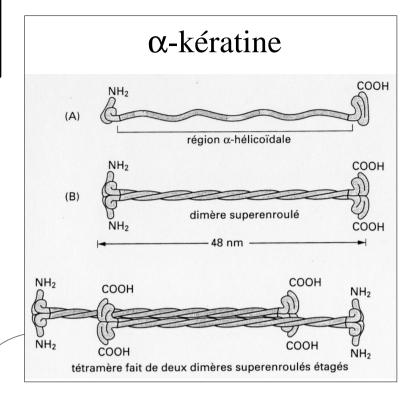
Partie S2 de Beta-cardiac myosin (MYH7) : L = 6 nm donc v=140 pN nm

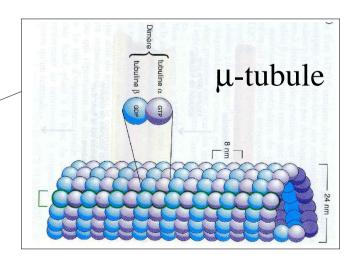
=> M = 3 pN nm pour 1% de rotation

Diversité des protéines fibreuses









Janmey et al., J. Cell Biol. (1991)